Cheat Sheet Predicate Logic

Martin Henz, 10/7/2013

Bottom-up

General tactic on bottom-up reasoning: When you are proving a goal, and you think you need and can prove a hypothesis \(\phi \), you can add it via `assert \ \phi`. Coq will then ask you to first prove \(\phi \). After that, you can work on your original goal, now with the additional hypothesis of \(\phi \). This is a special case of \(\rightarrow \ e \), see below.

\(\top \): trivial.

\(\land \): split.

\(\land e_1 \): Let us call the goal \(g \). Here is how to use \(\land e_1 \) bottom-up, in case you would ever need it: `assert \ g \land \ \phi`. prove conjunction, `destruct H1. apply H2`. where \(H1 \) is the conjunction and \(H2 \) is \(g \).

\(\land e_2 \): Let us call the goal \(g \). Here is how to use \(\land e_2 \) bottom-up, in case you would ever need it: `assert \ \phi \land \ g`. prove conjunction, `destruct H1. apply H2`. where \(H1 \) is the conjunction and \(H2 \) is \(g \).

\(\lor \): left.

\(\lor \): right.

\(\lor e \): `destruct H`.

\(\rightarrow \): intro.

\(\rightarrow e \): `apply H`. (\(H \) is the implication)

\(\rightarrow e \): A variant of the rule allows you to prove a goal \(\psi \), by proving first \(\phi \), and then \(\phi \rightarrow \psi \): `assert \ \phi`, then prove \(\phi \), and finally prove goal \(\psi \) using \(\phi \)

\(\neg \land e \): `assert \ \phi \land \neg \phi`. `split`. prove \(\phi \) and \(\neg \phi \) separately, then use `destruct H1. contradiction H2`, where \(H1 \) is the asserted conjunction, and \(H2 \) is one part of it.

\(\neg i \): unfold not. intro.

\(\bot e \): exfalso.

\(\neg \neg e \): Let us call the goal \(g \). Here is how to use \(\neg \neg e \) bottom-up, in case you would ever need it: `assert (\neg \neg \ g)`. prove \(\neg \neg \ g \). Now use: `tauto`.

\(= i \): trivial.

\(= e \): `rewrite H`. (use `rewrite <- H` to apply equality \(H \) from right to left)

\(\forall e \): `apply H`.

\(\forall i \): intro.

\(\exists i \): `exists t`.

\(\exists e \): `destruct H`.

Derived rule: LEM + \(\forall e \): LEM (\(\phi \)).
Top-down

Coq allows you to apply some rules within the hypotheses, which makes many proofs a lot shorter. Here are some common uses of top-down reasoning:

→ e: `spec H1 H2`. (H1 is the implication)

¬i: `unfold not in H`.

∧i: `destruct H`.

= e: `rewrite H1 in H2`. (apply equation H1 in H2; use `rewrite <- H1 in H2` to apply equality H1 from right to left)

∀e: `spec H t`.