
QUICK: Expressive and Flexible Search over
Knowledge Bases and Text Collections

Jeffrey Pound
David R. Cheriton School of

Computer Science
University of Waterloo

Waterloo, Canada
jpound@cs.uwaterloo.ca

Ihab F. Ilyas
David R. Cheriton School of

Computer Science
University of Waterloo

Waterloo, Canada
ilyas@cs.uwaterloo.ca

Grant Weddell
David R. Cheriton School of

Computer Science
University of Waterloo

Waterloo, Canada
gweddell@cs.uwaterloo.ca

1. INTRODUCTION
Recent work on Web-extracted data sets has produced an

interesting new source of structured Web data. These data
sets can be viewed as knowledge bases (KB) – large het-
erogeneous linked entity collections with millions of unique
edge and node labels, often encoding rich semantic informa-
tion over entities. For example, YAGO [5] and ExDB [2]
have fact collections numbering in the tens and hundreds of
millions respectfully, and WebTables [1] contains over one
hundred million extracted relations. In terms of schema in-
formation, the ExDB, YAGO, and WebTables data sets all
have schema items numbering in the millions.

Due to the sheer size of the schema information in these
Web-extracted KBs, there has been limited development of
novel tools and technologies to expose these unique data
sets to end users. One of the main factors impeding the de-
velopment of useful applications over these data sets is the
information overload problem caused by the massive hetero-
geneous schema information. With KB schema items num-
bering in the millions, formulating structured queries is a
daunting task for an application developer. Most applica-
tions are therefore built on keyword search, which does not
allow direct access to the expressive structure of the data,
or are applications built on structured queries with the as-
sumption that the users are able to digest these massive
schemas.

As an example, consider a user searching for all scientists
that have won a nobel award. Exploiting the structure of a
knowledge base, a user may formalize the information need
as the following SPARQL query.

SELECT ?x
WHERE {

?x type SCIENTIST .
?x hasWonPrize ?y .
?y type NOBEL PRIZE .

}

(1)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 2
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

However, a user formulating this query may have literally
millions of choices for terms like NOBEL PRIZE and hasWon-
Prize. In such a scenario, the utility of the structured query
language is greatly diminished by the complexity of compos-
ing well formed queries. Alternatively, to satisfy the infor-
mation need, a user may pose the following keyword query.

“scientists have won nobel award” (2)

This query searches for all data items having an occurrence
of the given keywords. While this alleviates the information
overload problem, it comes at a cost of expressivity. It is not
clear in this query what is being searched for (the scientists
or the awards?), nor is it explicit what the relationship be-
tween keywords should be (which keywords describe entities,
types, and/or relations?).

To address these issues, we propose QUICK (Queries Us-
ing Inferred Concepts from Keywords), a novel information
system that allows expressive yet flexible entity retrieval
over Web-extracted knowledge bases. Our approach blends
keyword search with structured queries, allowing complex
information needs to be expressed without intimate knowl-
edge of the underlying schema. Our system also supports
reasoning over type hierarchies with an efficient query-time
algorithm. To this extent, QUICK could accommodate the
example information need exploiting structure as in (1) but
using keywords as in (2).

“scientists, have won (nobel award)”

Furthermore, we show how knowledge from the Web-extracted
knowledge base can be used as an aid in document retrieval,
enabling semantic search over a text corpus that exploits
structured information with expressive queries.

2. THE QUICK SYSTEM
Figure 1 shows an overview of our complete system archi-

tecture. We extract named entities from text documents for
indexing, and also index the text to support full text search.
We index the content and structure of a Web-extracted
knowledge base to allow efficient access to entities based on
structured concept queries generated by our disambiguation
procedure. We also collect statistics from the KB to aid in
the disambiguation process.

At run-time, our system takes a structured keyword query
describing entities of interest. Since the query is based on
keywords, there is an inherent ambiguity as to the intent
of the query. A disambiguation procedure is run to com-
pute the top ranking query interpretations in the form of a

1573



Figure 1: QUICK system architecture.

structured concept query over the KB. One or more of these
queries is then run against the KB index to find relevant
entities, and entity-based document search is used to find
documents relevant to the entities. In the case where full
disambiguation cannot be achieved, we also integrate resid-
ual keywords to aid in document ranking. In the case where
no disambiguation can be achieved, our system degrades to
a regular keyword search engine.

In the remainder of this section we review the main con-
tributions of the QUICK architecture, including the struc-
tured keyword query language, query disambiguation, in-
dexing and query evaluation. We use existing solutions to
support the other components of the system.

2.1 Structured Keyword Queries
Our system is driven by a blend of structured and keyword

queries originally presented in [4]. This query language en-
ables expressive descriptions of information needs while al-
lowing the flexibility of keywords as base level constructs.
The language is defined as follows.

Definition 1. (Structured Keyword Query) Let k be
a keyword phrase (one or more keywords), then a structured
keyword query Q is defined by the following grammar.

Q ::= k

| k(Q)

| Q1, Q2, ..., Qn

The first construct allows an entity or type in a query to
be described by a set of one or more keywords (e.g., “no-
bel prize” or “scientist”). The second construct allows the
description of an entity in terms of the relationships it has
to other entities or types. (e.g., “born in(Canada)”). The
third construct allows a set of queries to describe a sin-
gle class of entities in conjunction (e.g., “harmonica player,
songwriter”).

Note that relationship queries allow an arbitrary nesting
of subqueries, such as the query “born in(country, has offi-
cial language(spanish))” which could be used to query peo-
ple born in Spanish speaking countries.

Our system also supports a top-level query language in
which multiple structured keyword queries can express that
documents of interest should contain multiple types of enti-
ties, as described by each subquery.

2.2 Query Disambiguation
Because our queries are based on keywords, there is ambi-

guity in the meaning of the query. Our system implements
a sophisticated disambiguation approach to quickly find top
ranking candidate query interpretations expressed in the vo-
cabulary of the given KB. The ranking is based on a combi-
nation of syntactic similarity, which captures how closely the
candidate mapping matches the users description of their
information need, and semantic similarity, which approx-
imates the semantic coherence of the candidate query in-
terpretation with respect to the underlying KB. Intuitively,
good query interpretations will reflect the users information
need as closely as possible, while producing an expression
that is coherent with respect to the knowledge encoded in
the KB.

Figure 2: An example query disambiguation graph.

Figure 2 shows an example of a graph representation of
the disambiguation procedure. The square nodes represent
candidate KB items for a given keyword phrase shown in
italicized quotes. The edges denote potential joins on se-
mantic similarities. For each term in the query we generate
a partition, a candidate set of KB items that the query term
may represent using very relaxed syntactic matching. The

1574



Figure 3: Visualizing the disambiguation algorithm.

goal is then to choose one item for each query term in or-
der to build a query interpretation in the vocabulary of the
KB. The number of such interpretations is exponential in
the length of the query, thus we must be selective in which
query interpretations we consider.

We begin by sorting each partition according to the syn-
tactic similarity of the KB items to the query term. We
then consider the coherence of having KB items from each
partition in conjunction in order to estimate the semantic
coherence of possible combinations of KB items. We tra-
verse partitions in order, terminating when the k highest
scoring partitions are found. The algorithm may terminate
early by computing upper and lower bounds on the scores of
each candidate being considered. This algorithm is a vari-
ation of the threshold algorithm known as a rank-join. In
this case, we join KB items together that have non-zero se-
mantic similarities, and join across nested queries based on
the same binding of the KB relation for keywords denoting
relations. Full details of our scoring function and disam-
biguation model can be found in [4].

2.3 KB Indexing and Query Evaluation
We have developed a custom tool for indexing and query-

ing semantic graphs while appealing to inference over acyclic
type hierarchies. The index builds on standard notions of
graph representation, making use of adjacency lists stored in
a scalable key-value store. A key observation for our class
of concept queries is that we need only index the inverse
directions of relations in order to efficiently support query
evaluation. This reduces the size of our index by half, as
compared to a full graph index. The second decision in our
index design is to support inference over the transitive “is-a”
relation using a lazy, query-time evaluation technique. This
again gives us a very compact representation compared to
systems that pre-compute and index the full graph closure.
Because of these two space saving properties of our index,
we are able to store large KBs (such as YAGO [5]) in mem-
ory and achieve very efficient query evaluation. Details of
our index and query processing algorithm, along with per-
formance experiments can be found in [3].

2.4 Document Ranking
Ultimately, the function of our system is to retrieve doc-

uments of interest. There are two components to document
retrieval and ranking in our system. First, our system uses
the entities that qualify for the concept queries to retrieve

Figure 4: Visualizing the query disambiguation
graph.

documents describing these entities. Because we annotate
entities in documents at index time, we are able to perform
accurate entity-based retrieval of documents. Second, key-
words that were not mapped into the disambiguated concept
query, due to a failure in the mapping procedure or incom-
pleteness in the KB, are used to re-rank the candidate doc-
ument set, boosting the score of documents containing the
residual keywords. This can be done efficiently using the
full text index. We retrieve all documents containing the
residual keywords, and boost the documents in the inter-
section of this set and the set of documents mentioning the
entities of interest. In our prototype, the boosting is done
by adding the relevance scores assigned by our document
retrieval engine, which is based on tf · idf scoring.

2.5 Implementation Details
We have built the entire QUICK system as depicted in

Figure 1 with the exception of the feedback mechanism for
learning new facts. We are developing a number of experi-
mental interfaces to apply this technology.

QUICK integrates a variety of open-source libraries as
well as custom built components. We use the Lucene li-
brary1 to build both the full text index and entity-based
document index. Named entities are annotated at index
time using a text processor built on top of the OpenNLP
library2. This tool annotates person, location, and organi-
zation entities occurring in the text. We also create a Lucene
index over all of the schema item labels of the KB, this is
used to quickly generate the candidate sets for each keyword
expression in the query. Our KB index uses Berkeley DB3

as the key-value store. Our concept query processor is a
custom solution written in Java. The query disambiguation
module is also written in Java and uses a separate Berke-
ley DB store for pre-computed pairwise semantic similarities
between all KB items. Our scoring function uses q-gram
distance for syntactic similarity and the Jaccard index for
semantic similarity as discussed in [4].

3. DEMO SCENARIO
We deploy our system over the YAGO KB [5] and a large

news corpus. We use the 2008 version of YAGO as our
knowledge base (note that this is approximately three times
larger than the initial instance reported in [5]). YAGO con-
sists of about 6 GB of raw ontology and entity data. It
contains over 2 million entities, about 250,000 primitive con-
cepts, 100 relations, and over 20 million facts about these
entities, concepts, and relations. We use the AQUAINT2

1http://lucene.apache.org/
2http://opennlp.sourceforge.net/
3http://www.oracle.com/technology/products/berkeley-
db/je/index.html

1575



Figure 5: A query result interface grouping relevant documents by entities. The top ranking query interpre-
tations are also shown on the right.

news collection as our corpus, consisting of over 900,000 En-
glish news articles from various sources.

We demonstrate entity-based text retrieval using struc-
tured keyword queries with our automated disambiguation
procedure. In this scenario, arbitrary structured keyword
queries are taken as input to the system. The top rank-
ing disambiguation is computed and evaluated over YAGO,
appealing to the encoded semantics using a query-time in-
ference procedure over our KB index. Qualifying entities
are used to find relevant documents using entity-based doc-
ument retrieval.

Participants will be able to experiment with the live sys-
tem, issuing queries over a real-world KB and document
collection. Additionally, we will demonstrate a tool that vi-
sualizes our disambiguation algorithm, illustrating how can-
didates are generated and ranked during the disambiguation
procedure. Figure 3 shows part of an interface for visualiz-
ing the disambiguation algorithm. Each candidate KB item
is considered one step at a time to show how concept queries
are constructed and ranked.

Figure 4 shows a visualization of the query disambigua-
tion graph. As the disambiguation algorithm is executed,
relevant parts of the graph are highlighted to illustrate the
candidate connections for joining query terms.

Figure 5 shows an interface for displaying results. A struc-
tured keyword query is taken as input and the top ranking
disambiguations are computed and displayed in the right-
hand column. The top interpretation is executed and the
resulting documents are displayed in the main area grouped
by entities. An alternate organization for results would al-
low the document pool to be ranked as a whole.

4. CONCLUSION
We have proposed a demonstration of a new type of search

capability, one that integrates the expressivity of structured
queries with the flexibility of keyword queries. This tech-
nology enables access to large heterogeneous data sets that
result from automated Web extractions. We have also pro-
posed an application of this search technology, utilizing a
Web-extracted KB for the task of document retrieval.

5. REFERENCES
[1] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and

Y. Zhang. WebTables: exploring the power of tables on
the web. Proc. VLDB Endow., 1(1):538–549, 2008.

[2] M. J. Cafarella, C. Re, D. Suciu, and O. Etzioni.
Structured Querying of Web Text Data: A Technical
Challenge. In CIDR, pages 225–234, 2007.

[3] J. Pound, I. F. Ilyas, and G. Weddell. QUICK: Queries
Using Inferred Concepts from Keywords. Technical
report, Technical Report CS-2009-18, University of
Waterloo, 2009.

[4] J. Pound, I. F. Ilyas, and G. Weddell. Expressive and
Flexible Access to Web-Extracted Data: A
Keyword-based Structured Query Language. In
SIGMOD ’10: Proceedings of International Conference
on Management of Data, pages 423–434, 2010.

[5] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A
Core of Semantic Knowledge - Unifying WordNet and
Wikipedia. In 16th Intl. World Wide Web Conference
(WWW 2007), pages 697–706, 2007.

1576




