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To construct a phylogenetic tree or phylogenetic networldfescribing the evolutionary history of a
set of species is a well-studied problem in computationalolgly. One previously proposed method
to infer a phylogenetic tree/network for a large set of speds by merging a collection of known
smaller phylogenetic trees on overlapping sets of speoi#isag no (or as little as possible) branching
information is lost. However, little work has been done swfainferring a phylogenetic tree/network
from a specified set of trees when in addition, certain eiahary relationships among the species are
known to be highly unlikely. In this paper, we consider thelpem of constructing a phylogenetic
tree/network which is consistent with all of the rootedletp in a given sef” and none of the rooted
triplets in another given set. Although NP-hard in the general case, we provide some effigxact
and approximation algorithms for a number of biologicallganingful variants of the problem.

1. Introduction

The evolutionary relationships among a set of spe€iase commonly described by a phy-
logenetic tree or a phylogenetic network. pAylogenetic treés a rooted, unordered tree
whose leaves are distinctly labeled Byand where each internal node represents an an-
cestral species and each edge represents the evolutiorofferspecies to another (see,
e.g., [19, 25]). However, scientists have observed thaaiceevolutionary events cannot
be described properly using the treelike model; exampléisasfe so-callectecombination
eventdnclude horizontal gene transfer and hybrid speciation 1) 20, 21, 23, 27]Phy-
logenetic networks/ere proposed as a way to represent non-treelike evoluyiextending
the definition of phylogenetic trees to allow every node teehmore than one parent.

One approach to constructing large phylogenetic treastnks is by combining a set
of known trees into one supertree/network [3, 4, 11, 12, 87,21, 22, 24, 26]. In this
paper, we focus on the problem of constructing a phylogernete/network fronrooted
triplets(i.e., binary phylogenetic trees with exactly three leaassh). Variants of this prob-
lem have been studied previously in[1, 5, 8, 9, 11, 13, 1416517, 28]. The motivation
for the rooted triplets approach is that a highly accurate for just three species can be
obtained through maximum likelihood-based methods [6]ible$-Ahlquist-style DNA-
DNA hybridization experiments (see [17]). Moreover, wh@plging those methods, apart
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from obtaining a set of reliable rooted triplets, we may alsrover some rooted triplets
(referred to agorbidden rooted triplefswhich are very unlikely to appear as induced sub-
graphs in the true tree/network. Other than [5, 22], littlerkvhas been done to study
whether the extra information provided by forbidden rooteplets can be used in phy-
logenetic reconstruction. Therefore, in this paper, westigate some problems related
to constructing a phylogenetic tree or phylogenetic néetvim a given set” of “good”
rooted triplets and a given sé&t of forbidden rooted triplets.

1.1. Problem definitions and summary of our results

A phylogenetic treés a rooted, unordered tree whose leaves are labeled in suety a
that all leaf labels are disjoint, and furthermore, all af iitternal nodes have outdegree
at least 2. A rooted tree isinary if all of its internal nodes have precisely outdegree 2.
A binary phylogenetic tree with three leaves is calledated triplet The unique rooted
triplet on a leaf sefx, y, z} in which the lowest common ancestorofindy is a proper
descendant of the lowest common ancestar ahd z (or equivalently, where the lowest
common ancestor af andy is a proper descendant of the lowest common ancestgr of
andz) is denoted by({z,y}, z). A binary caterpillar treeis a rooted binary tree where
every internal node has at least one child which is a leaf.

A phylogenetic networls a generalization of a binary phylogenetic tree formaly d
fined as a rooted, directed acyclic graph where: (1) exacteyrmode has indegree O (the
root); (2) all other nodes have indegree 1 or 2; (3) all nodes wittegree 2 (referred as
recombination nodgshave outdegree 1, and all other nodes have outdegree 0 mid2; a
(4) all nodes with outdegree 0 (theave$ are distinctly labeled. For any phylogenetic
network NV, letZ/(N) be the undirected graph obtained frévnby replacing each directed
edge by an undirected edgéV is said to be agalled phylogenetic networfor galled
network for short) if all cycles i/ (V) are node-disjoint. Galled networks form an impor-
tant class of phylogenetic networks (see, e.g., [10] forsaulision) and are also known in
the literature asopologies with independent recombination evéa®, galled-treeq10],
gt-networkg21], andlevel-1 phylogenetic networks, 16].

Let N be a phylogenetic network. A rooted triplets said to beconsistent withV if
t is an induced subgraph &f, and a sef”” of rooted triplets iconsistent withV if every
rooted triplet in7 is consistent withV. The set of all rooted triplets which are consistent
with N is denoted byR(N), and we letN (7)) be the subset of containing all rooted
triplets from7 that are consistent witlv, i.e., N(7) = T N R(N).

Denote the set of leaves in a phylogenetic tree/netwotky A(N), and for any sef”
of rooted triplets, defind(7') = (J, ., A(t:). Given aleaf seL, a set” of rooted triplets
is calleddense (with respect th) if A(7) = L and for eacKxz,y, 2} C L, at least one
of the three possible rooted triplet§z, y}, 2), ({«, 2}, y), and({y, 2z}, ) belongs taT.
Finally, for any setZ” of rooted triplets and.” C A(7), we defineZ | L’ as the subset &f
consisting of all rooted triplet§{«x, y}, z) with {z,y,z} C L'.

Given two setd and.F of rooted triplets, we study the following problems. Thrboug
out this paper, we lek represent the leaf sét(7) U A(F) and we writen = |L|.
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e The mixed triplets probleniMT): Construct a phylogenetic network with
A(N) = L such that7 € R(N) andF N R(N) = 0, if such anN exists;
otherwise, outputull. In Section 3.1, we show that this problem is NP-hard in its
general form. In Section 3.2, we investigate a restrictesg odithe problem where
F consists of disjoint rooted triplets, i.e., wheté) N A(¢') = 0 for anyt, ¢’ € F
with ¢ # ¢/, and show how to solve this case efficiently(rin logn) time.

e The mixed triplets problem restricted to tre@4TT): Construct a phylogenetic
treeT with A(T") = L suchthatl C R(T) andFNR(T) = ), if such al” exists;
otherwise, outputull. Note thatT" is not required to be a binary phylogenetic tree
here. In Section 2.1, we describe &{|7| - n + |F| - n?)-time algorithm for
MTT. We also study a corresponding maximization problent teacall MMTT
which asks for a phylogenetic tr&ethat maximizesT(7)| — |T(F)|. MMTT
is NP-hard, so we present an algorithm for inferring a phgtagic treel” that
guaranteesl'(7)| — |T(F)| > 1 - (|T| — |F|) in Section 2.2.

e The mixed triplets problem restricted to galled netwo(MTG): Construct a
galled networkV with A(N) = L such that7 C R(N) andF N R(N) = 0,
if such anNV exists; otherwise, outputull. This problem is NP-hard even if
restricted taF = () [15]; therefore, MTG for arbitraryF is also NP-hard. In Sec-
tion 4.1, we study the maximization version of MTG called M@ &nd give an
algorithm for inferring a galled networky that guaranteelsV(7)| — |N(F)| >
Z - (|T| — | 7). We also consider the restricted case of MTG wHEris dense,
and show that this restricted case can be solved(in') time in Section 4.2.

Below, the elements iff are calledorbidden rooted triplets

1.2. Related results

Several papers have previously studied MT, MTT, MMTT, MTGMWIG, and some of
their variants for the special cage= (). Aho, Sagiv, Szymanski, and Ullman [1] presented
anO(|T] - n)-time algorithm for determining whether a given Seof rooted triplets on

n leaves is consistent with some rooted, distinctly leaklab tree, and if so, returning one
(i.e., MTT restricted toF = 0)*. Henzinger, King, and Warnow [11] later showed how
to implement the algorithm of Ahet al. to run asymptotically faster. Gasieniec, Jansson,
Lingas, andOstlin [8] considered a version of the problem where thedsan the output
tree are required to comply with a left-to-right leaf oraerigiven as part of the input.
Related optimization problems where the objective is testrmet a rooted tree consistent
with the maximum number of rooted triplets in the input (iMMTT with F = () or to
find a maximum cardinality subsét of A(7) such that7 | L’ is consistent with some
tree have been studied in [5, 9, 13, 28] and [14], respegtivéle remark that MMTT
with 7 = (0 is NP-hard (see [5], [13], or [28]) and approximable withifeator of% in
polynomial time [9] (meaning that the approximation algfom in [9] always outputs a

2|n contrast, the analog of this problem fanrootedtrees is NP-hard, even if all of the input trees guartets
(unrooted, distinctly leaf-labeled trees each having feaves and no nodes of degree two) [26]. See also [18].
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phylogenetic tree which is consistent with at Ie?sqﬂ of the rooted triplets iry").

As for inferring a phylogenetic network from a given set obted triplets om leaves
(i.e., MT with F = ), Jansson and Sung [16] proved that if no restrictions aaequ on
the structure of the output phylogenetic network then thleblem always has a solution
which can easily be obtained from any given sorting netwarkrf elements. [16] also
presented an (n%)-time algorithm for inferring a galled network (if one exdstonsistent
with a given dense set of rooted triplets anleaves; Jansson, Nguyen, and Sung [15]
subsequently reduced its running time@gn?), which is optimal since the size of the
inputisO(n?) in the dense case. In [15], it was also proved that the problecomes NP-
hard for non-dense inputs (i.e., MTG wifh = (J), and that the corresponding optimization
problem (MMTG withF = () is approximable within a factor 01% in polynomial time.

Also in the context of inferring a phylogenetic network frarset of trees, Nakhleh,
Warnow, and Linder [21] gave an algorithm for inferring algdlnetwork from two bi-
nary phylogenetic trees with identical leaf sets. In additthey studied the case where the
input trees may contain errors but where only one recomioimabde is allowed in the net-
work. Huson, Dezulian, Kipper, and Steel [12] addressed a similar problem for cocistr
ing anunrootedphylogenetic network from a set of unrooted, distinctlyf{zdeled trees.

For the general casg # 0, much less is known. Bryant [5] showed that MTT restricted
to7 = () is NP-hard if the output is required to be a binary tree, blutadie in polynomial
time if we further restrict the solution to be a binary catieptree. However, given a s&t
of binary phylogenetic caterpillar trees whose leaf se¢ssabsets of a label sét, it is
NP-hard to determine if there exists a binary tféwith A(T") = L such that no tree i§
is an induced subgraph @f, even ifT is restricted to be a binary caterpillar tree [22].

2. Algorithmsfor MTT and MMTT
2.1. A polynomial-time algorithm for MTT

Here, we present a polynomial-time algorithm for solving MTE is a generalization of the
algorithm of Ahoet al. [1] for determining if a given sef of rooted triplets is consistent
with a rooted tree and if so, constructing one. We extend tigorithm to deal with a
nonempty sefF of forbidden rooted triplets. Note that if the output tree@strained to
be binary then the problem becomes NP-hard evén4f () (see Section 1.2).

For any subsel’ of L, definethe auxiliary graph forL’, denoted byG(L’), as the
undirected graph with vertex sét and edge sef'(L’), where for every({i,j},k) € T
that satisfies, j, k € L', the edg€(4, j} is included inE(L'). (Auxiliary graphs were first
defined by Ahcet al.[1].) To handle forbidden rooted triplets, for any subgébf L, we
introducethe auxiliary partitionD(L’) of L’ as follows:

(1) Initially, letD = {C4,...,C,} be a partition ofL’ such that each subs@tconsists

of the set of nodes in one connected componegi(df ).

(2) While there exists somé{i, j}, k) in F|L' such thati andj are in one subset

S1 € D andk is in another subsef, € D, mergeS; andS; into one subset if.

(3) SetD(L') =D.

Our algorithmM T'T proceeds recursively and is described in Figure 1.
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Algorithm  MTT

Input: A set7 and a sefF of rooted triplets and a leaf sét

Output: A phylogenetic tree distinctly leaf-labeled ky that is consistent with all rooted

triplets in7 and no rooted triplets itF, if one exists; otherwisaull.

1 Construct the auxiliary partitio®(L). Write D(L) = {Dy,...,Dr}.

2 If r = 1 andD; consists of exactly one leafthen return a tree with a single leaf labeled
by i. If r = 1 andD; contains more than one leaf then retumil. Otherwise, for each
i€ {1,...,r}, letT; = MTT(T|D;, F|D;, D;); if all T;-trees are notull then attach
all of these trees to a common parent node and return theirestree, else returnull.

End MTT

1%

Figure 1. An algorithm for solving MTT.

Theorem 2.1. Algorithm MT'T outputs a phylogenetic treég distinctly leaf-labeled by.
that is consistent with all rooted triplets ih and no rooted triplets i, if and only if such
a tree exists, itO(|7|-n + |F|-n?) time.

Proof. If Algorithm MT'T outputs a non-null tre@& then by the correctness of the algo-
rithm of Aho et al, T is consistent with all rooted triplets ii. Next, letf = ({i,7}, k)

be any rooted triplet inF and suppose that is consistent withl". Then, at some recur-

sion level of the algorithm wherg j, k are still in the same leaf set,and;j will belong

to one subseD, while & is in another subséb,. But this is impossible by step (2) in the
construction ofD(L). Contradiction; hencef; is not consistent with".

Similarly, if the algorithm outputsull then at some recursion levé@l(L) has just one
elementD,, whereD; contains at least two leaves. Suppose there exists a pimgdtige
treeT* that is consistent with all rooted triplets #7|D; and no rooted triplets itF|D; .
By the construction oD(L), two leaves in the same sBt, can not be descendants of two
different children of the root df'*. But since there is just one sBt, the root of 7™ would
only have one child, which is a contradiction. Hence, thened phylogenetic tree that is
consistent with all rooted triplets ffi and no rooted triplets ifF.

There are)(n) recursion levels, each of which is taken care aDifi7 |+ |F|-n) time.
Thus, the algorithm’s total running time @((|7| + |F| - n) - n). O

2.2. A polynomial-time approximation algorithm for MMTT

MMTT restricted toF = § is NP-hard (see [5, 13, 28]), so it follows trivially that the
unrestricted version of MMTT is NP-hard. Therefore, we jpdeva polynomial-time ap-
proximation algorithm for MMTT, which generalizes the falNing result from [9].

Lemma 2.1. [9] Given a setl of rooted triplets with leaf sef, a phylogenetic tree dis-
tinctly leaf-labeled byl that is consistent with at least a third of the rooted triglét 7
can be constructed i@ ((|7| + n) - logn) time.

Theorem 2.2. Given two set§ and F of rooted triplets with leaf sek, a phylogenetic
tree T distinctly leaf-labeled by. such that/T(T)| — |T(F)| > % - (|T| — |F|) can be
constructed irO((|7] + |F| + n) - logn) time.
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Proof. We describe an algorithm to construct sucfi.aFor everyv € L, keep a score
associated with,, denoted by (v). Initially, sets(v) to zero for every € L. Then, for
every({a,b},c) € T, increases(c) by one and decreas¢a) ands(b) by 1, and for every
({a’,b'},¢') € F, decrease(c’) by one and increase eachtf’) ands(b’) by 1. Next,
assume: € L has the largest score. LBt = L\ {u}. Then recursively construct a tréé
with leaf setl’ such tha{T’(T|L')| — |T"(F|L)| > & - (|T|L'| - |F|L'|) (if L' consists
of only two leaves then Iet” be a binary tree on those two leaves), attach the roft of
and a leaf labeled by to a common parent node and ®be the resulting tree.

To prove the correctness of the algorithm, deflje= {¢ | t € 7 andu € A(t)} and
Fu={t|te Fandu c A(t)}. We now show thall'(Z,,)|— |T(F.)| > %-(|Zu|—|Ful).
Let7, =T(7,),7) = T,\ 7., F,, = T(F,), andF, = F, \ F,. Then we can write
s(u) = |T]| - % -|T)| = |F,| + 5 - | Fl/|. Since we choose a leafwhich has the largest
score, it is easy to see thatu) > 0. Therefore|7,| — |F,| > 1 - (/7| — |F]|). By
adding? - (|7,]| — |7,|) to both sides of the inequality and usifif| + |Z,'| = |7.| and
|+ 1FL = |Ful, we obtainT(T,)| — |T(F,)| = & - (1Tl - |Fu).

We can use a heap data structure to keep track of the chaniipessoores of the leaves
throughout the algorithm. The total running time becol®é§7 | + |F| + n) - logn). O

Note that for the special case whefeis empty, we havéT'(F)| < - |F], i.e., the
algorithm produces a tree that is consistent with at mosttaretof the rooted triplets itf.

Also note that any phylogenetic tree produced by the algariabove is always a bi-
nary tree (in fact, a binary caterpillar tree) and that amaby phylogenetic tree whose
leaf set include(a,b,c} is consistent with exactly one qfa,b},c), ({a,c},b), and
({b,c},a). This means that i7 and F have the property that{a,b},c) € T implies
({a,c},b), ({b,c},a) € T and({a’,V'}, ') € F implies({da’, '}, V), ({V',c'},ad') € F
then|T(T)|—|T(F)| = 3-(|7|—|F]) for any binary phylogenetic treE with leaf setL.
In this sense, the approximation algorithm is worst-casirp.

3. NP-hardnessof MT and a polynomial-time algorithm for a special case
3.1. NP-hardness of MT

To prove the NP-hardness of the general case of MT, we givdyag@mial-time reduction
from the following problem calledhe forbidden rooted triplets probleif+T): Given a
setS of rooted triplets, is there a binary, rooted, distinctlgfléabeled tredr that satisfies
A(R) = A(S) andS N R(R) = 0? FT was shown to be NP-hard by Bryant [5].

Theorem 3.1. MT is NP-hard.

Proof. Forany instancé of FT, construct an instance of MT by settifig= ( and.F = S.
We claim that there exists a solutidtfor FT if and only if there exists a solutiaN for MT.
(=) If the first part of the statement holds, then the secondipé#itially true because
R is also a phylogenetic network.
(«) From N, we constructR as follows: For each recombination nodeNh remove
one of its two incoming edges, contract each outgoing edg®a ft node with resulting
outdegred, and letR be the obtained tree. The claim follows becaRg&?) C R(N). O
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3.2. An O(nlog n)-time algorithm for MT with disjoint forbidden rooted tripkts

Although MT is NP-hard, it can be solved efficiently if the liaiden rooted triplets are
disjoint (meaning that\(¢t) N A(¢') = 0 for anyt,¢ € F with ¢ # t’), as we show in this
section. Our algorithm is based on the following lemma frd®j ]

Lemma 3.1. [16] For any setL of n leaf labels, a phylogenetic network satisfying
R(N) = {({z,y},2) | #,y,2 € L} can be constructed if)(s(n)) time, wheres(n) is
the time required to construct a sorting network foelements.

By employing, e.g., an AKS sorting network (see [2]), we abtgn) = O(nlogn)
in Lemma 3.1 above. Now, suppa$eis a given set off disjoint forbidden rooted triplets
and writeF = {({a1,b1},c1), ..., ({ay,bs},cr)}. LetP = {p1,q1,...,ps,qs} be aset
of labels not belonging td.. Build a phylogenetic networky as follows.

(1) Use Lemma 3.1 to construct a phylogenetic netwitkwhich is consistent with

all rooted triplets in{ ({z,y}, 2) | ,y,2 € (LU P\ A(F))} in O(nlogn) time.

(2) Foreach{a;,b;},c;) € F, makea; be a child ofp;, b; a child ofg;, andc; a child

of bothp; andg; in N’. Let N be the resulting network.

Lemma3.2. Forany7 C {({z,y},2) | #,y,2 € L} \ F, it holds thatT C R(N).
Furthermore, F N R(N) = 0.

Theorem 3.2. MT with disjoint forbidden rooted triplets can be solvedin log n) time.

4. Algorithmsfor MM TG and arestricted caseof MTG

Here, we need the following additional terminology. Xétbe a phylogenetic network and
let h be a recombination node iN. Every ancestos of 4 such that, can be reached using
two disjoint directed paths starting at the childrensa$ called asplit node ofh. If s is

a split node ofh. then any path starting atand ending at is called amerge path of
or a merge path frony. For any node: in N, N[u] denotes the subnetwork &f rooted
at u, i.e., the minimal subgraph a¥ which includes all nodes and directed edges\of
reachable from:. N[u] is called aside networlof N if there exists a merge patf in N
such that: does not belong t@& butw is a child of a node belonging tB.

4.1. A polynomial-time approximation algorithm for MMTG

Jansson, Nguyen, and Sung [15] presente}-approximation algorithm for MMTG re-
stricted toF = (). We can extend their algorithm to arbitrafy; obtaining a polynomial-
time algorithm for inferring a galled netwotK with [N (T)|— |N(F)| > Z-(|T|—|F]).
The modified algorithm/ MTG(7, F) is outlined in Figure 2. Similar to the original
algorithm in [15], M MT'G first partitions the leaf sek into three subsetd, B, andC
so that the value of a special score functienre(A, B,C) = 4(Ny — M;) + 7(Ny —
M>)+12(Ns— Ms3) is maximized, where for € {1, 2, 3}, we define two setX; (4, B, C)
andY;(A4, B, C) as below, and leN; = | X;(A, B, C)| andM; = |Y;(A, B,C)|:

e Xi(A4,B,C) = {({x,y},2) € T | z,y, andz are in one of the setd, B, C},
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o X3(A,B,C) = {({x,y},2) € T | z,y, andz are in three different sefsand
e X3(A,B,C) = {({z,y},2) € T | x andy are in one set andis in anothef.

Y;(A, B, C) is defined analogously, using instead of7. We use a greedy algorithm to
perform the partitioning that first randomly dividésinto three arbitrary subsets and then
keeps moving leaves from one subset to another watite(A, B, C) cannot be further
improved. After finished moving the leaves, if one of the ss#y A, equalsL, we move
the nodeu that maximizes% from A to B, wherecg(u) = |[{({u,z},y) € G}|
andpg(u) = |[{({z,y},u) € G}| andg € {7, F}. This extra step is to ensure that none
of the three sets equals The rest of the algorithm proceeds as in [15] and recurgivel
constructs three candidate galled netwakks, Ng, andN¢. Finally, in Step 4, we return
a networkN that maximizesNz(7)| — |[Nz(F)| amongZ € {A, B,C}.

Algorithm MMTG

Input: A set7 and a sefF of rooted triplets.

Output: A galled networkN such thai N (7)| — |[N(F)| > 15—2 -(|T| = |FD.

1 PartitionA(7) U A(F) into three setsd, B, andC so thatscore(A, B, C') is maximized.

2 ForZ € {A,B,C},letKz = MMTG(T|Z, F|Z).

3 Generate three galled networksy, Ng, N, where for instancel 4 is a galled network
with side networksK 4, K, K such thatK 4 is attached to the recombination notle|
whose split node is the root, atifiz and K~ are attached to two different merge path&of]

4 AmongZ € {A, B,C}, return aN that maximize§Nz(7)| — | Nz (F)|.

End MMTG

Figure 2.  An approximation algorithm for MMTG.

Theorem 4.1. A galled networkV such that N (7)| — [N (F)| > & - (|7| - |F]) can be
constructed irO(n - (|7 + | F|)?) time.

For the correctness and time analysis of the algorithm,Kele [

4.2. An O(n*)-time algorithm for MTG when7 is dense

[15] also gave a®(n?)-time algorithm for a restricted case of MTG whéFds dense and
F = . In this section we extend their algorithm to aRy

Letw andv be two nodes in a galled netwoMk. The subnetworlV|v] is called adirect
subnetworlof N[u] if: (1) v is a child ofu, if v is not a split node inV; or (2) v is attached
to a merge path from, if u is a split node.

A galled networkN which is consistent with the rooted triplets Tnand leaf-labeled
by L = A(T) is calledmaximalif there is no galled networR{ such that: (1)1 is consis-
tent with the triplets irf” and leaf-labeled by.; and (2) there exists a direct subnetwadrk
of N and a direct subnetwork!’ of M such thatA\(N’) C A(M’). N is recursively max-
imal if it is maximal and every direct subnetwork of it is recurdig maximal. A galled
network N which is consistent with the rooted tripletsThand leaf-labeled by, = A(7)
is callednearly maximaif either: (1) itis maximal; or (2) there exists a maximallgdinet-
work M which is consistent with the rooted tripletsdn leaf-labeled by, and whose root



September 17,2004 16:46 Proceedings Trim Size: 9.75inix 6.5 forb4

is a split node with corresponding recombination nadguch thatV can be transformed
from M in the following way: we remove one of the two edges pointiogtsay(g, h),
and connecy with some new node obtained by subdividing some edg¥ jh] such that
the new network is still a galled network. A subnetwdvkis recursively nearly maximal
if it is nearly maximal and every direct subnetwork of it isuesively nearly maximal.

For any dense séf of rooted triplets, if there exists a galled network coresisivith 7
then there also exists a recursively maximal network ctersisvith7 [15]. Given a dense
set7 of rooted triplets, the algorithm of [15] always output augsively maximal network
consistent with7", if one exists. To deal with forbidden rooted triplets, wecaheed:

Lemma 4.1. Given two sets of rooted triplets and F where7 is dense, if there exists a
galled network that is consistent with but not consistent with any rooted triplet #then
there also exists a recursively nearly maximal network ihab.

Theorem 4.2. Given two sets of rooted triple and F with leaf setl = A(7) U A(F)
where7 is dense, a galled network that is consistent viithut not consistent with any
rooted triplet inF can be constructed i®(n*) time, wheren = |L|.

Proof. (Sketch.) The algorithm looks for a recursively nearly nmaai network that is con-
sistent with all rooted triplets iir but none inF. The algorithm in [15] finds a recursively
maximal galled network consistent with in O(n?) time, if one exists. We can modify it
to return a recursively nearly maximal galled network cetesit with7™ but not consistent
with any rooted triplets it by exploiting the fact that any nearly maximal network can be
transformed from some maximal network. Overall, the tim@taisO(n?). |
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