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We studied two cancer classification problems with mass spectrometry data and used SVM-RFE to se-
lect a small subset of peaks as input variables for the classification. Our study shows that, SVM-RFE
can select a good small subset of peaks with which the classifier achieves high prediction accuracy and
the performance is much better than with the feature subset selected by T-statistics. We also found that,
the best peak subset selected by SVM-RFE always have in the top ranked peaks by T-statistics while
it includes some peaks that are ranked low by T-statistics. However, these peaks together give much
better classification performance than the same number of most top ranked peaks by T-statistics. Our
experimental comparison of the performance of Support Vector Machine classification algorithm with
and without peak selection also consolidates the importance of peak selection for cancer classification
with mass spectrometry data. Selecting a small subset of peaks not only improves the efficiency of
the classification algorithms, but also improves the cancer classification accuracy, even for classifica-
tion algorithms like Support Vector Machines, which are capable of handling large number of input
variables.

1. Introduction

In the last decade or so, mass spectrometry (MS) has increasingly become the method of
choice for analysis of complex protein samples. Mass spectrometry measures two prop-
erties of ion mixtures in the gas phase under a vacuum environment: the mass-to-charge
ratio (m/z) of ions in the mixture; and the number of ions present at different m/z values.
The output is amass spectrumor chart with a series of spike peaks, each representing the
ion(s) of a specific m/z value present in the sample. The heights of the peaks are related
to the abundances of the ions in the sample. The heights of peaks and the m/z values of
peaks are a fingerprint of the sample. For protein samples, mass spectrometry measures the
mass-to-charge ratio of the ionized proteins (or protein fragments) and their abundances in
the sample. The recent advances in mass spectrometry technology are starting to enable
high-throughput profiling of the protein content of complex samples.

While mass spectrometry has been used intensively on purified, digested samples to
identify proteins via peptide mass fingerprints,1 recently, it has also found promising appli-
cations in cancer classification.2–4 Proteins vary between individuals, between cell types,
and in the same cell under different stimuli or different disease states. Thus, the protein
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variations between cancerous samples and noncancerous samples, or between different
stages of a cancer provide rich and dynamic information to discriminate cancerous sam-
ples from non-cancer samples or to discriminate between different stages of a cancer. The
protein abundance changes are relatively easy to measure, especially with the recent rapid
advances in mass spectrometry technology, and thus are used as feature variables for cancer
classification, although the rich information contained in protein variation is not confined
only to changes in abundance. For cancer classification, the protein samples from cancer
patients and non-cancer patients or from different cancer stages are analyzed through mass
spectrometry instruments and the mass spectrometry patterns are used to built a diagnostic
classifier. However, the raw mass spectra must go through some basic preprocessing steps
like baseline identification and subtraction, peak identification and extraction, intensity
normalization, and peak selection etc., before them are used to build a cancer classifier.12

Blood serum is often used as the source of protein samples for cancer classification. Blood
serum constantly perfuses tissues and circulates throughout the body and thus archives rich
and dynamic histological information of proteins. Besides, it also can be easily and non-
invasively obtained in sufficient quantity from patient at clinics.

For cancer classification with mass spectrometry data, the peak selection step is espe-
cially important. Peak selection procedure tries to select from the original mass spectra a
set of peaks that are mostly relevant to the phenotypes under study, or a subset of peaks to-
gether will form better input variables for the classification algorithm. Nowadays, for most
of the MS data for cancer classification, the number of training samples (cancer or non-
cancer cases) is small compared to the large number of inputs (peak intensities). When the
number of input variables is significantly greater than the number of training samples, ran-
dom correlation between the inputs and the phenotypes may be formed. Finding a compact
small set of input variables is important as well for protecting against such spurious re-
sults. Peak selection is exactly the feature/variable selection problem commonly addressed
in machine learning.5 6 Some statistical and machine learning methods have been used
for peak selection purpose, for examples, genetic algorithm,2 signal-to-noise ratio,4 ROC
curve criterion,3 etc.

SVM-RFE (Support Vector Machine Recursive Feature Elimination) was originally
proposed for gene selection,7 where a linear version of the popular Support Vector Ma-
chine (SVM) methods8 9 is used as the learning algorithm in a recursive procedure to
select a subset of genes for cancer classification. In this paper, we will study the usefulness
of SVM-RFE for peak selection for cancer classification with mass spectrometry data. For
comparison, we also include the T-statistics feature selection method, which chooses a set
of features that are most relevant to the concept under study. The goodness of the selected
peak subsets, in this study, are evaluated by the classification performance of a linear SVM
classifier with only the selected peaks as input variables. However, ultimately, peaks in
the selected subset have to be examined by biological experiments. These peaks should be
further analyzed to identify the underlying proteins. The subsequent functional study of the
identified proteins may help to get new biological insights into the disease pathways and
may eventually lead to reliable diagnostic test methods and potential therapeutic targets.
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The rest of paper is organized as follows: in Section 2, we briefly review the SVM
classification methods, SVM-RFE and T-statistics feature selection methods; in Section 3,
we describe the numerical experiments; in Section 4, we analyze the experiment results
and make the conclusions.

2. SVM, SVM-RFE and T-Statistics

In this section we briefly review the SVM classification method, SVM-RFE and T-statistics
feature selection methods.

2.1. SVM

Support Vector Machines8 9 have been very popular in solving classification problems.
It constructs an optimal hyperplane decision function in a so-calledfeature spacethat is
mapped from the original input space. The mappingΦ is usually nonlinear and the feature
space is usually a much higher dimensional space than the original input space. Let us
usexi to denote theith example vector in the original input space andzi to denote the
corresponding vector in the feature space,zi = Φ(xi). Kernel is one of the core concepts
in SVMs and plays an very important role. Kernel functionk(xi,xj) computes the inner
product of two vectors in the feature space and thus implicitly defines the mapping function:
k(xi,xj) = Φ(xi) · Φ(xj) = zi · zj .

The following are three types of commonly used kernel functions

Linear Kernel k(xi,xj) = xi · xj

Polynomial Kernel k(xi,xj) = (1 + xi · xj)p

Gaussian Kernel k(xi,xj) = exp(−‖xi − xj‖2/2σ2)

where the orderp of polynomial kernel and the spread widthσ of Gaussian kernel are
adjustable kernel function parameters.

For a typical classification problem with̀ training samples(x1, y1), · · · , (x`, y`)
whereyi denotes the class label ofxi andyi ∈ {+1,−1}, finding the discriminant function
f(x) = w · Φ(x) + b is formulated by SVMs into the following optimization problem

min
w,b,ξi

1
2‖w‖2 + C

∑`
i=1 ξi (1)

subject to yi(w · zi + b) ≥ 1− ξi , ξi ≥ 0 (2)

whereC > 0 is another predefined higher-level parameter, besides the kernel function
parameters. This optimization problem is usually solved in its dual form9

min
αi

1
2

∑`
i=1

∑`
j=1 αiαjyiyj(zi · zj)−

∑`
i=1 αi (3)

subject to 0 ≤ αi ≤ C,
∑`

i=1 αiyi = 0 (4)

The weight vectorw and the hyperplane decision function can be expressed by using the
dual variablesαi’s:

w =
∑̀

i=1

αiyizi (5)



September 6, 2004 12:30 Proceedings Trim Size: 9.75in x 6.5in SVMRFE-MS

4

f(x) =
∑̀

i=1

αiyi(z · zi) + b (6)

If a nonlinear kernel is used, because of the nonlinear mapping relation between the
input space and the feature space, the linear discriminant function constructed by an SVM
in the feature space corresponds to a nonlinear function in the original input space. The
function family richness and the discriminant power of SVMs are thus incorporated in by
the mapping function and ultimately the kernel function, while problem formulation is kept
in the same and neat form.

In the dual problem of SVMs, all the computation involving the input vectors is in the
form of inner products of vectors in feature space. The discriminant function also can be
expressed in inner products of feature space vectors. These inner products(zi · zj) can be
replaced by corresponding kernel computationsk(xi,xj), which can be executed easily in
the original input space. Thus, we usually do not need to know the mapping functionΦ
explicitly. It is implicitly defined by the kernel function that computes the inner product
in the feature space. Similarly, we do not need to explicitly compute the weight vectorw.
However, if a linear kernel is used, the decision functionf(x) is simply a linear function
of x and the weight vector of the linear function also can be explicitly computed as

w =
∑̀

i=1

αiyixi. (7)

SVMs with linear kernel are often referred to as linear SVMs.

2.2. SVM-RFE

Support Vector Machine Recursive Feature Elimination (SVM-RFE) method was originally
proposed to perform gene selection for cancer classification.7 Nested subsets of features are
selected in a sequential backward elimination manner, which starts with all the features and
remove one feature each time. In this way, in the end, all the feature variables are ranked.
At each step, the coefficients of the weight vectorw of a linear SVM are used as the feature
ranking criterion. The recursive elimination procedure used in Ref. 7 is as follows:

(1) Start: ranked featureR = [ ]; selected subsetS = [1, · · · , d];
(2) Repeat until all features are ranked:

(a) Train a linear SVM with all the training data and variables inS;
(b) Compute the weight vector using Eq. (5);
(c) Compute the ranking scores for features inS: ci = (wi)2;
(d) Find the feature with the smallest ranking score:e = arg mini ci;
(e) UpdateR: R = R[e,R];
(f) UpdateS: S = S − [e];

(3) Output: Ranked feature listR

For speed reasons, the algorithm can be generalized to remove more than one feature
per step.7 However, removing several features may degrade the classification performance.
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Note that, in SVM-RFE,7 the following SVM formulation is used

min
w,b,ξi

1
2‖w‖2 + C

∑`
i=1 ξ2

i (8)

subject to yi(w · zi + b) ≥ 1− ξi , ξi ≥ 0 (9)

This formulation of SVM is usually solve by the following dual problem with a slightly
modified kernel functioñk(·, ·)

min
αi

1
2

∑`
i=1

∑`
j=1 αiαjyiyj k̃(xi,xj)−

∑`
i=1 αi (10)

subject to αi ≥ 0,
∑`

i=1 αiyi = 0 (11)

wherek̃(xi,xj = k(xi,xj) + 1
C δi,j ; δi,j = 1 if i = j andδi,j = 0 otherwise.

Usingw2
i as ranking score corresponds to removing the feature whose removal change

the objective function least. This objective function is chosen to be(1/2)|w‖2 in SVM-
RFE. This is explained by the OBD algorithm,10 which approximates the change in ob-
jective function caused by removing theith feature by expanding the objective function in
Taylor series to second order

∆J(i) =
∂J

∂wi
∆wi +

∂2J

∂w2
i

(∆wi)2 (12)

At the optimum ofJ , the first order term can be neglected and withJ = (1/2)‖w‖2
Equation (12) becomes

∆J(i) = (∆wi)2 (13)

∆wi = wi corresponds to removing theith feature.
Another explanation of usingw2

i as ranking score is from the sensitivity analysis of the
objective functionJ = (1/2)‖w‖2 with respect to a variable. To compute the gradient, a
virtual scaling factorν is introduced into the kernel function11 andk(xi,xj) becomes

k(ν · xi, ν · xj) (14)

For a linear SVM (with a linear kernel function), using the fact thatνk = 1, the sensitivity
can be computed as

∂J

∂νk
=

1
2

∑̀

i=1

∑̀

j=1

αiαjyiyj
∂k(xi,xj)

∂νk
(15)

=
1
2

∑̀

i=1

∑̀

j=1

αiαjyiyj(2νkx2
k) (16)

= w2
k (17)
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2.3. T-Statistics

T-statistics basically is a filters feature selection method. It selects the feature variables that
are most relevant to the concept under study. A ranking score is computed for each feature.
It uses the following feature ranking criterion

ci =
|µ+

i − µ−i |√
(σ+

i )2

n+ + (σ−i )2

n−

. (18)

whereµ+
i andµ−i are the mean values of theith feature respectively over positive and neg-

ative samples;σ+
i andσ−i are the corresponding standard deviations;n+ andn− denote the

number of positive and negative training samples. Equation (18) fundamentally measures
the normalized feature value difference between two groups.

3. Numerical Experiments

We evaluate the SVM-RFE peak selection method together with T-statistics method on two
cancer classification mass spectrometry datasets: Lung Cancer (Lung) and Ovarian Cancer
(Ovarian). The Lung Cancer is originally from the First Annual Proteomics Datamining
Conference , organized by the Department of Radiology and Biostatistics at Duke Univer-
sity in September 2002. We are using the version of this dataset used in Ref.12 with 229
peaks after going through some basic preprocessing steps except peak selection. We ob-
tained the Lung Cancer dataset from Kent Ridge Bio-medical Data Set Repository.13 All
the two datasets originally have no test set. For performance validation, we still spare some
samples for testing purpose. Thus, we randomly split the original dataset into a training
set and a test set and keep percentages of the positive and negative samples same in the
training and test sets. We summarize some basic information about the datasets, including
the number of peaks, the sizes of the training and test sets, in Table 1. More detailed infor-
mation about the two datasets can be found in the Refs.12 and 13, and the references there
in.

In our study, for each dataset, we did the peak selection solely on the training set. The
goodness of a selected peak subset is evaluated by the performance of a classifier built
on the training set with only the selected set of peaks as input variables. In our study,
we choose linear SVM as the classification algorithm. Linear classification algorithms are
commonly used in cancer classification with mass spectrometry data, e.g. see Ref.14.

Test error on test set is usually used to assess the performance of a classifier. However,
the total numbers of available samples in our mass spectrometry datasets are small. In such
a case, the test error may be biased due to an “unfortunate” partition of training and test
sets. Thus, instead of reporting such an test error from one division of training and test sets,
we do as follows: we merge the training set and test set and then partition the total samples
again into a training set and a test set randomly by stratified sampling for 100 times; for
each division, we train a linear SVM classifier on the training set (hyperparameterC is to be
selected by 10-fold cross-validation on the training set) and then test it on the corresponding
test set; from this 100 trials we can compute the averages of performance measures.
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Table 1. Number of peaks, sizes of training and test sets,
of the two datasets.

Dataset ] peaks ] training samples ] test samples

Lung 229 29 12
Ovarian 15,154 177 76

Table 2. Performance of SVM without peak selection and the performance of
SVM with peak selection by T-Statistics or SVM-RFE, on the two datasets.

Dataset Measurement SVM T-Statistics SVM-RFE

Lung

No. of Peaks Full (229) 7 8
Test Error (%) 21.58±9.63 10.75±8.89 8.41±5.98
Sensitivity (%) 90.29±11.28 95.43±7.56 94.57±7.54
Specificity (%) 61.80±21.29 80.60±22.28 87.40±13.23

Ovarian

No. of Peaks Full (15,154) 6 11
Test Error (%) 0.50±1.04 1.61±1.39 0±0
Sensitivity (%) 99.85±0.52 99.31±1.86 100±0
Specificity (%) 98.85±2.72 96.74±2.70 100±0

To speed up the feature selection procedure of SVM-RFE, when the number of features
m is large in the feature subsetS selected at a time, we eliminater (r ≥ 1) features each
time in our numerical experiments We chooser = 1000 if m > 100000, r = 100 if
10000 < m ≤ 100000, r = 10 if 1000 < m ≤ 10000 andr = 1 if m ≤ 1000.

In our study, for each feature subset selected by either T-statistics method or SVM-RFE,
we compute the mean and standard deviation of test error, sensitivity and specificity, from
100 times of training and testing. As we are mostly interested in small peak subsets, we
evaluate the two methods only on small peak subsets with number of peaks ranging from
1 to 50. We plot the average test error versus the size of feature subsets selected by two
methods on the two datasets respectively in Figs. 1 and 2.

SVMs are capable of dealing with large number of input variables with no increase in
computation complexity. To see if feature selection improves the performance of SVMs,
we also train and test SVMs with full number of features on the same 100 partitions of
training and test sets. The means and standard deviations of the test performance of SVMs
with full features are reported in Table 2, together with those of the best feature subsets
selected by T-Statistics and SVM-RFE, with the number of selected peaks confined to less
than 20.

4. Discussion and Conclusion

From Figs. 1 and 2, it is very clear that SVM-RFE selects better peak subsets than T-
statistics feature selection method. High classification accuracy is achieved with only a
small number of peaks as input variables.

Looking at the performance of SVMs without peak selection and SVMs with peaks se-
lection in Table 2, we can see that, the classification performance of SVMs with peak selec-
tion are much better than that of SVMs with all peaks as input variables. This observation
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Figure 1. Average test error rates at different sizes of peak subsets, selected by T-statistics and SVM-RFE, on
Lung Cancer dataset.
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Figure 2. Average test error rates at different sizes of peak subsets, selected by T-statistics and SVM-RFE, on
Ovarian Cancer dataset.
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tells us that, selecting a subset of peaks not only improves the efficiency of classification
algorithms, but also improves the prediction accuracy, even for classification algorithm like
SVMs, which can handle large number of input variables without increase in computation
complexity. Selecting a small number of peaks also prevents getting spurious results with
mass spectrometry data, for which the number of training samples is usually small com-
pared with the number of peaks in the mass spectra. The high prediction accuracy also
further strengthens our belief of the promising application prospects of mass spectrometry
patterns in the future cancer classification.

While we understand that T-statistics selects the peaks whose intensities differs most
between the cancer and no-cancer groups, the way that SVM-RFE selects the peak subset
is not well understood. Checking the T-statistics scores of the peaks selected by the SVM-
RFE may helps us to get some insight into the way SVM-RFE works. On the Lung Cancer
dataset, we found the T-statistics ranks of the 8 peaks in the best subset selected by SVM-
RFE respectively are{1, 2, 3, 4, 7, 17, 29, 36} (peak with rank1 has the largest T-statistics
score). On the Ovarian Cancer dataset, the T-statistics ranks of the 11 peaks in the best
subset selected by SVM-RFE respectively are{1, 2, 3, 4, 5, 6, 7, 14, 45, 50, 73}. On the
both datasets, the best peak subsets selected by SVM-RFE always have in the peaks top
ranked by T-statistics, while they also include some peaks not top ranked by T-statistics.
However, these peaks selected by SVM-RFE together achieve much smaller test error than
the same number of most top ranked peaks selected by T-statistics, as we can clearly see in
Figs. 1 and 2. However, to get better understanding of the way SVM-RFE works and to get a
better insight into the disease pathway, ultimately we have to rely on a further investigation
to identify the proteins underlying these selected peaks and a further functional study of
the identified proteins.
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