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Protein–protein interactions (PPIs) are important for understanding the cellular mechanisms of

biological functions, but the reliability of PPIs extracted by high-throughput assays is known to
be low. To address this, many current methods use multiple evidence from di®erent sources of

information to compute reliability scores for such PPIs. However, they often combine the

evidence without taking into account the uncertainty of the evidence values, potential depen-
dencies between the information sources used and missing values from some information

sources. We propose to formulate the task of scoring PPIs using multiple information sources as

a multi-criteria decision making problem that can be solved using data fusion to model potential

interactions between the multiple information sources. Using data fusion, the amount of con-
tribution from each information source can be proportioned accordingly to systematically score

the reliability of PPIs. Our experimental results showed that the reliability scores assigned by

our data fusion method can e®ectively classify highly reliable PPIs from multiple information

sources, with substantial improvement in scoring over conventional approach such as the Ad-
just CD-Distance approach. In addition, the underlying interactions between the information
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sources used, as well as their relative importance, can also be determined with our data fusion
approach. We also showed that such knowledge can be used to e®ectively handle missing values

from information sources.

Keywords: Protein–protein interaction; reliability; Choquet fuzzy integral; data fusion; missing

information.

1. Introduction

Protein–protein interactions (PPIs) provide invaluable insights for studying the

underlying cellular mechanisms of biological functions. In recent years, much e®orts

have been focused on high-throughput PPI screening technologies such as yeast

two-hybrid assays, and they have resulted in an unprecedented abundance of PPI

data available for research. However, several systematic assessment studies on the

PPI data have shown that 50% of the interactions are false positives.1,2 The dismal

reliability of PPI data is similar in terms of false negatives.3

In order to e®ectively utilize such error-prone PPIs derived from high-throughput

experiments, one popular approach is to devise scoring methods to estimate the reli-

ability of the PPIs. The computed scores can then be used to ¯lter away the experi-

mental noise from the PPI data. The scores can also serve as con¯dence measures over

putative PPIs which are not yet experimentally detected, as a kind of prediction.

Numerous studies have been conducted for ¯ltering and prediction of PPIs with

reliability scores.4–10 Many of these methods used a combination of features of the

interacting proteins to compute the reliability scores, often on PPI data from mul-

tiple datasets. However, they di®ered vastly in their selected features, the techniques

for integrating the various features or information sources and the PPI datasets used.

There are also some other methods which calculate reliability scores for the PPIs

based on the topology of the network and neighboring proteins.11–15

A less noticed concern in using a combination of features or information sources in

determining a reliability score for PPIs is the uncertainty issue. The root of this issue

is that the provided value by information sources as the evidence of a PPI's existence

is always imprecise and we cannot be quite sure about it.

Another major issue often overlooked by the current approaches is the potential

interactions (i.e. dependencies) amongst the various information sources used for

computing the reliability scores. It is often conveniently assumed that the multiple

information sources each provides an independent evidence on the reliability of a

protein interaction. However, it is possible that the multiple information sources

used for scoring the PPIs may have synergistic or redundant e®ect on determining

the reliability of the PPIs. The evidence from di®erent information sources may

boost one another decision on the reliability of the protein interactions (i.e. syner-

gistic e®ect), or the inclusion of one information source does not help in deciding the

reliability of a PPI using existing information sources (i.e. redundant e®ect). Iden-

tifying and taking into account of such inherent dependencies between multiple

information sources will result in better judgments about the reliability of PPIs.
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The last issue is missing values from certain information sources. We may face

a lack of information about some interacting proteins in terms of their location or

function or other aspects which are important in deciding the genuineness of

a PPI.

To mitigate these issues, we formulate the task of scoring the reliability of PPIs as

a multi-criteria decision making problem. As far as we know, this is a new perspective

of PPI scoring that has not been explored in previous works. To obtain a decision on

the reliability (or possibility) of an interaction between two proteins involves com-

bining uncertain information from multiple sources to satisfy the di®erent criteria

required for interaction between the proteins. This multi-criteria decision making

problem can be solved systematically using data fusion. In this work, we use the

Choquet fuzzy integral technique16 for its proven ability in e®ectively modeling

uncertainty and interactions amongst multiple information sources.

For evaluation, we compare the performance of our proposed data fusion method

to the Adjust CD-Distance method17 which has been shown currently to be one of the

most e®ective topology-based scoring methods for PPI reliability. We show that

using our data fusion method, we are able to determine the relative importance of

each information source in deciding the reliability of the PPIs, and the degree of

dependencies between di®erent information sources. We also show that we can ef-

fectively specify the reliability of PPIs in the presence of missing values from the

information sources by exploiting the detected dependencies of the information

sources.

2. Methods and Materials

2.1. Data fusion

Our main idea is to employ data fusion methodology to systematically combine the

information from multiple sources for making e®ective decisions on the reliability of

PPIs. Although there is no single de¯nition for data fusion, we give the one suggested

by Dasarathy18 for reference: \it encompasses the theory, techniques and tools cre-

ated and applied to exploit the synergy in the information acquired from multiple

sources (sensor, databases, information gathered by humans, etc.) in such a way that

the resulting decision or action is in some sense better (qualitatively or quantita-

tively, in terms of accuracy, robustness, etc.) than would be possible if any of these

sources were used individually without such synergy exploitation".

Figure 1 depicts the basic architecture for our data fusion system for scoring the

reliability of PPIs. In our proposed framework, we suppose that there are multiple

criteria that are important in deciding the reliability of PPIs. However, the impor-

tance of the criteria are not equal and there may also be some interactions amongst

the criteria. In other words, we suppose that each criterion may only partially ad-

dress one of the many aspects of having a genuine PPI. We further suppose that each

criterion can be satis¯ed, in some uncertain degree, by the information in one of the

given sources, as depicted in the ¯gure. As such, we use the terms criterion (for data
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fusion) and information source (for reliability scoring) interchangeably. With our

proposed data fusion method, the input values from these information sources are

systematically combined into an aggregated reliability score which we call the fusion-

based score (FB-Score) as the ¯nal decision on the reliability of a PPI.

The key part of the data fusion system is the fusion (or aggregation) operator that

combines the input values into a single ¯nal decision value. This operator is a

mathematical function that takes multiple measures in the same scale as the input

and a single aggregated value as the output. An aggregation operator C : DN ! D is

de¯ned19,20 with the following properties

(1) Idempotence: Cða; . . . ; aÞ ¼ a,

(2) Monotonicity: Cða1; . . . ; aNÞ � Cða1 0 ; . . . ; aN 0 Þ when ai � ai 0

(3) Symmetry: For any permutation � on f1; . . . ;Ng it holds that Cða1; . . . ; aNÞ ¼
Cða�ð1Þ; . . . ; a�ðNÞÞ.
Some commonly used fusion operators are arithmetic mean, weighted mean, or-

dered weighted average (OWA),21 Choquet integral,16 Sugeno integral,22 Bayesian

networks, and Dempster–Shafer23 Each of these operators has di®erent properties

and power in modeling decisions. We use the Choquet integral for this work as it has

been shown to have superior interaction modeling power.24

To understand Choquet integral, we need to know about fuzzy measures.16,22 A

fuzzy measure � on a setX of features is a set function � : }ðXÞ ! ½0; 1� that satis¯es
the following axioms:

(1) �ð;Þ ¼ 0, �ðXÞ ¼ 1 (boundary conditions),

(2) A � B implies �ðAÞ � �ðBÞ (monotonicity).

Fig. 1. A basic architecture for making decision on the reliability of PPIs by fusion of the degrees of

satisfaction multiple criteria obtained from multiple information sources.
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Fuzzy measures can be used for relating the uncertainty, power or importance of a

single or subsets of criteria or information sources in decision making.

Assuming that a function f computes the degree that an information source xi

satis¯es its related criterion for protein interaction (i.e. fðxiÞ ¼ ai), then the Choquet

integral for a function f : X ! ½0; 1� with respect to � is de¯ned by

C�ðfðx1Þ; . . . ; fðxNÞÞ ¼
Xn
i¼1

½fðxsðiÞÞ � fðxsði�1ÞÞ��ðAsðiÞÞ;

where fðxsðiÞÞ indicates that the indices have been permuted such that 0 �
fðxsð1ÞÞ � � � � � fðxsðNÞÞ � 1, fðxsð0ÞÞ ¼ 0, and AsðiÞ ¼ fxsðiÞ; . . . ;xsðNÞg. The value of
the FB-Score for a PPI is therefore the output of this integral on the values provided

from all the information sources on this PPI.

Basically, the Choquet integral weighs the length of the segment fðxsðiÞÞ �
fðxsði�1ÞÞ based on the fuzzy measure value of all the information sources that supply

values greater than or equal to fðxsðiÞÞ. This function has several desirable mathe-

matical and behavioral properties that make it superior to other similar fusion

aggregators. One of which is its ability to take into account of the interactions

between the information sources by using appropriate fuzzy measures to model

interactions between two sources. For example, in the case of two information

sources A and B that exhibits a synergistic relation of superadditivity, we can choose

�ðfA;BgÞ such that �ðfA;BgÞ > �ðfAgÞ þ �ðfBgÞ. Similarly, it is possible to model

redundancy, symmetries, veto e®ect, and pass e®ect.24

To identify the interaction between two information sources, we can compute an

interaction index as follows25:

I�ðxi;xjÞ ¼
X

T�Xnfxi;xjg

ðN � t� 2Þ!t!
ðN � 1Þ! ½ð�ðT [ fxi;xjgÞ � �ðT [ fxigÞÞ

� ð�ðT [ fxjgÞ � �ðT ÞÞ�:
Here, T is a subset of all information sources, X, which does not include xi and xj

as the two information sources whose interaction is being measured, and t is the

size of such subset. Also N is the number of all information sources. This index

computes the di®erence in the value of the fuzzy measure when the contribution

from an information source xj is removed from sets containing both xi and xj. If

I�ðxi;xjÞ < 0, it means these two information sources have redundancy e®ect when

they appear together. If I�ðxi;xjÞ > 0, then we have complementary or synergistic

correlation between these two sources. Note that I�ðxi;xjÞ 2 ½�1; 1�. We use this

interaction index for identifying those PPI data sources that can compensate for loss

of information due to missing data in some of the PPI data sources.

Finally, we can measure the relative importance of each information source xi by

calculating the average amount of boosting a fuzzy measure achieves when we in-

clude xi into each subset T of information sources. This is computed below as the
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Shapley index26:

��ðxiÞ ¼
X

T�Xnfxig

ðN � t� 1Þ!t!
ðNÞ! ½�ðT [ fxigÞ � �ðT Þ�:

2.2. Consolidating PPI data sources

As evaluation, we conduct our study on Saccharomyces cerevisiae (yeast) data as it is

the most studied organism used in previous studies. We put together 116498 yeast

PPIs collected from ¯ve major datasets, viz. IntAct,27 DIP and DIP-Core,28 Bio-

Grid,29 and MINT.30

Along with the interaction data, we also kept auxiliary data like the Gene On-

tology (GO)31 and the annotations for yeast proteins from the Saccharomyces Ge-

nome Database.a The actual list of information sources used for this study will be

introduced in the next section in more detail. All the data values from each infor-

mation source are normalized by dividing by its maximum value to keep them within

the same scale.

We also need a set of protein pairs that have no physical interaction as the

negative set. For this, we create pairs of proteins for which there was no report of

interaction in any of the ¯ve PPI data sources used. In addition, they do not have any

shared annotation in any aspect of GO. This further ensures the low possibility of

their interaction.

2.3. Information sources

Previous works have used a wide variety of information sources for assessing the

reliability of PPIs such as ortholog information, gene expression data, protein do-

main information, phylogenetic pro¯les, co-localization, and topological properties.32

In this work, we use a mixture of functional features (semantic similarities and gene

expression similarities) with topological evidences, as listed in Table 1. Using our

Table 1. Information sources.

Information source Description

FSIM RESNIK MAX Functional Semantic Similarity by using Resnik method and max.
FSIM GO INFO Functional Similarity by GO informative terms.

LSIM GO INFO Localization Similarity by GO informative terms.

LSIM RESNIK MAX Localization Semantic Similarity by using Resnik method and max.
BSIM RESNIK MAX Biological Process Similarity by using Resnik method and max.

GeneExpression Average gene expression correlation.

GeneExpression Pairwise Maximum Gene expression correlation.

Adjust CD-Distance Iterative Adjust CD-Distance score.

aRetrieved 2012, from SGD project: http://www.yeastgenome.org/download-data.
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data fusion framework, it is straightforward to include additional information

sources if desired.

2.3.1. Semantic similarities

The ¯rst set of the information sources that we are using is based on the semantic

similarity of GO annotations of the proteins. The information sources in this set are

listed as FSIM RESNIK MAX, LSIM RESNIK MAX and BSIM RESNIK MAX in

Table 1.

We use the Resnik method33 to compute the semantic similarity of GO terms

based on the information content of the concepts represented by the GO terms. The

method had been investigated in several works34 and shown to be working better

than other methods. We brie°y describe the method here. Let C be a set of concepts

in a IS-A taxonomy like GO, which permits multiple inheritance. Let the taxonomy

be augmented with a function P : C ! ½0; 1� such that for any c 2 C, P ðcÞ is the

probability of encountering an instance of concept c which, in our case, is a protein

annotated with c. Then, the information content of concept c is � log P ðcÞ. It is

evident that as the probability increases, the informativeness of the GO term

decreases. Also, the more abstract a concept, the lower is its information content.

Similarity between two GO terms can then be measured by the information

shared by the two terms, which is indicated by the information content of the con-

cepts that subsume them in taxonomy (parents) as shown by this formula, where

Sðc1; c2Þ is the set of parents of both c1 and c2:

simðc1; c2Þ ¼ max
c2Sðc1;c2Þ

½� log pðcÞ�:

To compute the similarity of two proteins in terms of their annotation, we use the

maximum operator as suggested in Ref. 34. This operator chooses the maximum

score of similarity of two annotating terms as the ¯nal score. The three features

FSIM RESNIK MAX, BSIM RESNIK MAX, and LSIM RESNIK MAX in our

Table 1 are calculated for each pair of interacting proteins respectively based on their

annotations in the Molecular Function (MF), Biological Process (BP), and Cellular

Compartment (CC) aspects of GO.

We also use the notion of informative GO terms35 to compute semantic similarity

between two proteins based on their GO annotations. These are GO terms that are

annotated explicitly or implicitly (via the so-called through-path rule using the GO

hierarchy) to more than 30 proteins, but none of their children is annotated explicitly

or implicitly to more than 30 proteins. As such, these GO terms are considered to be

informative as they are neither too general nor too narrow. We have found around

300 GO terms which match this de¯nition of informative GO terms. For measuring

the semantic similarity of two proteins, we consider only those explicit and implicit

annotations with informative GO terms and use the Jaccard coe±cient formula to

compute the similarity of two proteins. The more explicit and implicit informative

GO term annotations two proteins share, the more similar they are.

Using data fusion for scoring reliability of protein–protein interactions
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Based on this approach, we generated two other information sources for com-

puting the reliability of PPIs. The ¯rst one is FSIM GO INFO, which is the simi-

larity of proteins based on their explicit and implicit informative GO term

annotations in the BP and MF aspects. The second one is the similarity of proteins

based on their explicit and implicit informative GO term annotations in the CC

aspect; we call it LSIM GO INFO.

2.3.2. Gene expression similarities

A second set of information sources that we use is based on the assumption that

interacting proteins exhibit correlations in their gene expression pro¯les. There are

two information sources in this set: GeneExpression and GeneExpression Pairwise

(see Table 1).

We use the SPELL database and search tool36 for ¯nding the gene expression

correlations for each pair of proteins. The database contains 117 microarray datasets

from 81 publications. The gene expression correlation within each dataset were

calculated using the Pearson correlation coe±cient. Since many pairwise Pearson

correlations can be computed between datasets, the Fisher's z-transform was applied

over the correlations for better comparability. When we query the database with a

set of genes, the datasets are weighted based on co-expression level of the queried

genes. Higher weights will be given to the datasets in which the queried genes are

largely co-expressed. The database also returns a weighted correlation for all the

other genes in the genome with respect to the genes in the query set. For reference, we

show the formulas for ¯nding the weight of each dataset and the ¯nal ranking

formula given in Ref. 36 below:

wd ¼
2

jQjðjQj � 1Þ
� �XjQj�1

i¼1

XjQj

j¼iþ1

fðzqi;qjÞ ð1Þ

fðzÞ ¼ z2 if z � 1

1 otherwise

�

sx ¼ 1

jQj
X

d2Dwd

X
d2D

X
q2Q

wdfðzx;qÞ:

In the above formulas, wd is the weight of each dataset d among the set of

all datasets D, qi 2 Q is a query gene and zqi;qj is the z-transformed correlation of

two genes. Sx is the ¯nal score of the correlation of a gene x to the set of queried

genes.

We extract two di®erent gene expression values from the SPELL engine for a pair

of genes corresponding to a PPI: Their average and maximum gene expression cor-

relation in the SPELL datasets. To compute the average correlation of the pair of

genes, we give one of those interacting genes as the query, which causes SPELL to

return all the other genes ranked by their correlation score in the datasets. Note that

by a single gene query, SPELL considers all datasets as equally weighted in

A. Vazifedoost et al.
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calculating the correlation scores. We obtain the correlation scores of the query gene

with the second gene for each dataset from the result list and compute the average.

To compute the maximum gene expression correlation of the interacting gene

pair, we give both interacting proteins qi and qj as the query. This causes SPELL to

return the ranked list of datasets based on their relevance weight (wd) and the

correlation of other genes with the queried genes based on formula 1. Although this

does not give us directly the maximum correlation of the queried genes, by using the

maximum weight in the ranked list of datasets and reversing formula 1, we can

obtain zqi;qj for qi and qj.

The average and maximum gene expression correlation scores are listed as the

GeneExpression and GeneExpression Pairwise information sources in Table 1.

2.3.3. Topological similarities

The ¯nal information source we used is the Adjust CD-Distance value for each pair of

proteins. CD-Distance is a formula37 for ¯nding similarity of proteins in a PPI net-

work based on topological features. Two proteins having a larger number of shared

neighborhood proteins will be given a bigger value of similarity between two pro-

teins. The iterated version of this formula,17 e®ectively enhances this classic ap-

proach. In our study, we use the score achieved by two iterations as additional

iterations would not improve the score dramatically.17

2.4. Specifying the fuzzy measures

One of the fundamental issues of using fuzzy integral methods is specifying the fuzzy

measures for modeling the interactions between the possible combinations of all the

given information sources. This means that we need to calculate a fuzzy measure

value for every subset of the given set of information sources, or 2N � 2 fuzzy

measures if we have N sources. Traditionally, an expert may use his knowledge to

determine these measures to control the fusion process. However, this is not appli-

cable here as we are not sure about the potential interactions between the infor-

mation sources.

As such, we have to ¯nd the fuzzy measure by learning. To do so, we gather the

evidences from the di®erent sources of information into a training data set as follows:

a 1
1 a

1
2 � � � a 1

N y1

a 2
1 a

2
2 � � � a 2

N y2

..

. ..
.
. . . ..

. ..
.

aj
1 a

j
2 � � � aj

N yM :

Here, each row is a PPI, and each element aj
i , corresponds to the value from

information source xi provided for jth PPI. Also, in the training set, we include a

value for yj which is a predetermined reliability score (PR-Score) for each PPI. We

will explain how to compute this score in the next section.
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To learn the fuzzy measures from this training set, we can use least square dis-

tance to minimize the value of ECð�Þ which is the distance error between each

C j
�ðaj

1; . . . ; a
j
NÞ (the value given by fuzzy integral function) and yj. The error for-

mula for minimization is:

ECð�Þ ¼
XM
j¼1

ðC�ðaj
1; . . . ; a

j
NÞ � yjÞ2:

This is essentially a quadratic optimization problem with constraints to maintain the

monotonicity property of the fuzzy measures. For solving this quadratic optimization

problem and ¯nding fuzzy measures, we use a tool named Kapalab,38 which is

speci¯cally designed for ¯nding fuzzy measures implemented in the R language.

2.5. Predetermined Reliability Score (PR-Score)

As described above, our method for ¯nding fuzzy measures requires an externally

provided score of reliability (PR-Score) for each PPI. To obtain this PR-Score, we

propose a method that combines evidences from two sources of information. We call

the ¯rst one Publication Con¯dence (PC), and the second one Throughput Con¯-

dence (TC).

PC is based on the reproducibility of PPIs, and is inferred from the supporting

publication for each PPI by this formula:

PCðPPIÞ ¼ 1� 1

ReportNumþ 1

� �
� 1� 1

TestNumþ 1

� �
:

In this formula, ReportNum is the number of times that two proteins are reported

to have physical interaction in publications. It is based on the intuition that the more

an interaction is reported, the more likely it is a real one. ReportNum can be easily

found since we have kept the Pubmed Id ¯eld of each interaction from the original

database in our consolidated database (Sec. 2.2). We count the number of distinct

Pubmed Ids for each pair of interacting proteins. Note, that we did not count the

occurrence of a PPI across multiple databases as they may be coming from the same

publication.

The other parameter in PC, TestNum, is the number of publications in which two

proteins are mentioned together. The intuition is that the set of common publica-

tions might report experimental tests for interaction of the two proteins. Even

though TestNum is a very rough estimation, our results show that it is helpful to

keep this parameter.

The other information source named TC captures the type of experiment of a

reported PPI. We classify the experimental methods into two groups: High-

throughput and low-throughput, and we assume that low-throughput experiments

are generally more reliable than high-throughput experiments. In our consolidated

database, a PPI may be reported to have been detected by di®erent types of

experiments. We use this as a clue of the reliability of detected PPIs and compute the

A. Vazifedoost et al.
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TC of a PPI as follows:

high-throughput �

low-throughput �

high-throughput and low-throughput �

8<
:
TCðPPIÞ ¼ min 1;

X
Scores ofðPPIÞ

� �
:

In our implementation, we considered � ¼ 0:2, � ¼ 0:8, � ¼ 1, in accordance to

estimates reported elsewhere.14

Finally, the PR-Score is de¯ned as the weighted sum of TC and PC:

PR-Score ¼ 0:1� TCþ 0:9� PC:

These weights are determined empirically based on maximizing functional homo-

geneity and localization coherence of ranked PPIs. For all the PPIs in the negative

dataset, we assume a PR-Score equal to 0.

2.6. Dealing with missing values

One of the challenges in specifying the reliability score for PPIs is dealing with

missing values from some information sources. For example, there are many proteins

that have no GO annotations, making it impossible to compute the semantic simi-

larity between these proteins.

To address this, let us suppose that we have already found a fuzzy measure

function � (as described in Sec. 2.4) by using the portion of PPI data that has no

missing values, and we want to use it to estimate a new fuzzy measure when we have

one or more missing information sources. That is, suppose we have � : }ðXÞ ! ½0; 1�
as the current fuzzy measure over X which is the set of all information sources. We

want to estimate � 0 for X 0 the set of information source without an information

source xi: �
0 : }ðX 0Þ ! ½0; 1� for X 0 ¼ Xn [ xi, i 2 1 . . .n. We can compute � 0 as

follows:

(1) Add a dummy information source xd to X (fðxdÞ ¼ 0),

(2) For each proper subset A � X, if (xd 2 A) then � 0ðAÞ ¼ �ðAnfxdgÞ else

� 0ðAÞ ¼ �ðAÞ,
(3) For the subset A ¼ X, to satisfy the boundary condition required by fuzzy

measures, we set �ðAÞ ¼ 1.

3. Experiments

We performed a set of experiments to study the e®ects of using data fusion in the

context of scoring PPIs. The ¯rst set of experiments veri¯es that the PR-Score can

rank the PPIs reasonably well. Then, we investigate the performance of FB-Score for

scoring the reliability of PPIs. We identify the underlying interactions (i.e. depen-

dencies) amongst the di®erent information sources used for ranking the PPIs, and

compute the importance index of each source for determining the reliability of PPIs.

Using data fusion for scoring reliability of protein–protein interactions
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Finally, we study the scoring performance of the fuzzy integral in the presence of

missing values.

3.1. Validity of PR-Score

To verify the validity of PR-Score as an indicative reliability score for PPIs, we used

the functional homogeneity and localization coherence of the protein pairs in the

PPIs sorted based on their PR-Scores in descending order. If our PR-Scores are

e®ective, we can expect a descending trend of these two measures. This method was

previously used12–14 for evaluating the e®ectiveness of a reliability score.

Functional homogeneity can be de¯ned in the following way:

Functionalhomogeneity

¼ #proteins pairs sharing at least one functional annotation

#protein pairs that have functional annotation
:

Localization coherence can be de¯ned similarly:

LocalizationCoherence

¼ #protein pairs sharing at least one localization annotation

#protein pairs that have localization annotation
:

In this work, we only consider explicit and implicit annotations by informative

GO terms when ¯nding shared annotations in the above formulas.

We also verify whether the top-ranking interactions are more likely to have

interologous interactions in other organisms. We use I2D39 for ¯nding interologous

interactions. This database contains interologous interaction data for ¯ve species

including yeast. We use the formula below to assess the Interologous Rate:

InterologousRate ¼ #protein pairs having at least one interolog

#proteins pairs
:

For this experiment, we used 46,413 PPIs in our consolidated database which are in

common with the I2D database of interologous PPIs.

Fig. 2. Decreasing trend of functional homogeneity, interologous rate, and localization coherence when we

sort PPIs in descending order of their PR-Score.
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Figure 2 shows decreasing trends for all three measures, which is what we would

expect for e®ective ranking of PPI reliability when we go from highly scored inter-

actions down to the lower ones. In addition, we can observe that the interologous rate

is almost constantly decreasing. This is another strong evidence of validity of PR-

Score.

Although the PR-Score was computed using very simple heuristic information,

the results show that it can serve the purpose of seeding the scoring of the PPIs to be

used in specifying fuzzy measures. Of course, PR-Score cannot be used for evaluating

those PPIs that have no associated publications.

3.2. Performance of FB-Score

Next, we compare FB-Score with Adjust CD-Distance to see whether fusing multiple

information sources with Adjust CD-Distance can improve the scoring of PPIs. This

comparison is made based on functional homogeneity and localization coherence of

these two methods, as in the previous section. We randomly choose 20% of all PPIs

without missing values as the training set for determining the fuzzy measures. Then,

we score the remaining 24,796 PPIs based on the trained fusion model and compared

their assigned FB-Scores with the Adjust CD-Distance scores. For comparison, we

sort the PPIs in descending order of their FB-Scores and plot the corresponding

changes in the functional homogeneity and localization coherence of the PPIs. We

also do the same for PPIs based on their Adjust CD-Distance. Note that when we

compare the scores based on functional homogeneity, we removed the FSIM GO

INFO and FSIM RESNIK MAX information sources from the training dataset.

Likewise, we remove LSIM GO INFO and LSIM RESNIK MAX when we are

comparing against localization coherence.

The results are shown in Figs. 3(a) and 3(b) respectively. In both ¯gures, the

functional homogeneity and localization coherence for PPIs that are assigned with

(a) (b)

Fig. 3. Performance of FB-Score in comparison to Adjust CD-Distance. The PPIs in the test set are sorted

in descending reliability scores. (a) Comparison based on rate of functional homogeneity. The information

sources related to functional aspects of proteins were removed from the training set of fuzzy measures. (b)
Comparison based on rate of localization coherence. Here, the information sources related to localization

aspects of proteins were removed from the training set.
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random ranking are about 40%, which is in accordance with previously reported

works.14 In comparison, the functional homogeneity of PPIs ranked using our FB-

Score is signi¯cantly improved even when we do not use any information source

related to functional properties of two proteins, as shown in Fig. 3(a). Figure 3(b)

again shows similar improvement in terms of localization coherence in comparison

with the Adjust CD-Distance method. The results show that fusing multiple sources

of information along with Adjust CD-Distance can improve ranking of PPIs with

respect to their reliability.

3.3. Relative importance and interactions

As presented in Fig. 4, we use the fuzzy measures to calculate Shapley values as the

important index of each information source. We also calculate the interaction indices

amongst the information sources. The results are shown in Fig. 5. Here, we use the

PPIs with a PR-Score higher than 0.8 (there are about 2000 such interactions) as the

positive dataset along with the same amount of PPIs from the negative interaction

dataset as the training set for computing the fuzzy measures.

The results in Fig. 4 suggest that localization coherence and functional homo-

geneity (which are based on informative GO terms) are the two most important

information sources. The features based on the semantic similarity of GO terms are

in the middle-range of importance ranking, suggesting that they are less e®ective

than the features based on the informative GO terms. Adjust CD-Distance is in the

third place with a high importance value, which shows that such topological scores

can be quite e®ective. Interestingly, the gene expression information sources were

shown to have low importance, which may be due to the relatively high noise in this

kind of data.

The pairwise interactions among the various information sources are also infor-

mative. As we can see in Fig. 5, it is interesting to note that the pair of information

sources that has the highest value of redundancy is FSIM GO INFO and

LSIM GO INFO which also happened to be the most important evidences at the

same time. The Adjust CD-Distance, which is the third important information

Fig. 4. Relative importance of each information source based on its Shapley value.
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source, is also in redundancy relation with these two information sources. On

the other hand, in terms of synergistic relation, we can see that there are relatively

high synergies between Adjust CD-Distance and LSIM RESNIK MAX and

GeneExpression Pairwise. This situation is also the case for information sources

FSIM GO INFO, FSIM RESNIK MAX, and LSIM RESNIK MAX.

The importance and interaction indices of information sources provide us useful

insights for selecting proper information sources in the fusing process for making the

¯nal decision. With these insights, fuzzy integral can handle missing values e®ec-

tively, as we will explain it in further detail in the next section.

3.4. Dealing with missing values

One of the challenges of applying data fusion method is dealing with missing values

in some of the information sources. Since we are employing fuzzy measure for data

fusion here, we can take advantage of its ability to detect interactions between the

information sources to compensate for the loss of information appropriately.

To investigate the e®ect of missing values on the fusion method, we remove

information sources one at a time, and compute the FB-Scores with the remaining

information sources. For comparison, we plot the resulting distributions of FB-Scores

with and without removing that information source. The FB-Scores were calculated

with fuzzy measures obtained as described in the experiment in Sec. 3.3.

Fig. 5. Pairwise interaction indices between information sources. The legend shows the spectrum of in-

teraction values. Therefore, dark blue depicts synergistic e®ect while green and orange color depict re-

dundancy of information sources.
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Figure 6 shows that the distribution of FB-Scores is similar to the distribution of

PR-Scores when we do not remove any features. Figures 7(a)–7(h) show the changes

(if any) in the distributions of FB-Scores when we remove each of the information

sources one at a time. The ¯gure shows that the fuzzy integral method for fusing

information sources is mostly working well in the presence of missing values. In fact,

apart from some drifts in Figs. 7(d) and 7(e), which corresponds to removing in-

formation sources LSIM GO INFO and LSIM RESNIK MAX, the other results in

the ¯gure showed almost similar distributions of the predicted scores with and

without missing values.

We can explain why removing some information sources has little e®ect while

removing others may have large e®ects on the FB-Score, based on the importance of

each information source in terms of its Shapley value and its interactions (redun-

dancy or synergy) with the other information sources according in terms of the

corresponding interaction indices. Removing features that are more important a®ects

more adversely the FB-Scores, as can be seen by removing LSIM GO INFO. On the

other hand, removing GeneExpression has nearly no e®ect on FB-Score.

It may seem strange at the ¯rst look that removing FSIM GO INFO has such a

slight e®ect. This can be explained based on its interactions with other information

sources. FSIM GO INFO has strong redundancy with two other important infor-

mation sources, LSIM GO INFO and Adjust CD-Distance, which makes removing it

quite safe. Another good example is LSIM RESNIK MAX. While it has almost the

same importance as FSIM RESNIK MAX, the e®ect of its removal is much more

intense than removing FSIM RESNIK MAX. This is because LSIM RESNIK MAX

has synergy with FSIM GO INFO and Adjust CD-Distance, which are two impor-

tant information sources. As a result, removing LSIM RESNIK MAX results in more

drift, as can be seen in Fig. 7(d).

Using the method that we have introduced for handling missing values in Sec. 2.6,

when we remove an information source, the importance of the remaining information

sources will be adjusted as follows: The importance of the information sources which

are redundant to the removed information source will increase, while the importance

of sources which are in synergistic relation with the removed source will decrease.

Fig. 6. Distributions of PR-Score and FB-Score for assessing performance of FB-Score in terms of the

ability to discriminate highly possible PPIs from protein pairs with low chance of interaction. Having
similar distributions means better performance of FB-Score in this task.
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Therefore, if a removed information source has high redundancies with many im-

portant information sources and also high synergies with the less important sources,

we can remove it safely. Conversely, if an information source is in synergistic

interactions with many important information sources and in redundant interactions

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 7. Changes in distribution of the assigned FB-Scores by removing information sources, one at a time.
(a)–(h) each of the plots shows the e®ect removing information sources on distribution of FB-Score.
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with the less important information sources, removing it has more adverse e®ect on

the predicted reliability scores.

We also investigate the e®ect of missing multiple information sources instead of

just one. We repeat the previous experiment three times, each time removing a group

of information sources: The ¯rst group includes information sources related to

functional aspects of proteins, the second group includes the information sources of

localization similarity, and the third includes information sources of gene expression

correlation. The results are shown in Fig. 8. As the immediate conclusion from this

result, we can notice that our method can handle very well loss of information from

functional annotations and gene expression. However, it seems that localization

similarity has an irreplaceable role in proper scoring and loss of all information about

localization will lead to inappropriate scoring results.

In the last experiment, we use all PPIs in our consolidated dataset which have

missing values from at least one of their information sources. This experiment

(a) (b)

(c)

Fig. 8. Changes in distribution of the assigned FB-Scores by removing related information sources of (a)

functional similarity (b) localization similarity, and (c) gene expression correlation.
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evaluates our method in handling missing values from arbitrary but not arti¯cial

combination of information sources as we see in real PPI data. This is the way it

di®ers from the experiment in Sec. 3.2 in which FB-Score is evaluated on data with

no missing values. The results are shown in Fig. 9. In this experiment, 1000 PPIs

from proteins with high PR-Score which have no missing values were used for ¯nding

fuzzy measures. The results again show superiority of FB-Score over Adjust CD-

Distance both in terms of functional homogeneity and localization coherence in the

presence of missing values. This shows that our proposed mechanism of handling

missing values based on importance and interaction of information sources is working

e®ectively for FB-scores.

4. Conclusion

PPIs obtained by high-throughput techniques were known to have dubious reli-

ability. As such, it is important to enhance the reliability of the PPI data with

additional data sources based on information such as the genetic properties of pro-

teins, or the topological characteristics of their interaction networks. In this article,

we study how to apply a decision making view for assigning reliability scores to PPIs

by using a systematic combination of these evidences as our information sources in a

data fusion framework.

There are quite a number of existing data fusion techniques, each with a di®erent

strategy in combining data. There are three particularly important problems in our

context. First, we need to address the uncertainty of the values provided by di®erent

information sources. The second issue is the possible underlying interactions amongst

the various information sources, in terms of wither redundancy or synergy. The third

is handling missing values from some information sources. We have chosen the fuzzy

(a) (b)

Fig. 9. Performance of FB-Score in comparsion to Adjust CD-Distance score. We sort descendingly all the

PPIs with null values in their information sources, ¯rst by their FB-Score and then by their Adjust CD-

Distance score. We also plotted functional homogeneity and localization coherence in case of random

sorting of PPIs as the reference (a) comparison based on rate of functional homogeneity and (b) com-
parison based on rate of localization coherence.
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integral as our data fusion technique. It allows us to deal with the inherent PPI data

uncertainty by the notion of fuzzy measures. Using fuzzy measures further allows us

to detect the underlying redundant or synergistic interactions between information

sources used for judging the reliability of the PPIs. We can also determine the

amount of contribution of each information source toward estimating reliability

estimation of a PPI by computing an importance index. Last but not least, our data

fusion framework also facilitates e®ective handling of missing values through

exploiting the interaction and importance of various information sources.

In summary, this study shows that we can use data fusion techniques to deal with

the various problems of fusing multiple uncertain information sources to assign re-

liable reliability scores to PPI data. Our experiments show that our proposed method

outperformed the reliability scoring provided by a state-of-the art technique, Ad-

just CD-Distance. It will be useful to extend our experiments with many more other

information sources like domain information of proteins, sequence similarity, inter-

ologous information and so on, to see how far it can improve the scoring results.

Other than scoring the reliability of PPI data, we also believe that our proposed data

fusion approach can be used for many other bioinformatics problems which often

require the integration of multiple uncertain and incomplete data sources.
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