L00 - Overview
- What, why & how
- Learning objective
- What we cover
- Module assessment
- Course schedule & webpage
- Resources

L01 - Introduction [Jain91 - chapters 2]
- What
- Some goals
- Applications
- Performance evaluation techniques
- Criteria for selecting an evaluation technique
- Applicability of evaluation techniques
- Why performance modeling
- Steps for a performance evaluation study
- Performance evaluation study example
- Summary

CAPACITY PLANNING
L02 - Capacity Planning [Menasce98 - chapter 5]
- What is Capacity Planning
- Capacity of a System
- Concept of Adequate Capacity
- Service Level Agreement (SLA)
- Methodology for Capacity Planning
 - Understanding the environment
 - Workload characterization
 - Workload forecasting
 - Performance modeling and prediction
 - Model validation
 - Cost model
- Summary

PERFORMANCE MEASUREMENT
L03 Performance Metrics [Jain91 - chapter 3, Lilja - chapter 2]
- What is a Performance Metric?
- Why Performance Metrics?
- Characteristics of Good Metrics
- Standard Processor and System Metrics
- Other Metrics
- Cost/performance Ratio
- Summary

L04 - Workload - Selection, Characterization and Forecasting [Jain91 - chapters 4-6]
- Definition
- Types of Workload
• Workload Selection
• Representativeness of Workload Model
• Workload Characterisation
• Workload Forecasting
• Summary

L05 - Instrumentation and Representation of Measurement Data
• Instrumentation [Jain91 – chapters 7 & 8]
 • Introduction
 • Hardware Monitors
 • Software Monitors
 • Program Execution Monitors
 • Accounting Systems
 • Log Generators
• Representation of Measurement Data [Jain91 – chapters 10 & 12]
 • Representation
 ▪ Gantt Charts
 ▪ Kiviat Graphs
 • Summarizing Measured Data
 ▪ Quantile-quantile plots
 ▪ Confidence Interval
• Summary

OPERATIONAL ANALYSIS AND ANALYTIC MODELS
L06 - Queuing Theory Terminology [Lazowska84 – chapter 2, Jain91 – chapter 30]
• Introduction to Queuing Theory
 • Basic Components of a Queue
 • Kendall Notation
 • Rules for all Queues
 • Little’s Law
• Analytic Models
 • Modeling Cycle
 • Stochastic Processes
• Summary

L07 - Operational Analysis [Jain91 – chapter 33, Lazowska84 – chapters 3 & 5]
• Operational Laws
 • Utilization Law
 • Forced Flow Law
 • Little’s Law Revisited
 • General Response Time Law
 • Interactive Response Time Law
• Performance Bounds
 ▪ Asymptotic Bounds
 ▪ Balanced System Bounds
 ▪ Examples: Bottleneck Analysis and Modification Analysis
• Summary

L08 - Analysis of a Single Queue [Jain91 – chapter 31]
• Analytic Models
• General Birth-Death Process Queuing Model
• M/M/1 Queuing System
• M/M/m Queuing System
• M/M/m/B Queuing System
Summary

L09 - Analysis of Queuing Networks [Jain91 – chapters 32, 34 & 36]
- Queuing Networks
- Product Form Queuing Network
- Queuing Network Analysis
 - Mean Values in Open Queuing Network
 - Analysis of Closed Queuing Network
- Hierarchical Decomposition of Large Queuing Networks
- Summary

SCALABLE PERFORMANCE

L10 - Principles of Scalable Performance [Hwang93 – chapter 3]
- Argument against the Merit of Parallelism
- Performance Metrics
 - Average Program Parallelism
 - Execution Rates
 - Speedup and Efficiency
- Applications / Algorithms
 - Application Models
 - Scalability of Parallel Algorithms
- Speedup Performance Laws
 - Fixed Workload – Amdahl’s Law (1967)
 - Memory-Bounded Speedup – Sun & Ni (1993)
- Summary

CASE STUDY

L11 - Performance of Client-Server Architectures and Peer-Assisted File Distribution
- Client Server Architectures [Menasce94 – chapter 7]
 - Problem
 - Performance Considerations
 - Hierarchical Model
 - Higher-level Birth-Death sub-model
 - Lower-level CS sub-model
 - Summary
- Peer-Assisted File Distribution
 - Motivation
 - Challenges
 - Objectives
 - Measurement Analysis
 - General Modeling Approach
 - Model Applications
 - Summary

L12 - Time-Energy Performance of Heterogeneous Systems
- Motivation
- Problem
- Challenges
- Objectives
- Measurement-driven Model
 - Core Model
 - Model Extensions
- Model Applications
- Summary

L13 - CONCLUSION

REFERENCES

Homework
1. Performance Metrics
2. Workload and Representation of Measurement Data
3. Operational Analysis
4. Queuing Theory

Assignments
1. Performance Metrics and Measurement; Perf Linux Profiling
2. Operational Analysis and Queuing Models & Analysis