CS2220: Introduction to Computational Biology
Course Briefing, 13/1/05

Limsoon Wong
Recommended “Pre-requisites”

- CS1102: Data Structures and Algorithms
- LSM1102: Molecular Genetics
Objectives

• Develop flexible and logical problem solving skill
• Understand bioinformatics problems
• Appreciate techniques and approaches to bioinformatics

To achieve the goals above, we expose the students to a series of case studies spanning gene feature recognition, gene expression and proteomic analysis, gene finding, sequence homology interpretation, phylogeny analysis, physical mapping, and genome sequencing.
What to Expect

• Time Table
• Course Syllabus
• Course Homepage
• Teaching Style
• Project, Assignments, Exams
• Readings
• Assessment
Time Table

- **Lecture**
 - Friday 2:00pm – 4:00pm, LT33

- **Tutorial**
 - Thursday 10:00am – 11:00am, S16-432

- **Consultation**
 - Friday 4:00pm – 6:00pm

- **Office**
 - S16 Level 6 Room 5

- **Email**
 - wongls@comp.nus.edu.sg
Course Syllabus

• Essence of Bioinformatics
 – molecular biology
 – tools and instruments for molecular biology
 – themes and applications of bioinformatics

• Essence of Knowledge Discovery
 – classification performance measures
 – feature selection techniques
 – machine learning techniques

• Gene Feature Recognition from Genomic DNA
 – feature generation, selection, & integration
 – translation initiation site (TIS) recognition
 – Transcription start site (TSS) recognition

• Gene Expression and Proteome Analysis
 – Microarray and mass-spec basics
 – classification of gene expression profiles
 – classification of proteomic profiles
 – clustering of gene expression profiles
 – molecular network reconstruction

• Essence of Seq Comparison
 – Dynamic programming basics
 – Sequence comparison and alignment basics
 – Needleman-Wunsh global alignment algorithm
 – Smith-Waterman local alignment algorithm

• Seq Homology Interpretation
 – protein function prediction by sequence alignment
 – protein function prediction by phylogenetic profiling
 – active site and domain prediction
 – key mutation sites prediction

• Gene Finding
 – Overview of gene finding
 – GRAIL
 – Handling of frame shifts and in-dels

• Phylogenetic Trees
 – Phylogeny reconstruction method basics
 – origin of Polynesians & Europeans
 – Large-scale sequencing basics

• Physical Mapping and Genome Sequencing
 – Physical mapping basics
 – sequence assembly algorithm
 – shortest common superstring problem
Course Homepage

• IVLE

• Lecture Slides & etc
Teaching Style

• Bioinformatics is a broad area
• Need to learn a lot of material by yourself
 – Reading books
 – Reading papers
 – Practice on the web
• Don’t expect to be told everything
Assignments, Project, & Exam

• **Assignments**
 – Probably 4 assignments
 – Some are programming assignments

• **Project**
 – Based on a case study in the class
 – 8-10 pages of report expected

• **Exam**
 – No mid-term exam … I hope!
 – 1 final open-book exam
Be Honest

• Exam
 – Absence w/o good cause results in ZERO mark
 – Cheating results in ZERO mark

• Discussion on assignments is allowed

• Blatant plagiarism is not allowed
 – Offender gets ZERO mark for assignment or exam
 – Penalty applies to those who copied AND those who allowed their assignments to be copied
Background Readings

- Limsoon Wong, *The Practical Bioinformatician*, WSPC, 2004
Assessment

• Continuous Assessment: 50%
• Final Exam: 50%
Any questions?

I hope you will enjoy this class 😊