
Targeted Data Prefetching

Weng-Fai Wong

Department of Computer Science, and Singapore-MIT Alliance
National University of Singapore

3 Science Drive 2, Singapore 117543
wongwf@comp.nus.edu.sg

Abstract. Given the increasing gap between processors and memory, prefetch-
ing data into cache becomes an important strategy for preventing the processor
from being starved of data. The success of any data prefetching scheme depends
on three factors:timeliness, accuracyandoverhead. In most hardware prefetching
mechanism, the focus has been on accuracy - ensuring that the predicted address
do turn out to be demanded in a later part of the code. In this paper, we intro-
duce a simple hardware prefetching mechanism that targetsdelinquent loads, i.e.
loads that account for a large proportion of the load misses in an application. Our
results show that our prefetch strategy can reduce up to 45% of stall cycles of
benchmarks running on a simulated out-of-order superscalar processor with an
overhead of 0.0005 prefetch per CPU cycle.

1 Introduction

The growing gap between processors and memory has led to performance not growing
with improvements in processor technology in a commensurate way. The introduction
of caching has alleviated somewhat the problem though not eliminating it entirely. In
many state-of-the-art processors, a miss that requires going to the memory can cost
hundreds of cycles. This problem can only be made worse by the introduction of chip
multiprocessors which only serve to increase the demand for the timely delivery of data.

Data prefetching is an important strategy for scaling this so-called memory wall.
There are two main classes of data prefetching strategies. In the pure hardware ap-
proach, additional hardware is added to the processor that monitors the execution of the
program, launching prefetch requests when the opportunity arises. The key advantage
of this approach is its transparency. Neither the source code nor any special knowledge
about the application is needed. In the hybrid software-hardware approach, the hard-
ware exposes its prefetching mechanism to the compiler or programmer. The compiler
is then suppose to take advantage of some knowledge about the application to maximize
the utility of these hardware mechanisms. An example of such mechanisms could be a
simple prefetch instruction which serves as a hint to the processor to promote a piece
of datum higher up the memory hierarchy. The disadvantage of the hybrid approach is
that the source code of the application is often needed for the compilation process. In
this paper, we are concerned with hardware prefetching.

For any prefetch mechanism to work, three criteria have to be met. The prefetch has
to betimely. Data have to be brought in just in time to met the demand of it. Bringing



in data too early risks having it being evicted from the cache when it is needed, and
of course, performing the prefetch after the original load has been issued renders the
prefetch useless. Any prefetch requires the ability to predict the address of the data that
will be needed ahead of its time. This prediction has to beaccuratein order that the
prefetch not be wasted. Finally, theoverheadassociated with performing an overhead
has to be small. This overhead may be measured in terms of the amount of hardware
needed to support a hardware prefetcher or the pressure exerted by the prefetches on
the processor’s resource.

Most prefetch schemes suggested in the literature thus far has been focused on the
issue of accuracy. In this paper, we propose a strategy for data prefetching that addresses
the question of overhead without sacrificing accuracy and timeliness. The key insight
exploited by this mechanism is that most of the cache misses experienced by an appli-
cation are due to a small number ofdelinquent loads[9, 27]. By focusing the prefetch
effort on these delinquent loads, one can reduce the number of prefetches issued without
sacrificing much in terms of accuracy or timeliness.

The rest of the paper is organized as follows. Section 2 will survey the related works
in the field. Section 3 will introduce our proposed mechanism. This is followed by our
experimental setup, the results and a discussion of the results. The paper ends with a
conclusion and some ideas for future works.

2 Related Work

There has been a lot of research into data prefetching [30]. Early work on software
prefetching focused on prefetching for data intensive loops [4, 19]. With the proper anal-
ysis, regularly nested loops can benefit tremendously from data prefetching. [26]. Be-
yond loops, prefetching for procedure parameters [21] and recursive data structures [23]
have also been proposed. Karlsson, Dahlgren, and Stenstrom [17] proposed the use
of prefetch arrays while VanderWiel and Lilja proposed adata prefetch controller
(DPC) [29]. More recently, there has been some interest in using a ‘helper’ hardware
thread to prefetch ahead of the main thread [18]. Rabbah et. al. [28] proposed the use
of spare resources in an EPIC processor to accomodate the prefetch thread instead of
using a hardware thread.

Pure hardware prefetching schemes includes Jouppi’s “stream buffers” [16], Fu and
Patel’s prefetching for superscalar and vector processors [11, 12], and Chen and Baer’s
lookahead mechanism [7] and known as theReference Prediction Table(RPT) [8].
Mehrota [25] proposed a hardware data prefetching scheme that attempts to recognize
and use recurrent relations that exist in address computation of link list traversals. Ex-
tending the idea of correlation prefetchers [6], Joseph and Grunwald [15] implemented
a simple Markov model to dynamically prefetch address references. More recently, Lai,
Fide, and Falsafi [20] proposed a hardware mechanism to predict the last use of cache
blocks.

On load address prediction, Eickemeyer and Vassiliadis first proposed the use of a
stride predictor to predict the address of a load [10]. However, it is not a prefetch as
the prediction is verified before any memory system activity is triggered. This idea was
extended by others by means of operand-based predictors [2] and last-address predic-



tors [22]. The use of a stride predictor in the launch of actual prefetches was proposed
by Gonzalez and Gonzalez [14]. A more elaborate scheme to enhance prediction ac-
curacy was proposed by Bekerman et. al. [3]. The latter also expressed concern on the
negative effects spurious prefetches have on the cache and made special provisions to
avoid these from polluting the cache.

The delinquent load identification hardware scheme is similar to the local hit-miss
predictor proposed by Yoaz et. al. [31]. However, they used it to predict the dynamic
latencies of loads. The predicted load latencies are used to help the instruction sched-
uler more accurately schedule load instructions. For their purpose, a higher degree of
accuracy is required as compared to ours which is used to spot potential delinquent
loads. Furthermore, we applied the filter only to misses as we only launch prefetches on
level one data cache misses. As far as we know, the use of the simple delinquent load
identification scheme for the purpose of prefetching is novel.

Cache

Lookup

Load/Store Queue

PCReq

Cache

Lookup

Delinquent Load Table

>0?

Prefetch Queue

Miss? true?

Memory Units

Address

Prediction

Delinquent?

Fig. 1.Proposed prefetching architecture.

3 Proposed Prefetching Mechanism

Data prefetching involves two important decisions, namely:

– Whenshould a prefetch be triggered? It is not desirable to launch prefetches too
early or too late. Neither is it desirable to launch more prefetches than what is



PC

Last address Stride prediction DFCM Level 1

DFCM Stride

Choice

+ +

Predicted Address

Current Load
Address

Fig. 2.Hybrid load address predictor used.

required because there are fixed overheads associated with the processing of each
prefetch.

– Whatshould be prefetch? It is necessary to predict the address(es) of the data items
required by the processor in the near future. As with many successful applications
of predictions, here, past history serves as a good indicator for future use. The
accuracy of the prediction is key to the success of such schemes. Some prefetch
schemes performs pre-computation instead of prediction [1]. These schemes are
generally much more accurate then mere prediction. However, the hardware invest-
ments for this can be substantial as portions of the pre-computation may turn out to
be redundant.

We propose a prefetch scheme that addresses these issues as follows. The first key
insight our scheme takes advantage of is that only a small number of load instructions,
known as delinquent loads, are responsible for a large number of the cache misses. It is
for these loads that we will launch prefetches. In order to identify delinquent loads, we
hash the program counter for a load instruction into a table of saturating counters. Let
PC stand for the program counter. Leth(PC) be the 3-bit saturating counter obtained by
hashing PC into the delinquent load table, a table of saturating counters. If the counter
is non-zero, then the load is identified as a delinquent load. The counter is updated
as follows: if the current load misses the cache, the counter is incremented (up to 7,
beyond which it cannot be incremented further). If the current load hits the cache, the
counter is decremented (down to zero, below which it cannot be decremented further).
The main idea is for the counter to track if, in the recent history of this particular load,
there were more misses than hits. If so, it is classified as delinquent. The length of the



counter affects how much of the past history is considered. The choice of 3-bit counters
is along the lines of the experiences gained in the branch prediction community.

The proposed architecture is shown in Fig. 1. In an out-of-order processor, aload-
store queueserves as the reorder buffer for loads and stores. In our proposed architec-
ture, we require the program counter to be noted alongside the load requests. When
a load reaches the head of the load-store queue for processing, in parallel with cache
lookup, a delinquent table lookup is performed. If it is known that the load misses the
(L1) cache, a prediction is performed. Not shown in Fig. 1 is how the delinquent load
table is also updated according to the description above. The predicted load address
forms a prefetch request that enters the prefetch queue. This queue competes with the
main load-store queue for service by the memory ports. Prefetch requests that hit the
cache, however, are discarded.

When a delinquent load misses, prefetching may then occur. In order to contain the
amount of resources needed to realize the prefetch mechanism, we chose a prediction
based scheme. In particular, we chose to use a hybridstrideanddifferential finite context
methodpredictor [13]. This predictor is shown in Fig. 2. First, a last value table records
the previous address which the current load accessed. After the current prediction is
completed, it is updated with the current load address. The stride predictor records
most recently seen stride for the current load. Its predicted address is formed by adding
the last seen stride to the current load address. The predictor is updated by recording
the difference between the current address and the last seen address of this load which
is recorded in the last address table. The differential finite context method is another
stride predictor that makes use of a two-level table. In doing so, it is able to account for
the context information under which a stride was last seen. We refer the reader to the
original paper on DFCM [13] for a detailed discussion of the rationale and working of
this state-of-the-art predictor. The last address table is also needed for the update of this
predictor.

The idea of hybridizing two predictors comes from the branch prediction commu-
nity [24]. Based on the past history of success, a table of saturating counters is checked
to see which of the two predictors were more successful for a particular load and to
use that predictor’s prediction in the current prefetch. To update the predictor choice
table, the last seen address is added to the strides predicted by both predictors. These
are the previous predictions made by the predictors. These are then compared with the
current load address. If the stride predictor is correct, the counter is decremented. If the
DFCM predictor is correct, the counter is incremented. The next choice of predictor
will depend on whether the counter is greater or less than zero. If it is exactly at zero,
an arbitrary choice is made. In our experiments, the prediction of the DFCM is taken.

4 Experiment Setup

We realized the proposed architecture through modifying the SimpleScalar simulator
for an out-of-order superscalar processor [32]. The machine parameters used in our ex-
periments are listed in Table 1. We used a delinquent load table of 2,048 3-bit counters.
All other tables, i.e. the last value table (which is 4 bytes per entry), the stride predictor
(2 bytes per entry), DFCM level 1 table (10 bits per entry), DFCM level 2 stride table



Parameter Value
Instruction fetch queue size 4 instructions
Branch predictor Combined predictor
Decode width 4 instructions
Issue width 4 instructions
Commit width 4 instructions
Load-store queue length 8 requests
Prefetch queue length 8 requests
Memory ports 2 or 4
Integer ALU 4
Integer multiplier 1
FP ALU 4
FP multiplier 1
Number of registers 32
L1 inst cache 16K, 32-byte, direct, LRU
L1 data cache 16K, 32-byte, 4-way, LRU
L1 hit latency 1 cycle
L2 data cache 256K, 64-byte, 4-way, LRU
L2 hit latency 10 cycle
L2 miss latency min. 100 cycle

Table 1.Simulated out-of-order machine used in the experiments.

(2 bytes per entry), and the choice predictor (3 bits per entry), are 1,024 entries each.
The total table size is about 10.3 Kbytes. Note that this is significantly less than the
16 Kbyte L1 data cache especially when tag storage is also considered.

We evaluated the performance of our proposed prefetching scheme using bench-
marks from the SPEC [33] and the Olden [5] benchmark suite. In detail, the bench-
marks used were a Lisp interpreter (130.li), a JPEG encoder (132.ijpeg), gzip com-
pression (164.gzip), quantum chromodynamics (168.wupwise), shallow water mod-
eling (171.swim), a multigrid solver (172.mgrid), a neural network (179.art), combi-
natorial optimization (181.mcf), seismic wave propagation simulation (183.equake),
computational chemistry (188.ammp), word processing (197.parser), an object ori-
ented database (255.vortex), BZIP2 compression (256.bzip2), electromagnetic wave
propagation in a 3D object (em3d), and the traveling salesman problem (tsp).

As a comparison, we implemented the standard RPT scheme that attempts prefetch-
ing on every load instruction. In addition, we also implemented Joseph and Grunwald’s
Markovian prefetcher [15]. The latter will launch four prefetches for each delinquent
load. These four addresses are basically the last four addresses previously accessed by
a particular load and missed the cache.

5 Performance Evaluation Results

Fig. 3 shows the result of our experiments for a machine with two memory ports. It
shows the ratio of simulated machine cycles of the RPT, Markovian (denoted by ‘Jos-
Grun’) and our proposed prefetch schemes against a baseline machine that do not per-



0

0.2

0.4

0.6

0.8

1

1.2

13
0.l

i

13
2.i

jpe
g

16
4.g

zip

16
8.w

up
wise

17
1.s

wim

17
2.m

gri
d

17
9.a

rt

18
1.m

cf

18
3.e

qu
ak

e

18
8.a

mmp

19
7.p

ars
er

25
5.v

ort
ex

25
6.b

zip
2

em
3d tsp

AVERAGE

Benchmark

R
at

io
 o

f t
ot

al
 s

im
ul

at
io

n 
cy

cl
es

 w
.r.

t. 
ba

se
lin

e

RPT
JosGrun
Proposed

Fig. 3. Performance of various prefetching schemes on a simulated out-of-order superscalar pro-
cessor with two memory ports.

0

0.2

0.4

0.6

0.8

1

1.2

13
0.l

i

13
2.i

jpe
g

16
4.g

zip

16
8.w

up
wise

17
1.s

wim

17
2.m

gri
d

17
9.a

rt

18
1.m

cf

18
3.e

qu
ak

e

18
8.a

mmp

19
7.p

ars
er

25
5.v

ort
ex

25
6.b

zip
2

em
3d tsp

AVERAGE

Benchmark

R
at

io
 o

f t
ot

al
 s

im
ul

at
io

n 
cy

cl
es

 w
.r.

t. 
ba

se
lin

e

RPT
JosGrun
Proposed

Fig. 4. Performance of various prefetching schemes on a simulated out-of-order superscalar pro-
cessor with four memory ports.



form any prefetching. In the best case (179.art), it took only 56% of the total machine
cycles of the baseline to complete the application with our prefetch scheme. In the worst
case, however, it took 13% more cycles than the baseline to complete with our prefetch-
ing scheme. This happens when the prediction turned out to perform badly. Overall, our
proposed scheme reduced the baseline cycle count by about 12.5%. This is marginally
better than RPT. On the other hand, except in a few instances, the Markovian predictor
performed poorly.

For a machine with four memory ports, the results are shown in Fig. 4. They are
similar to that for that for two memory ports. The noticable difference is that here RPT
performs better for our scheme.

Benchmark RPT Fract. of JosGrun Proposed
Total Cyc. Scheme

130.li 177 41.88% 17 (9.60%) 5 (2.82%)
132.ijpeg 12,405 44.88% 346 (2.79%) 103 (0.83%)
164.gzip 528 29.52% 98 (18.56%) 45 (8.52%)
168.wupwise 5,255 32.96% 281 (5.35%) 47 (0.89%)
171.swim 12,751 18.91%1,939 (15.21%) 526 (4.13%)
172.mgrid 420 51.13% 10 (2.38%) 2 (0.48%)
179.art 4,998 10.88%2,322 (46.46%) 495 (9.90%)
181.mcf 427 17.37% 318 (74.47%) 88 (20.61%)
183.equake 34,739 34.60%6,370 (18.34%)1,638 (4.72%)
188.ammp 905 9.81% 865 (95.58%)185 (20.44%)
197.parser 1,579 31.29% 254 (16.09%) 108 (6.84%)
255.vortex 6,936 21.34% 562 (8.10%) 365 (5.26%)
256.bzip2 1,548 40.15% 57 (3.68%) 26 (1.68%)
em3d 96 11.04% 59 (61.46%) 16 (16.67%)
tsp 8,723 3.87% 404 (4.63%) 110 (1.26%)

Average (25.51%) (7.00%)
Table 2. Number of prefetches launched (in millions). The ratio of the number of prefetches
launched by a particular scheme over that for RPT is shown inside parenthesis.

RPT performs better because it covers all loads, which includes all delinquent loads,
whereas our delinquent load predictor can still at times miss out on certain delinquent
load. This improved performance for RPT, however, comes at a price. Table 2 shows the
number of prefetches launched by RPT, the Markovian predictor and our scheme. The
second column is the ratio of the number of prefetches launched and the total machine
cycles for the application running on the baseline machine with four memory ports. This
highlights the key point of the paper: with our delinquent load identification scheme,
we can achieve a performance gain competitively comparable with RPT but withonly
7% of the prefetches launched by RPT. This is significant in processor designs where
there are more constraints on resources or where power-energy is an issue.

Completing the execution of an application early is often advantageous from a total
energy consumption perspective. However, each prefetch consumes energy, thus our



proposed prefetching scheme will save a significant amount of energy most of the time.
Furthermore, in many high performance processors where heating is a serious concern,
the lower amount of additional processor activity due to prefetching is also conducive
to maintaining the temperature profile of the processor.

Benchmark Total num. Baseline D1Delinquency
miss rate of loads

130.li 211 0.93% 1.30%
132.ijpeg 14,594 0.55% 0.39%
164.gzip 595 2.70% 3.63%
168.wupwise 6,600 0.40% 0.41%
171.swim 13,340 4.26% 1.98%
172.mgrid 426 0.70% 0.26%
179.art 6,134 9.18% 4.03%
181.mcf 594 8.10% 8.01%
183.equake 36,772 3.81% 2.89%
188.ammp 1,015 12.33% 9.29%
197.parser 2,151 1.86% 2.42%
255.vortex 8,181 0.84% 2.82%
256.bzip2 1,999 0.79% 0.65%
em3d 132 7.01% 0.63%
tsp 10,785 0.44% 0.48%

Table 3.Delinquency in our benchmarks.

Table 3 shows the number of load instructions, level 1 data cache miss rate and
the percentage loads identified as delinquent using our scheme. The delinquency rate
is generally significantly lower than the miss rate. In some instances, the miss rate is
lower. However, the miss rate is computed over all memory references including writes
so the two values cannot be directly compared but merely serves as an indication of the
selectivity of our scheme.

6 Conclusion

In this paper, we introduced an architecture for hardware prefetching that targets delin-
quent loads. When coupled with a hybrid load address predictor, our experiments showed
that the prefetching scheme can reduce the total machine cycles by as much as 45% by
introducing a low overhead. For the latter, the ratio of prefetches launched by our pro-
posed scheme over the total machine cycles for the baseline out-of-order machine with
four memory port ranges from 0.05% to 3.6%. This contrasts with the 3.8% to 51%
overhead for RPT which achieves similar performance gains. We therefore argue that
our proposed scheme fulfils the three criteria of a good prefetch scheme discussed in
the Introduction, namely timeliness, accuracy and low overhead.



The key contribution of this work is in pointing out that even with a simple scheme,
prefetching can be targeted very specifically to the load instructions that matter, and this
yields significant practical benefits.

On a final note, the proposed architecture is general enough to work with any load
address prediction scheme. It would be interesting to see if other prediction schemes,
perhaps even ones that are uniquely designed for different applications so as to optimize
area-performance, say, can benefit from it.

References

1. Annavaram, M., Patel, J.M., Davidson, E.S.: Data prefetching by dependence graph pre-
computation. In: Proceedings of the 28th Annual International Symposium on Computer
Architecture. (2001) 52–61

2. Austin, T.M., Sohi, G.S.: Zero-cycle loads: Microarchitecture support for reducing load
latency. In: Proceedings of the 28th International Symposium on Microarchitecture. (1995)
82 – 92

3. Bekerman, M., Jourdan, S., Ronen, R., Kirshenboim, G., Rappoport, L., Yoaz, A., Weiser,
U.: Correlated load-address predictors. In: Proceedings of the 26th Annual International
Symposium on Computer Architecture. (1999) 54–63

4. Callahan, D., Kennedy, K., Porterfield, A.: Software prefetching. In: Proceedings of the
Fourth International Conference on Architectural Support for Programming Languages and
Operating Systems. (1991) 40–52

5. Carlisle, M.C.: Olden: Parallelizing Programs with Dynamic Data Structures on Distributed-
Memory Machines. PhD, Princeton University Department of Computer Science (1996)

6. Charney, M., Reeves, A.: Generalized correlation based hardware prefetching. Technical
Report EE-CEG-95-1, Cornell University (1995)

7. Chen, T.F., Baer, J.L.: A performance study of software and hardware data prefetching
schemes. In: Proceedings of International Symposium on Computer Architecture. (1994)
223 – 232

8. Chen, T.F., Baer, J.L.: Effective hardware-based data prefetching for high-performance pro-
cessor computers. IEEE Transactions on Computers44-5(1995) 609 – 623

9. Collins, J.D., Wang, H., Tullsen, D.M., Hughes, C., Lee, Y.F., Lavery, D., Shen, J.P.: Spec-
ulative precomputation: Long-range prefetching of delinquent loads. In: Proceedings of the
28th International Symposium on Computer Architecture. (2001) 14–25

10. Eickemeyer, R.J., Vassiliadis, S.: A load-instruction unit for pipelined processors. IBM
Journal of Research and Development37 (1993) 547–564

11. Fu, J.W.C., Patel, J.H.: Data prefetching strategies for vector cache memories. In: Proceed-
ings of the International Parallel Processing Symposium. (1991)

12. Fu, J.W.C., Patel, J.H.: Stride directed prefetching in scalar processors. In: Proceedings of
the 25th International Symposium on Microarchitecture. (1992) 102 – 110

13. Goeman, B., Vandierendonck, H., Bosschere, K.D.: Differential FCM: Increasing value pre-
diction accuracy by improving table usage efficiency. In: Proceedings of the 7th International
Sysmposium on High-Performance Computer Architecture. (2001) 207 – 216

14. Gonzalez, J., Gonzalez, A.: Speculative execution via address prediction and data prefetch-
ing. In: Proceedings of the 11th International Conference on Supercomputing. (1997) 196–
203

15. Joseph, D., Grunwald, D.: Prefetching using markov predictors. In: Proceedings of the 24th
International Symposium on Computer Architecture. (1997) 252 – 263



16. Jouppi, N.P.: Improving direct-mapped cache performance by the addition of a smally, fully
associative cache and prefetch buffers. In: Proceedings of the 17th International Symposium
on Computer Architecture. (1990) 364 – 373

17. Karlsson, M., Dahlgren, F., Stenstrom, P.: A prefetching technique for irregular accesses
to linked data structures. In: Proceedings of the 6th International Sysmposium on High-
Performance Computer Architecture. (2000) 206 – 217

18. Kim, D., Liao, S.S., Wang, P.H., del Cuvillo, J., Tian, X., Zou, X., Wang, H., Yeung, D.,
Girkar, M., Shen, J.P.: Physical experimentation with prefetching helper threads on Intel’s
hyper-threaded processors. In: Proceedings of the International Symposium on Code Gener-
ation and Optimization. (2004) 27–38

19. Klaiber, A.C., Levy, H.M.: An architecture for software-controlled data prefetching. In:
Proceedings of the 18th International Symposium on Computer Architecture. (1991) 43 – 53

20. Lai, A.C., Fide, C., Falsafi, B.: Dead-block prediction and dead-block correlation prefetch-
ers. In: Proceedings of the International Parallel Processing Symposium. (2001) 144 – 154

21. Lipasti, M., Schmidt, W., Kunkel, S., Roediger, R.: Spaid: Software prefetching in pointer
and call-intensive environment. In: Proceedings of the 28th International Symposium on
Microarchitecture. (1995) 231 – 236

22. Lipasti, M.H., Wilkerson, C.B., Shen, J.P.: Value locality and load value prediction. In:
Proceedings of the 7th International Conference on Architectural Support for Programming
Languages and Operating Systems. (1996) 138–147

23. Luk, C.K., Mowry, T.: Compiler-based prefetching for recursive data structures. In: Pro-
ceedings of the 7th International Conference on Architectural Support for Programming
Languages and Operating Systems. (1996) 222 – 233

24. McFarling, S.: Combining branch predictors. Technical Report TN-36, DEC WRL (1993)
25. Mehrota, S., Luddy, H.: Examination of a memory classification scheme for pointer intensive

and numeric programs. Technical Report CRSD Tech. Report 1351, CRSD, University of
Illinois (1995)

26. Mowry, T.C., Lam, M.S., Gupta, A.: Design and evaluation of a compiler algorithm for
prefetching. In: Proceedings of the 5th International Conference on Architectural Support
for Programming Languages and Operating Systems. (1992) 62 – 73

27. Panait, V.M., Sasturkar, A., Wong, W.F.: Static identification of delinquent loads. In: Pro-
ceedings of the International Symposium on Code Generation and Optimization. (2004) 303–
314

28. Rabbah, R.M., Sandanagobalane, H., Ekpanyapong, M., Wong, W.F.: Compiler orchestrated
prefetching via speculation and predication. In: Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating Systems. (2004) 189–
198

29. Vanderwiel, S., Lilja, D.: A compiler-assisted data prefetch controller. In: Proceedings of
the International Conference on Computer Design. (1999) 372 – 377

30. Vanderwiel, S., Lilja, D.J.: Data prefetch mechanisms. ACM Computing Survey32 (2000)
174 – 199

31. Yoaz, A., Erez, M., Ronen, R., Jourdan, S.: Speculation techniques for improving load related
instruction scheduling. In: Proceedings of the 26th Annual International Symposium on
Computer Architecture. (1999) 42–53

32. The SimpleScalar toolkit.: http://www.simplescalar.com. (2005)
33. The SPEC benchmarks.: http://www.spec.org. (2000)


