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To construct a phylogenetic tree or phylogenetic network for describing the evolutionary history of a
set of species is a well-studied problem in computational biology. One previously proposed method
to infer a phylogenetic tree/network for a large set of species is by merging a collection of known
smaller phylogenetic trees on overlapping sets of species so that no (or as little as possible) branching
information is lost. However, little work has been done so far on inferring a phylogenetic tree/network
from a specified set of trees when in addition, certain evolutionary relationships among the species are
known to be highly unlikely. In this paper, we consider the problem of constructing a phylogenetic
tree/network which is consistent with all of the rooted triplets in a given setT and none of the rooted
triplets in another given setF . Although NP-hard in the general case, we provide some efficient exact
and approximation algorithms for a number of biologically meaningful variants of the problem.

1. Introduction

The evolutionary relationships among a set of speciesS are commonly described by a phy-
logenetic tree or a phylogenetic network. Aphylogenetic treeis a rooted, unordered tree
whose leaves are distinctly labeled byS and where each internal node represents an an-
cestral species and each edge represents the evolution fromone species to another (see,
e.g., [19, 25]). However, scientists have observed that certain evolutionary events cannot
be described properly using the treelike model; examples ofthese so-calledrecombination
eventsinclude horizontal gene transfer and hybrid speciation [10, 12, 20, 21, 23, 27].Phy-
logenetic networkswere proposed as a way to represent non-treelike evolution by extending
the definition of phylogenetic trees to allow every node to have more than one parent.

One approach to constructing large phylogenetic trees/networks is by combining a set
of known trees into one supertree/network [3, 4, 11, 12, 17, 18, 21, 22, 24, 26]. In this
paper, we focus on the problem of constructing a phylogenetic tree/network fromrooted
triplets(i.e., binary phylogenetic trees with exactly three leaveseach). Variants of this prob-
lem have been studied previously in [1, 5, 8, 9, 11, 13, 14, 15,16, 17, 28]. The motivation
for the rooted triplets approach is that a highly accurate tree for just three species can be
obtained through maximum likelihood-based methods [6] or Sibley-Ahlquist-style DNA-
DNA hybridization experiments (see [17]). Moreover, when applying those methods, apart
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from obtaining a set of reliable rooted triplets, we may alsodiscover some rooted triplets
(referred to asforbidden rooted triplets) which are very unlikely to appear as induced sub-
graphs in the true tree/network. Other than [5, 22], little work has been done to study
whether the extra information provided by forbidden rootedtriplets can be used in phy-
logenetic reconstruction. Therefore, in this paper, we investigate some problems related
to constructing a phylogenetic tree or phylogenetic network from a given setT of “good”
rooted triplets and a given setF of forbidden rooted triplets.

1.1. Problem definitions and summary of our results

A phylogenetic treeis a rooted, unordered tree whose leaves are labeled in such away
that all leaf labels are disjoint, and furthermore, all of its internal nodes have outdegree
at least 2. A rooted tree isbinary if all of its internal nodes have precisely outdegree 2.
A binary phylogenetic tree with three leaves is called arooted triplet. The unique rooted
triplet on a leaf set{x, y, z} in which the lowest common ancestor ofx andy is a proper
descendant of the lowest common ancestor ofx andz (or equivalently, where the lowest
common ancestor ofx andy is a proper descendant of the lowest common ancestor ofy

andz) is denoted by({x, y}, z). A binary caterpillar treeis a rooted binary tree where
every internal node has at least one child which is a leaf.

A phylogenetic networkis a generalization of a binary phylogenetic tree formally de-
fined as a rooted, directed acyclic graph where: (1) exactly one node has indegree 0 (the
root); (2) all other nodes have indegree 1 or 2; (3) all nodes with indegree 2 (referred as
recombination nodes) have outdegree 1, and all other nodes have outdegree 0 or 2; and
(4) all nodes with outdegree 0 (theleaves) are distinctly labeled. For any phylogenetic
networkN , letU(N) be the undirected graph obtained fromN by replacing each directed
edge by an undirected edge.N is said to be agalled phylogenetic network(or galled
network, for short) if all cycles inU(N) are node-disjoint. Galled networks form an impor-
tant class of phylogenetic networks (see, e.g., [10] for a discussion) and are also known in
the literature astopologies with independent recombination events[27], galled-trees[10],
gt-networks[21], andlevel-1 phylogenetic networks[7, 16].

Let N be a phylogenetic network. A rooted triplett is said to beconsistent withN if
t is an induced subgraph ofN , and a setT of rooted triplets isconsistent withN if every
rooted triplet inT is consistent withN . The set of all rooted triplets which are consistent
with N is denoted byR(N), and we letN(T ) be the subset ofT containing all rooted
triplets fromT that are consistent withN , i.e.,N(T ) = T ∩ R(N).

Denote the set of leaves in a phylogenetic tree/networkN by Λ(N), and for any setT
of rooted triplets, defineΛ(T ) =

⋃

ti∈T
Λ(ti). Given a leaf setL, a setT of rooted triplets

is calleddense (with respect toL) if Λ(T ) = L and for each{x, y, z} ⊆ L, at least one
of the three possible rooted triplets({x, y}, z), ({x, z}, y), and({y, z}, x) belongs toT .
Finally, for any setT of rooted triplets andL′ ⊆ Λ(T ), we defineT |L′ as the subset ofT
consisting of all rooted triplets({x, y}, z) with {x, y, z} ⊆ L′.

Given two setsT andF of rooted triplets, we study the following problems. Through-
out this paper, we letL represent the leaf setΛ(T ) ∪ Λ(F) and we writen = |L|.
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• The mixed triplets problem(MT): Construct a phylogenetic networkN with
Λ(N) = L such thatT ⊆ R(N) andF ∩ R(N) = ∅, if such anN exists;
otherwise, outputnull. In Section 3.1, we show that this problem is NP-hard in its
general form. In Section 3.2, we investigate a restricted case of the problem where
F consists of disjoint rooted triplets, i.e., whereΛ(t)∩Λ(t′) = ∅ for anyt, t′ ∈ F

with t 6= t′, and show how to solve this case efficiently inO(n log n) time.

• The mixed triplets problem restricted to trees(MTT): Construct a phylogenetic
treeT with Λ(T ) = L such thatT ⊆ R(T ) andF∩R(T ) = ∅, if such aT exists;
otherwise, outputnull. Note thatT is not required to be a binary phylogenetic tree
here. In Section 2.1, we describe anO(|T | · n + |F| · n2)-time algorithm for
MTT. We also study a corresponding maximization problem that we call MMTT
which asks for a phylogenetic treeT that maximizes|T (T )| − |T (F)|. MMTT
is NP-hard, so we present an algorithm for inferring a phylogenetic treeT that
guarantees|T (T )| − |T (F)| ≥ 1

3 · (|T | − |F|) in Section 2.2.

• The mixed triplets problem restricted to galled networks(MTG): Construct a
galled networkN with Λ(N) = L such thatT ⊆ R(N) andF ∩ R(N) = ∅,
if such anN exists; otherwise, outputnull. This problem is NP-hard even if
restricted toF = ∅ [15]; therefore, MTG for arbitraryF is also NP-hard. In Sec-
tion 4.1, we study the maximization version of MTG called MMTG and give an
algorithm for inferring a galled networkN that guarantees|N(T )| − |N(F)| ≥
5
12 · (|T | − |F|). We also consider the restricted case of MTG whereT is dense,
and show that this restricted case can be solved inO(n4) time in Section 4.2.

Below, the elements inF are calledforbidden rooted triplets.

1.2. Related results

Several papers have previously studied MT, MTT, MMTT, MTG, MMTG, and some of
their variants for the special caseF = ∅. Aho, Sagiv, Szymanski, and Ullman [1] presented
anO(|T | · n)-time algorithm for determining whether a given setT of rooted triplets on
n leaves is consistent with some rooted, distinctly leaf-labeled tree, and if so, returning one
(i.e., MTT restricted toF = ∅)a. Henzinger, King, and Warnow [11] later showed how
to implement the algorithm of Ahoet al. to run asymptotically faster. Ga̧sieniec, Jansson,
Lingas, andÖstlin [8] considered a version of the problem where the leaves in the output
tree are required to comply with a left-to-right leaf ordering given as part of the input.
Related optimization problems where the objective is to construct a rooted tree consistent
with the maximum number of rooted triplets in the input (i.e., MMTT with F = ∅) or to
find a maximum cardinality subsetL′ of Λ(T ) such thatT |L′ is consistent with some
tree have been studied in [5, 9, 13, 28] and [14], respectively. We remark that MMTT
with F = ∅ is NP-hard (see [5], [13], or [28]) and approximable within afactor of 1

3 in
polynomial time [9] (meaning that the approximation algorithm in [9] always outputs a

aIn contrast, the analog of this problem forunrootedtrees is NP-hard, even if all of the input trees arequartets
(unrooted, distinctly leaf-labeled trees each having fourleaves and no nodes of degree two) [26]. See also [18].
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phylogenetic tree which is consistent with at least1
3 · |T | of the rooted triplets inT ).

As for inferring a phylogenetic network from a given set of rooted triplets onn leaves
(i.e., MT withF = ∅), Jansson and Sung [16] proved that if no restrictions are placed on
the structure of the output phylogenetic network then the problem always has a solution
which can easily be obtained from any given sorting network for n elements. [16] also
presented anO(n6)-time algorithm for inferring a galled network (if one exists) consistent
with a given dense set of rooted triplets onn leaves; Jansson, Nguyen, and Sung [15]
subsequently reduced its running time toO(n3), which is optimal since the size of the
input isO(n3) in the dense case. In [15], it was also proved that the problembecomes NP-
hard for non-dense inputs (i.e., MTG withF = ∅), and that the corresponding optimization
problem (MMTG withF = ∅) is approximable within a factor of512 in polynomial time.

Also in the context of inferring a phylogenetic network froma set of trees, Nakhleh,
Warnow, and Linder [21] gave an algorithm for inferring a galled network from two bi-
nary phylogenetic trees with identical leaf sets. In addition, they studied the case where the
input trees may contain errors but where only one recombination node is allowed in the net-
work. Huson, Dezulian, Kl̈opper, and Steel [12] addressed a similar problem for construct-
ing anunrootedphylogenetic network from a set of unrooted, distinctly leaf-labeled trees.

For the general caseF 6= ∅, much less is known. Bryant [5] showed that MTT restricted
to T = ∅ is NP-hard if the output is required to be a binary tree, but solvable in polynomial
time if we further restrict the solution to be a binary caterpillar tree. However, given a setS
of binary phylogenetic caterpillar trees whose leaf sets are subsets of a label setL, it is
NP-hard to determine if there exists a binary treeT with Λ(T ) = L such that no tree inS
is an induced subgraph ofT , even ifT is restricted to be a binary caterpillar tree [22].

2. Algorithms for MTT and MMTT

2.1. A polynomial-time algorithm for MTT

Here, we present a polynomial-time algorithm for solving MTT. It is a generalization of the
algorithm of Ahoet al. [1] for determining if a given setT of rooted triplets is consistent
with a rooted tree and if so, constructing one. We extend their algorithm to deal with a
nonempty setF of forbidden rooted triplets. Note that if the output tree isconstrained to
be binary then the problem becomes NP-hard even ifT = ∅ (see Section 1.2).

For any subsetL′ of L, definethe auxiliary graph forL′, denoted byG(L′), as the
undirected graph with vertex setL′ and edge setE(L′), where for every({i, j}, k) ∈ T

that satisfiesi, j, k ∈ L′, the edge{i, j} is included inE(L′). (Auxiliary graphs were first
defined by Ahoet al. [1].) To handle forbidden rooted triplets, for any subsetL′ of L, we
introducethe auxiliary partitionD(L′) of L′ as follows:

(1) Initially, letD = {C1, . . . , Cq} be a partition ofL′ such that each subsetCi consists
of the set of nodes in one connected component ofG(L′).

(2) While there exists some({i, j}, k) in F|L′ such thati and j are in one subset
S1 ∈ D andk is in another subsetS2 ∈ D, mergeS1 andS2 into one subset inD.

(3) SetD(L′) = D.
Our algorithmMTT proceeds recursively and is described in Figure 1.



September 17, 2004 16:46 Proceedings Trim Size: 9.75in x 6.5in forb4

5

Algorithm MTT

Input: A setT and a setF of rooted triplets and a leaf setL.

Output: A phylogenetic tree distinctly leaf-labeled byL that is consistent with all rooted
triplets inT and no rooted triplets inF , if one exists; otherwisenull.

1 Construct the auxiliary partitionD(L). WriteD(L) = {D1, . . . ,Dr}.
2 If r = 1 andD1 consists of exactly one leafi then return a tree with a single leaf labeled

by i. If r = 1 andD1 contains more than one leaf then returnnull. Otherwise, for each
i ∈ {1, . . . , r}, let Ti = MTT (T |Di, F|Di, Di); if all Ti-trees are notnull then attach
all of these trees to a common parent node and return the resulting tree, else returnnull.

End MTT

Figure 1. An algorithm for solving MTT.

Theorem 2.1. AlgorithmMTT outputs a phylogenetic treeT distinctly leaf-labeled byL
that is consistent with all rooted triplets inT and no rooted triplets inF , if and only if such
a tree exists, inO(|T |·n + |F|·n2) time.

Proof. If Algorithm MTT outputs a non-null treeT then by the correctness of the algo-
rithm of Aho et al., T is consistent with all rooted triplets inT . Next, letf = ({i, j}, k)

be any rooted triplet inF and suppose thatf is consistent withT . Then, at some recur-
sion level of the algorithm wherei, j, k are still in the same leaf set,i andj will belong
to one subsetDa while k is in another subsetDb. But this is impossible by step (2) in the
construction ofD(L). Contradiction; hence,f is not consistent withT .

Similarly, if the algorithm outputsnull then at some recursion level,D(L) has just one
elementD1, whereD1 contains at least two leaves. Suppose there exists a phylogenetic
treeT ∗ that is consistent with all rooted triplets inT |D1 and no rooted triplets inF|D1.
By the construction ofD(L), two leaves in the same setDa can not be descendants of two
different children of the root ofT ∗. But since there is just one setD1, the root ofT ∗ would
only have one child, which is a contradiction. Hence, there is no phylogenetic tree that is
consistent with all rooted triplets inT and no rooted triplets inF .

There areO(n) recursion levels, each of which is taken care of inO(|T |+ |F| ·n) time.
Thus, the algorithm’s total running time isO((|T |+ |F| · n) · n).

2.2. A polynomial-time approximation algorithm for MMTT

MMTT restricted toF = ∅ is NP-hard (see [5, 13, 28]), so it follows trivially that the
unrestricted version of MMTT is NP-hard. Therefore, we provide a polynomial-time ap-
proximation algorithm for MMTT, which generalizes the following result from [9].

Lemma 2.1. [9] Given a setT of rooted triplets with leaf setL, a phylogenetic tree dis-
tinctly leaf-labeled byL that is consistent with at least a third of the rooted triplets in T
can be constructed inO((|T |+ n) · log n) time.

Theorem 2.2. Given two setsT andF of rooted triplets with leaf setL, a phylogenetic
treeT distinctly leaf-labeled byL such that|T (T )| − |T (F)| ≥ 1

3 · (|T | − |F|) can be
constructed inO((|T |+ |F|+ n) · log n) time.
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Proof. We describe an algorithm to construct such aT . For everyv ∈ L, keep a score
associated withv, denoted bys(v). Initially, sets(v) to zero for everyv ∈ L. Then, for
every({a, b}, c) ∈ T , increases(c) by one and decreases(a) ands(b) by 1

2 , and for every
({a′, b′}, c′) ∈ F , decreases(c′) by one and increase each ofs(a′) ands(b′) by 1

2 . Next,
assumeu ∈ L has the largest score. LetL′ = L\{u}. Then recursively construct a treeT ′

with leaf setL′ such that|T ′(T |L′)| − |T ′(F|L′)| ≥ 1
3 · (|T |L

′| − |F|L′|) (if L′ consists
of only two leaves then letT ′ be a binary tree on those two leaves), attach the root ofT ′

and a leaf labeled byu to a common parent node and letT be the resulting tree.
To prove the correctness of the algorithm, defineTu = {t | t ∈ T andu ∈ Λ(t)} and

Fu = {t | t ∈ F andu ∈ Λ(t)}. We now show that|T (Tu)|−|T (Fu)| ≥ 1
3 ·(|Tu|−|Fu|).

Let T ′
u = T (Tu), T ′′

u = Tu \ T
′

u, F ′
u = T (Fu), andF ′′

u = Fu \ F
′
u. Then we can write

s(u) = |T ′
u| −

1
2 · |T

′′
u | − |F

′
u|+

1
2 · |F

′′
u |. Since we choose a leafu which has the largest

score, it is easy to see thats(u) ≥ 0. Therefore,|T ′
u| − |F

′
u| ≥

1
2 · (|T

′′
u | − |F

′′
u |). By

adding1
2 · (|T

′
u| − |F

′
u|) to both sides of the inequality and using|T ′

u| + |T
′′

u | = |Tu| and
|F ′

u|+ |F
′′
u | = |Fu|, we obtain|T (Tu)| − |T (Fu)| ≥ 1

3 · (|Tu| − |Fu|).
We can use a heap data structure to keep track of the changes inthe scores of the leaves

throughout the algorithm. The total running time becomesO((|T |+ |F|+ n) · log n).

Note that for the special case whereT is empty, we have|T (F)| ≤ 1
3 · |F|, i.e., the

algorithm produces a tree that is consistent with at most onethird of the rooted triplets inF .
Also note that any phylogenetic tree produced by the algorithm above is always a bi-

nary tree (in fact, a binary caterpillar tree) and that any binary phylogenetic tree whose
leaf set includes{a, b, c} is consistent with exactly one of({a, b}, c), ({a, c}, b), and
({b, c}, a). This means that ifT andF have the property that({a, b}, c) ∈ T implies
({a, c}, b), ({b, c}, a) ∈ T and({a′, b′}, c′) ∈ F implies ({a′, c′}, b′), ({b′, c′}, a′) ∈ F

then|T (T )|−|T (F)| = 1
3 · (|T |−|F|) for any binary phylogenetic treeT with leaf setL.

In this sense, the approximation algorithm is worst-case optimal.

3. NP-hardness of MT and a polynomial-time algorithm for a special case

3.1. NP-hardness of MT

To prove the NP-hardness of the general case of MT, we give a polynomial-time reduction
from the following problem calledthe forbidden rooted triplets problem(FT): Given a
setS of rooted triplets, is there a binary, rooted, distinctly leaf-labeled treeR that satisfies
Λ(R) = Λ(S) andS ∩ R(R) = ∅? FT was shown to be NP-hard by Bryant [5].

Theorem 3.1. MT is NP-hard.

Proof. For any instanceS of FT, construct an instance of MT by settingT = ∅ andF = S.
We claim that there exists a solutionR for FT if and only if there exists a solutionN for MT.

(→) If the first part of the statement holds, then the second partis trivially true because
R is also a phylogenetic network.

(←) FromN , we constructR as follows: For each recombination node inN , remove
one of its two incoming edges, contract each outgoing edge from a node with resulting
outdegree1, and letR be the obtained tree. The claim follows becauseR(R) ⊆ R(N).
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3.2. An O(n log n)-time algorithm for MT with disjoint forbidden rooted triplets

Although MT is NP-hard, it can be solved efficiently if the forbidden rooted triplets are
disjoint (meaning thatΛ(t) ∩ Λ(t′) = ∅ for anyt, t′ ∈ F with t 6= t′), as we show in this
section. Our algorithm is based on the following lemma from [16].

Lemma 3.1. [16] For any setL of n leaf labels, a phylogenetic networkN satisfying
R(N) =

{

({x, y}, z) | x, y, z ∈ L
}

can be constructed inO(s(n)) time, wheres(n) is
the time required to construct a sorting network forn elements.

By employing, e.g., an AKS sorting network (see [2]), we obtain s(n) = O(n log n)

in Lemma 3.1 above. Now, supposeF is a given set off disjoint forbidden rooted triplets
and writeF =

{

({a1, b1}, c1), . . . , ({af , bf}, cf )
}

. Let P = {p1, q1, . . . , pf , qf} be a set
of labels not belonging toL. Build a phylogenetic networkN as follows.

(1) Use Lemma 3.1 to construct a phylogenetic networkN ′ which is consistent with
all rooted triplets in

{

({x, y}, z) | x, y, z ∈ (L ∪ P \ Λ(F))
}

in O(n log n) time.
(2) For each({ai, bi}, ci) ∈ F , makeai be a child ofpi, bi a child ofqi, andci a child

of bothpi andqi in N ′. Let N be the resulting network.

Lemma 3.2. For any T ⊆
{

({x, y}, z) | x, y, z ∈ L
}

\ F , it holds thatT ⊆ R(N).
Furthermore,F ∩R(N) = ∅.

Theorem 3.2. MT with disjoint forbidden rooted triplets can be solved inO(n log n) time.

4. Algorithms for MMTG and a restricted case of MTG

Here, we need the following additional terminology. LetN be a phylogenetic network and
let h be a recombination node inN . Every ancestors of h such thath can be reached using
two disjoint directed paths starting at the children ofs is called asplit node ofh. If s is
a split node ofh then any path starting ats and ending ath is called amerge path ofh
or a merge path froms. For any nodeu in N , N [u] denotes the subnetwork ofN rooted
at u, i.e., the minimal subgraph ofN which includes all nodes and directed edges ofN

reachable fromu. N [u] is called aside networkof N if there exists a merge pathP in N

such thatu does not belong toP butu is a child of a node belonging toP .

4.1. A polynomial-time approximation algorithm for MMTG

Jansson, Nguyen, and Sung [15] presented a5
12 -approximation algorithm for MMTG re-

stricted toF = ∅. We can extend their algorithm to arbitraryF , obtaining a polynomial-
time algorithm for inferring a galled networkN with |N(T )|−|N(F)| ≥ 5

12 ·(|T |−|F|).
The modified algorithmMMTG(T ,F) is outlined in Figure 2. Similar to the original

algorithm in [15],MMTG first partitions the leaf setL into three subsetsA, B, andC

so that the value of a special score functionscore(A, B, C) = 4(N1 −M1) + 7(N2 −

M2)+12(N3−M3) is maximized, where fori ∈ {1, 2, 3}, we define two setsXi(A, B, C)

andYi(A, B, C) as below, and letNi = |Xi(A, B, C)| andMi = |Yi(A, B, C)|:

• X1(A, B, C) = {({x, y}, z) ∈ T | x, y, andz are in one of the setsA, B, C},
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• X2(A, B, C) = {({x, y}, z) ∈ T | x, y, andz are in three different sets}, and
• X3(A, B, C) = {({x, y}, z) ∈ T | x andy are in one set andz is in another}.

Yi(A, B, C) is defined analogously, usingF instead ofT . We use a greedy algorithm to
perform the partitioning that first randomly dividesL into three arbitrary subsets and then
keeps moving leaves from one subset to another untilscore(A, B, C) cannot be further
improved. After finished moving the leaves, if one of the sets, sayA, equalsL, we move
the nodeu that maximizespT (u)−pF (u)

cT (u)−cF (u) from A to B, wherecG(u) = |{({u, x}, y) ∈ G}|

andpG(u) = |{({x, y}, u) ∈ G}| andG ∈ {T ,F}. This extra step is to ensure that none
of the three sets equalsL. The rest of the algorithm proceeds as in [15] and recursively
constructs three candidate galled networksNA, NB, andNC . Finally, in Step 4, we return
a networkNZ that maximizes|NZ(T )| − |NZ(F)| amongZ ∈ {A, B, C}.

Algorithm MMTG

Input: A setT and a setF of rooted triplets.

Output: A galled networkN such that|N(T )| − |N(F)| ≥ 5
12 · (|T | − |F|).

1 PartitionΛ(T ) ∪ Λ(F) into three setsA, B, andC so thatscore(A, B, C) is maximized.
2 ForZ ∈ {A, B, C}, let KZ = MMTG(T |Z, F|Z).
3 Generate three galled networksNA, NB , NC , where for instance,NA is a galled network

with side networksKA, KB , KC such thatKA is attached to the recombination nodeh

whose split node is the root, andKB andKC are attached to two different merge paths ofh.
4 AmongZ ∈ {A, B, C}, return aNZ that maximizes|NZ(T )| − |NZ(F)|.
End MMTG

Figure 2. An approximation algorithm for MMTG.

Theorem 4.1. A galled networkN such that|N(T )| − |N(F)| ≥ 5
12 · (|T |− |F|) can be

constructed inO(n · (|T |+ |F|)3) time.

For the correctness and time analysis of the algorithm, see [15].

4.2. An O(n4)-time algorithm for MTG whenT is dense

[15] also gave anO(n3)-time algorithm for a restricted case of MTG whereT is dense and
F = ∅. In this section we extend their algorithm to anyF .

Let u andv be two nodes in a galled networkN . The subnetworkN [v] is called adirect
subnetworkof N [u] if: (1) v is a child ofu, if u is not a split node inN ; or (2)v is attached
to a merge path fromu, if u is a split node.

A galled networkN which is consistent with the rooted triplets inT and leaf-labeled
by L = Λ(T ) is calledmaximalif there is no galled networkM such that: (1)M is consis-
tent with the triplets inT and leaf-labeled byL; and (2) there exists a direct subnetworkN ′

of N and a direct subnetworkM ′ of M such thatΛ(N ′) ⊆ Λ(M ′). N is recursively max-
imal if it is maximal and every direct subnetwork of it is recursively maximal. A galled
networkN which is consistent with the rooted triplets inT and leaf-labeled byL = Λ(T )

is callednearly maximalif either: (1) it is maximal; or (2) there exists a maximal galled net-
work M which is consistent with the rooted triplets inT , leaf-labeled byL, and whose root
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is a split node with corresponding recombination nodeh such thatN can be transformed
from M in the following way: we remove one of the two edges pointing to h, say(g, h),
and connectg with some new node obtained by subdividing some edge inM [h] such that
the new network is still a galled network. A subnetworkN is recursively nearly maximal
if it is nearly maximal and every direct subnetwork of it is recursively nearly maximal.

For any dense setT of rooted triplets, if there exists a galled network consistent withT
then there also exists a recursively maximal network consistent withT [15]. Given a dense
setT of rooted triplets, the algorithm of [15] always output a recursively maximal network
consistent withT , if one exists. To deal with forbidden rooted triplets, we also need:

Lemma 4.1. Given two sets of rooted tripletsT andF whereT is dense, if there exists a
galled network that is consistent withT but not consistent with any rooted triplet inF then
there also exists a recursively nearly maximal network thatis so.

Theorem 4.2. Given two sets of rooted tripletsT andF with leaf setL = Λ(T ) ∪ Λ(F)

whereT is dense, a galled network that is consistent withT but not consistent with any
rooted triplet inF can be constructed inO(n4) time, wheren = |L|.

Proof. (Sketch.) The algorithm looks for a recursively nearly maximal network that is con-
sistent with all rooted triplets inT but none inF . The algorithm in [15] finds a recursively
maximal galled network consistent withT in O(n3) time, if one exists. We can modify it
to return a recursively nearly maximal galled network consistent withT but not consistent
with any rooted triplets inF by exploiting the fact that any nearly maximal network can be
transformed from some maximal network. Overall, the time taken isO(n4).
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