
1

JAVM: Internet-based Parallel Computing Using
Java

L. F. Lau, A. L. Ananda, G. Tan, W. F. Wong
School of Computing

National University of Singapore
3 Science Drive 2, Singapore 117543

laulf@comp.nus.edu.sg

The JAVM (Java Astra Virtual Machine) project is about harnessing the immense
computational resource available in the Internet for parallel processing. In this paper,
the suitability of Java for Internet-based parallel computing is explored. Next,
existing implementations of systems that make use of Java for network parallel
computing are presented and categorized. A critique of these implementations
follows. Basing on the critique, the requirements and goals of an effective parallel
computing system in the Internet environment are singled out. These serve as the
blueprint for the development of the JAVM system. Its infrastructure and features,
namely ease of use, heterogeneity, portability, security, fault tolerance, load
balancing, scalability and accountability, are discussed. Lastly, experimental results
based on the running of several parallel applications in the JAVM environment are
presented. Basing on the results, the kind of parallel applications that would be well
suited for running in JAVM are identified.

1. Introduction

The exponential growth of Internet in recent years has linked tens of millions of
computers together. The combined computational power of even a small fraction of
this pool of machines, which are idle most of the time, is many times more than what
a central parallel supercomputer can offer. In fact, there have been many successful
attempts to solve complicated mathematics and scientific problems by tapping this
gigantic computational resource. A more notable recent attempt would of course be
the cracking of the 56-bit DES using “tens of thousands” of Internet-linked computers
in 39 days [5]. Another commendable effort is the SETI project [31], which has made
use of 1.3 million computers worldwide for intensive data processing in its search for
extraterrestrial intelligence. Since it inception in May 1999, it has already clocked up
100,000 years of computer time.

However, harnessing the resources of Internet-based computers for parallel
computing, is by no means an easy task. It introduces new difficulties and problems
that have never been addressed by parallel computing in LAN (local area network)
environment.

1.1 Project Objectives and Goals

Java Astra Virtual Machine (JAVM), an extension of the AVM project [19], is
developed to provide Internet-based parallel computing with the objective of
addressing the difficulties that such a computing environment might impose. In
particular, the project aims to:

2

• Create an infrastructure to support parallel computations in an Internet-based
environment. The design and implementation of this infrastructure are based
on the following goals:

- Ease of Use
- Heterogeneity and Portability
- Security
- Fault Tolerance
- Network Load Balancing
- Scalability
- Accountability

• Provide programming interface that could enable programmers to develop

parallel applications with ease.

2. Java

Java, a programming language designed from ground up with networking in mind, is
set to become one of the most important and widely used languages in the Internet
era. Its popularity has surged with the phenomenal growth of Internet. With its cross-
platform, secure, object-oriented, and network-centric features, it is ideally suited to
address the issues of parallel computing in Internet-based environment. These features
offered by Java are lacking in traditional programming languages like C, C++ and
Fortran [24].

2.1 Ease of use as network programming language

As described in [9], it is "far easier to write network programs in Java than in almost
other language". As a network programming language, besides supporting TCP/IP
socket programming, Java also incorporates useful features such as object
serialization and RMI (Remote Method Invocation). Object serialization allows
objects to be written to, and read from streams (such as file streams or socket data
streams) as easily as numbers and characters. RMI uses object serialization for storing
and communicating with objects. Together, they allow Java programs to call certain
methods on a remote server, with minimal effort.

With these features, in the development of network applications, the complexity of the
underlying network communications is hidden from the developer. Most of network-
related work is done automatically and the developer can just concentrate his effort on
developing the functionality of the applications.

2.2 Platform Independence and Code Mobility

Java is a platform independent language. As such, in the development of applications,
it is able to allow programmers to "write once, run anywhere". Java programs can be
developed in any platform and complied into a single set of executable binaries (Java
bytecodes). These binaries, which can exist in the form of applets, are download-able
from web servers to any Java-enabled browser in client machines, of any platform,

3

and executed there. This ability to transfer executable binaries to wherever they need
to be executed is known as code mobility.

In traditional message passing systems, like PVM (Parallel Virtual Machine) and MPI
(Message Passing Interface), the program to be executed has to be resident in each
machine and the user will need to have an account in each machine participating in
the computation. For instance, to perform a parallel computation using PVM, the
following steps must be performed:
1) Install PVM daemon on all participating machines.
2) Compile the application binaries for each target architecture.
3) Distribute binaries to all machines, either by explicit copying or by using shared

file system.
4) Provide remote shell access to user so as to allow remote execution of the PVM

daemon and application binaries.

For an Internet-based computing environment formed by machines of heterogeneous
platforms, the above procedure is tedious and unacceptable. With Java’s platform
independence and code mobility, none of the steps in the procedure needs to be
performed.

2.3 Security

Java is a language designed with security and safety in mind. At the language level, it
has several features to protect the integrity and security of the system. As listed in
[25], those features are:

• Access controls on variables and methods in objects.
• Declaration of final classes or methods
• Type safety checking
• Elimination of pointer arithmetic

 The security model adopted by Java is referred as the sandbox model [17, 25]. This
model combines bytecode verifier, classloader and security manager to create a
secure environment whereby untrusted Java codes can be executed with the assurance
that the security of the environment is not compromised. An illustration of this
security model is shown in Figure 2.1.

The bytecode verifier ensures that only legitimate Java code is executed. Together
with the Java virtual machine, they guarantee language safety at run-time. The
classloader defines a local name space such that untrusted java codes cannot interfere
with the running of other Java programs. The security manager enforces security
policies for executable content. Based on certain predefined policies, it controls
access to crucial system resources and the actions that a particular Java class can
perform.

4

Figure 2.1. Java Security Model

Due to Java’s security features, Java applets loaded from network cannot perform (as
listed in [9]) the following:

• Accessing arbitrary addresses in memory.
• Accessing local file system in any way.
• Launching of other programs on the client machine.
• Loading of libraries or defining native method calls.
• Revealing of information of the user or the user's machine, such as user name

or home directory.
• Defining of any system properties.
• Accepting of connections from a client machine; an applet cannot create a

server on the client.

In the context of Internet-based computing, security is important. Allowing a piece of
untrusted codes to be executed on a machine without protection is almost equivalent
to giving a stranger free access to the machine. Volunteers participating in parallel
computations must be given the assurance that their machines are protected against
malicious attacks (e.g. virus attack) and theft of confidential information. Java’s
security features address this concern.

2.4 Concerns

However, Java’s security model is double-edged. Security restrictions of the applets
may have blocked out malicious attacks on client machines but it has also set
limitations on the kind of network communications that can be performed. As an
applet can only open network connections to the server from which the applet was

Run-Time

Class
Loader

Bytecode Verifier

Access to System
Resources

Bytecodes (move through network
or file system)

Security
Policy

5

downloaded, only master-slave style of parallelism can be supported. In fact, as
pointed out in [9], if more access to network is required, the program should be
developed as a standalone Java application, instead of an applet.

Java's performance is also an important concern. Being a bytecode-interpreted
language, Java is a few times slower than other fully compiled languages, like C.
However, with code tuning and optimizing, and adoption of techniques like JIT (Just-
In-Time) code generation, performance of Java is bound to improve [10]. The recent
introduction of Java HotSpot Performance Engine by Sun Microsystems is another
booster to Java’s performance. It was claimed that HotSpot could improve certain
application performance by 100 percent [16].

3. Parallel Computing Systems Using Java

With the powerful features of Java, it is little wonder that a significant number of
systems have been developed to support network parallel programming using Java.
Basically, these systems can be divided into two categories:
• Based on Java applets that execute within the context of a web browser.
• Based on standalone Java applications.

3.1 Java Applets Implementations

In these systems, applications are broken down into smaller tasks and downloaded, in
the form of applets, by client machines volunteering their computational resources.
This is simply done by directing the web-browsers at client machines to the URLs of
the web servers where the applications are run. After execution at the client machine,
the computed results are returned to the server machines where the applets were
downloaded. Examples of such systems are Javelin [2], Bayanihan [3,15], Charlotte
[1] and DAMPP (Distributed Applet-based Massively Parallel Processing) [14].

Critique

The use of applets has allowed any machine, connected to the Internet and equipped
with a Java-enabled web browser, to join any ongoing computation with ease. Due to
Java’s platform independence, the platform of the participating machine is not an
issue at all. Effort required for the setting up of such a parallel computing system, is
minimal.

However, due to security restrictions of applets, such systems are only suitable for
supporting applications that can be decomposed into non-communicating, coarse-
grained and totally independent functional tasks. In short, only master-slave style of
parallelism can be achieved.

In most of the above systems, the web server is the only contact point for volunteers
to download the applets. High congestion, in terms of system and network load, may
be experienced at the server and it can easily become a bottleneck for the entire
computation. Single point of failure and inscalability of such systems are problems
not to be dismissed.

6

3.2 Standalone Java Applications

Systems, supporting network parallel computing as standalone Java applications, can
be sub-categorized into two groups. One that is based on Java Native Methods
mechanism and the other that is not.

Native methods refer to methods, called by Java programs, but are written in
languages, other than Java. An example of system that uses Java Native Methods
mechanism is jPVM [12] (previously known as JavaPVM). By providing native
method wrappers around the existing standard PVM routines, jPVM allows Java
applications and existing C, C++ and Fortran applications to communicate with one
another using the PVM API. Using jPVM, programmers can link existing PVM
applications in Java graphical user interface front ends. Another system that uses Java
Native Methods mechanism is IceT [4]. However, unlike jPVM, it allows resources
on machines to be made available to users who do not have log-on privileges.

Other systems are implemented entirely in Java and make use of the socket interface
in the standard API for communication among parallel units. One example is JPVM
[11]. It is not interoperable with PVM but provides Java implementation of routines
found in the PVM library. Another example is MPIJ [18], a pure Java implementation
of Message Passing Interface standard.

Critique

Systems, implemented as standalone Java applications, do not have the same
restrictions in network communications as in the case of systems using Java applets.
Peer-to-peer communications among participating machines are possible. Those that
make use of native methods mechanism also have a clear advantage of software reuse
and performance.

However, the use of native methods assumes that the underlying platform already has
support for the native methods. Consequently, systems based on native methods
mechanisms will face portability problem. For instance, jPVM can only be used on
platforms where standard PVM is available.

Implementations of the above systems, with the exception of IceT, only allow users to
utilize resources of those machines where they have access privileges. Usually,
certain assumptions of the underlying file systems are also made. Consequently, the
setting up of such systems for large-scale parallel computations, based on computing
resources from volunteers in the Internet, would be an uphill task.

3.3 Weaknesses

Based on the above discussion, the following is a summary of the main weaknesses of
existing parallel computing systems using Java:
• Scalability problem.
• Portability problem.
• Single point of failure problem.
• Lack of security mechanisms.

7

• Lack of fault tolerance mechanisms.

The designs of most existing parallel systems are catered for computing in a small
network setup, such as LAN (Local Area Network). The weaknesses identified will
handicap their deployment as a parallel computing tool for large scale computations in
Internet-based environment.

4. Project JAVM: Design and Goals

JAVM (Java Astra Virtual Machine) aims to create an Internet-based parallel
computing environment using the Java programming language. It is a 100 percent
pure Java implementation [26] and not based on native methods mechanism. Based on
our classifications of existing implementations of parallel computing systems using
Java in Section 3, JAVM fits into the second category of standalone Java application.

As discussed, existing implementations, be it applet-based or standalone application-
based, are still lacking in certain features that make their deployments for large-scale
Internet-based parallel computing questionable. Certain systems, like jPVM and
MPIJ, are not designed for Internet-based computing in the first place. JAVM is for
Internet-based parallel computing and aims to address these deficiencies. To achieve
this, the following factors have to be addressed:
• Ease of Use
• Heterogeneity and Portability
• Security
• Fault Tolerance
• Network Load Balancing
• Scalability
• Accountability

4.1 Ease of Use

This involves two groups of users – the programmers who develop the parallel
applications and the volunteers who contribute their machines for the computations.

From a programmer’s perspective, the programming interface must be flexible and
simple. Developing parallel applications should be done with as much ease as
sequential applications. In JAVM, we aim to achieve this by providing a set of
features-rich networking APIs that will shield the programmer from the complexity of
the underlying network communications. The collection of heterogeneous machines in
the network would appear to him as a single high-performance parallel machine. This
will be discussed further in the next section.

From a volunteer’s perspective, contributing his machines to participate in
computations should be simple and hassle-free. No technical knowledge of the
program to be run should be required on his part. As mentioned earlier, in some Java-
based computing systems, to volunteer simply means visiting a web server site using a
Java-capable browser. However, due to communication restrictions of applets, such
an approach is not adopted in JAVM. Instead, users are required to run a program at
their machines to join the pool of volunteers. Such an approach is no more difficult

8

than visiting a website as no other effort is required on the part of the users. Figure 4.1
shows the graphical interface used by volunteers for contributing the resources of
their machines in JAVM.

With Java’s code mobility, JAVM also supports dynamic loading of applications from
the network to be executed at the volunteers’ machines. The loading and execution of
applications are transparent to the volunteers. It is very much like the dynamic
loading and execution of applets, but without their limitations.

4.2 Heterogeneity and Portability

The assumption that machines participating in a computation in a COW (Cluster of
Workstations) setup are of homogeneous platform cannot be applied to the Internet
context. The Internet is a collection of machines of heterogeneous platforms and
architectures. Thus, it will be an uphill task for the programmer to write codes for
different systems and distribute the compiled binaries to the systems.

Java is architecture neutral. By virtue of this nature, JAVM, being a 100% pure Java
implementation, is portable and will operate faultlessly on any platform as long as
Java JDK1.2 is supported by the platform. As of now, JAVM has been tested to work
successfully on the following platforms:
• Win32 Version. For Windows 95, Windows 98 and Windows NT 4.0 on Intel

hardware.
• Solaris/SPARC Version. Only Solaris versions 2.5.1, 2.6 and 7 (also known as

2.7) are supported.
• Solaris/Intel Version. Only Solaris versions 2.5.1, 2.6 and 7 (also known as

2.7) are supported.

4.3 Security

This involves two aspects. Firstly, from a volunteer’s perspective, by contributing his
machine in a computation, he must have the assurance that it will be protected against
malicious attacks (e.g. virus attack). In a COW setup, this is easily by maintaining
users access rights and accounts, so that the network is available only to trusted users.
Using such an approach, security of volunteer’s machine is enforced to a certain
extent, but the setting up of such a computing environment would be tedious and
introduces problems, such as scalability. In JAVM, no assumptions of access
privileges of machines participating in computations and their underlying file system
are made. Instead, as already mentioned in Section 2, protection of volunteers’
machines can be enforced with Java’s tight security model.

The second aspect involves computational security. Besides protecting volunteers, the
environment must also ensure that the computation itself is secure from malicious
attacks from volunteers. Preventing volunteers from spying on computations, which
may be confidential, is also another concern. In JAVM, enforcing secure
computations is a prime concern. To achieve this, we implement cryptographic and
authentication mechanisms for network communications among machines in the
system. This topic will be covered in details in next section.

9

4.4 Fault Tolerance

An Internet-based computing environment is governed by the following
characteristics:

1) Uncertain availability of machines. In the Internet, machines join and leave a

computation at the whim of volunteers. There is no direct control as to when a
volunteer should join a computation and how long he should remain committed to
it.

2) Unpredictable network delay. The load of the Internet traffic and faulty network links

are the major contributing factors.

3) Unreliability of volunteers. Based on what we have discussed on security, the

reliability of the computed results from volunteers’ machines is questionable.

The JAVM system is designed to recover from unintentional faults caused by the first
two characteristics. It polls machines in the system at regular interval to check
whether they are still “alive”. In the event that a volunteer leaves the system abruptly,
JAVM is able to off-load the failed computation to another machine such that the
overall computed results would not be affected. This implementation will be
elaborated in the next section.

Intentional faults caused by the third characteristic are harder to tackle. Known
techniques, such as replication and spot-checking [15], to detect and recover from
these faults are inefficient and unreliable. In JAVM, at present, no solution is offered
to counter this problem yet. Instead, through tight security enforcement, occurrences
of such faults caused by rogue volunteers are minimized, if not avoided.

4.5 Network Load Balancing

Load balancing usually refers to the distribution of workload evenly among
participating machines. However, in the Internet context, this is insufficient and the
traffic load of network links should also be taken into account. A system with support
for network load balancing should be able to detect congested network links and
avoid assigning computations to machines reachable by those links, whenever
possible. To achieve this, in JAVM, all the volunteers in the system are polled at
regular intervals to measure the network transfer delays. We called this technique
bandwidth probing. This technique will be discussed again in details in the next
section.

4.6 Scalability

To tap the computational resources of tens of thousands of machine in the Internet for
parallel computing effectively, the scalability of the system is an important issue. The
communication architecture (or topology) supported by the system, is a deciding
factor in its scalability. The merits and demerits of the different forms of

10

communication architecture (e.g. centralized and decentralized) are discussed in [6].
In JAVM, for scalability reason, the architecture adopted is a hybrid between the
centralized and decentralized one. The main benefits of this architecture are its
abilities to reduce message traffic exchanges (as compared to a decentralized design)
and improve fault-tolerance (as compared to a centralized design). An illustration of
this communication architecture is given in Figure 4.2 and a detailed discussion of
this topic, in Section 4.2.

4.7 Accountability

In JAVM, an accounting system is put in place. Volunteers contributing their
resources will be duly “rewarded” and clients consuming the resources, “billed”
accordingly. The architecture of the JAVM system permits the implementation of this
feature to be done quite easily. It involves the maintaining of databases at centralized
locations to capture the contribution and usage of computing resources by entities in
the JAVM system.

4.8 Network Communication Architecture

The design of the network communication architecture of a computing system will
directly, as well as indirectly, affect the implementation of the design goals listed. As
shown in Figure 4.2, JAVM adopts hierarchical network communication architecture
consisting of four entities: director, coordinator, volunteer and client. To prevent the
diagram from getting too complicated, the direct communication links between
volunteer and director, and that of client and director, are not shown.

Coordinator

Client

Communication link bet. Director &
Coordinator
Communication link bet. Volunteer &
Coordinator

Director

Volunteer

Legend

Communication link bet. Client &
Coordinator, Client & Volunteer

Figure 4.2. Network Communication Architecture of JAVM

11

The main function of the director is to provide lookup service for coordinators
information in the JAVM system. As the name implies, coordinators serve as the
middlemen between volunteers and clients during task distribution. Volunteers are
machines that offer their resources for parallel computations. Clients are machines
that tap these resources.

4.9 Scenario Walkthrough

A typical scenario, of how the entities might interact with each other, is shown in
Figure 4.3.

Figure 4.3. Interaction among JAVM entities

The sequence of the interactions is as follows:

(1) When a coordinator first started up, it will register with a specified director in
the JAVM system. In its registration request to the director, it will supply a
password for verification purpose.

(2) On receipt of the registration request, the director will check the information

supplied by the coordinator against its database of legitimate coordinators. If
the coordinator passes the check, it will be added to the director’s list of active
coordinators.

DirectorCoordinatorVolunteerClient

1

2

3

4

5

6

7

8

9

10

11

12

13

14

12

(3) When a volunteer first started up, it will contact the director for information of

the active coordinators in the JAVM system.

(4) The director returns the list of active coordinators that have registered with it.

(5) From the list, the volunteer selects one coordinator, by random, for

registration. In its request to the coordinator, the hardware information and
lease time for volunteering is supplied.

(6) On successful registration, the coordinator will add the information supplied

by the volunteer to its database of registered volunteers. A random number
(called the volunteer-id) will be generated, and the volunteer, informed. This
id will be used in subsequent communications between the volunteer and the
coordinator for identity checking purpose.

(7) When a client first started up, it will contact the director for information of the

active coordinators in the JAVM system.

(8) The director returns the list of active coordinators that have registered with it.

(9) The client will contact the first coordinator, in the returned list from director,
for volunteers. In its request, it will supply a password for verification purpose
and also the number of volunteers needed. If insufficient volunteers are
returned, it will contact other coordinators in the network until all the
volunteers required are found.

(10) On receipt of the request for volunteers, the coordinator will check the

information supplied by the client against its database of legitimate clients. If
the client passes the check, the coordinator will select a list of potential
volunteers (based on the number of volunteers requested) for allocation to the
client. For each of these volunteers, a random number (called the client-id) is
generated. The coordinator will then inform every volunteer of its allocation
and the client-id to be used during interactions with the client.

(11) The volunteer will acknowledge the receipt of the allocation notice by sending

a confirmation reply to the coordinator.

(12) The coordinator will send the list of allocated volunteers and their
corresponding client-ids to the client.

(13) With information received from the coordinator, the client will send task

placement requests to the volunteers. Information, included in the requests, is
the client-ids, arguments and bytecodes of the application to be run.

(14) The volunteer will check whether the client-id supplied by the client matches

that given by the coordinator earlier. If they match, the volunteer will “class-
load” the bytecodes supplied for task execution. Result of the execution is then
sent back to the client.

13

The roles, relationships and interactions of the entities will be further elaborated in
subsequent sections.

4. 10 Constraints and Limitations

In general, the computing models for parallel applications can be classified into two
categories: crowd computing and tree computing. The crowd computing model
involves a collection of closely related processes, typically executing the same code,
perform computations on different portions of the workload and usually involving the
periodic exchange of intermediate results. Master-slave parallelism is an example of
such a computing model. The tree-computing model, as implied by its name, involves
the spawning of processes in a tree-like manner, thereby establishing a parent-child
relationship. Such a model, though less commonly used, is a natural fit for
applications that use “branch-and-bound” algorithms and recursive “divide-and-
conquer” algorithms.

For now, the design of the JAVM system can only achieve master-slave style of
parallelism. This implies that volunteers participating in the execution a parallel
application would not be able to communicate with each other during computation.
Consequently, JAVM can only applications that can be broken down into non-
communicating and independent functional tasks. However, as JAVM is a non-applet
based implementation, it can be enhanced further to support peer-to-peer
communications among volunteers and parallel applications based on tree computing
model.

Communication between two entities in JAVM system involves encryption of data at
the sending party and decryption by the receiving party. In addition to this, overhead
caused by network transfer of data between the parties will also have a negative
impact on the overall performance of the application. To offset the impact caused by
the overheads, the tasks sent to volunteers during task placement should be of large-
grained size. This point is substantiated by experimental results in Section 7.

As mentioned earlier, intentional faults caused by rogue volunteers cannot be tackled
by the JAVM system, at this moment. Enhancement to the JAVM system in this area
should be made.

5. Project JAVM: Design

This section describes the implementation of the JAVM system. Details of algorithms
used in fulfilling the design goals identified in section 4 are given.

5.1 Scheduling Algorithm

As mentioned, one of the goals of JAVM is to support network load balancing. To achieve
this, JAVM implements a scheduler such that volunteers with the highest capability are
selected for task execution. The description of the scheduling algorithm will be based on
the transfer policy, information policy and placement policy adopted.

14

5.1.1 Transfer Policy

This policy decides when and how an attempt should be made to transfer an arriving
task to another host.

The client will have n number of tasks for distribution to volunteers in the network for
processing. It will contact a coordinator in the JAVM system for n number of
volunteers for the processing. The coordinator will search its database of registered
volunteers and select n (if possible) most capable volunteers for allocation to the
client. However, under circumstances when the coordinator is unable to meet (either
fully or partially) the client’s demand, the client will contact other coordinators in the
network for the remaining number of volunteers required. The process repeats itself
until all n volunteers are found.

5.1.2 Information Policy

This policy is concerned with deciding what kind of information is to be collected,
when, where and how it should be collected for scheduling purpose.

During registration with coordinator, a volunteer will supply its hardware information
(CPU speed, memory capacity and disk capacity) and the lease time for contributing
its resources. The coordinator stores this information in a VolunteerNode. The
coordinator also maintains a linked list of VolunteerNodes (known as the
VolunteerList) that contains information of all other volunteers that have registered
with the coordinator. At regular intervals, the coordinator will do bandwidth probing
on every volunteer by prompting them to send certain length of byte stream over. The
network transfer time (called netDelay) of each volunteer is measured from the
moment that the volunteer is prompted till the moment the byte stream is received by
the coordinator. Failure of a volunteer to respond to the coordinator’s prompting will
signify that it has been disconnected from the network. Consequently, information of
the failed volunteer will be removed from the linked list.

Information stored in a VolunteerNode is as follows:
1) InetAddress of volunteer
2) Network transfer of byte stream, netDelay
3) CPU speed of volunteer
4) Memory capacity of volunteer
5) Disk capacity of volunteer
6) Lease time for volunteering resources. Expiration of this lease indicates the exit of

the volunteer from the JAVM system.
7) InetAddress of client which the volunteer is assigned to, assignedClient
8) Time when the assignment is made, assignedTime

It is clear that information of all the volunteers in the network is not kept centrally in
one coordinator. With a distributed design by use of multiple coordinators, single
point of failure is avoided. With different clients consulting different coordinators for
volunteers, the likelihood of any coordinator becoming a bottleneck is reduced.

15

 Note also that the coordinators do not exchange information of its volunteers among
themselves. This is to reduce communication traffic among the coordinators. The
JAVM system is designed for Internet-based computing with large number of
participating volunteers. If all the coordinators were to update each other of every
change of network status of each of their volunteers, the frequency of communication
exchanges will be very high.

5.1.3 Placement Policy

This policy decides the host to which a task should be transferred for execution.

Figure 5.1. Capability Value Derivation for Volunteer

Upon receipt of requests from clients for volunteers, the coordinator will select the
best volunteers in its VolunteerList for tasks placement. Only volunteers with the top
capability values will be selected. The derivation of capability value for each
volunteer is based on netDelay (the network delay information collected from
bandwidth probing), and the hardware information of the volunteer (collected during
registration). The formula used is as shown in Figure 5.1.

The VolunteerList is sorted, based on the capability value of each VolunteerNode, in
an ascending order. This is to facilitate the selection of the best volunteers during task
placement. The reasons for choosing network bandwidth as one of the parameters for
placement policy are as follows:

1) In the JAVM system, the participating hosts may be geographically distributed in

different parts of the world. Consequently, the network communication delay
among the hosts will be quite significant, as compared to a LAN (Local Area
Network) setup. In view of this, if system load were to be used as a factor for
volunteer selection, the load information from the volunteers that arrives at the

CP = W1*CPUN+ W2*MEMN + W3*DISKN + W4*NETN

where CP stands for Capability value of the volunteer

 W1, W2, W3, W4 are weightages of the respective resources. To

be decided by coordinator.

NB: W1 + W2 + W3 + W4 = 1

 CPUN, MEMN, DISKN, NETN are the normalized values of
 the CPU speed, memory capacity, disk capacity and

network load of the volunteer respectively.

NB: Each value is derived from the normalization of the
resource value against the best possible value in its
category.

16

coordinator may be obsolete and may not truly reflects the load state of the
volunteers at that point in time.

2) In the JAVM system, bytecodes of the applications from the client will be

transferred to the selected volunteers for execution. This may involve a huge
amount of data transfer. If the links to the volunteers are congested or of low
bandwidth, the transfer may take up a significant amount of time and hence,
defeat the purpose of distributed processing.

3) Although the netDelay is a measure of the link status between a volunteer and the

coordinator, it can also be viewed as an indicator of the load of the volunteer. A
lower loaded host will respond faster than a heavier loaded one during bandwidth
probing. Therefore, the lower netDelay value of the volunteer recorded at the
coordinator will increase its chance of selection for task placement, over its
heavier loaded counterparts.

The use of the formula for deciding the best volunteers for task placement allows the
deployment of JAVM in different environments. In the Internet environment, which
JAVM is designed for, more emphasis should be put on the weightage for the
netDelay parameter. However, for deployment in a LAN environment, whereby the
network is more stable but participating machines are of varying hardware
capabilities, the weightages for system resources (CPU, MEM and DISK) should be
increased and that for netDelay, decreased accordingly.

5.2 Class Loading

The heterogeneous nature of the Internet does not allow JAVM to make any
assumption of the underlying file systems and access privileges to systems. As such,
to utilize the resources of a volunteer machine, classes (in the form of bytecodes) of
the task to be executed will have to be dynamically transferred from the network to
the volunteer during run-time. This mobility of codes is achievable in Java by a
mechanism called class loading.

In JAVM, we have implemented a class loader, called JAVMClassLoader, to take care
of the loading of task bytecodes, from the client across the network, and dynamically
linking them with the run-time system of the volunteer. The JAVMClassLoader starts
by being a subclass of java.lang.ClassLoader. An overview of this implementation is
as follows:
• Using the default system class loader, check if the class to be loaded is a system

class.
• If it is not, attempt to fetch the class from the classloader’s class repository.
• If failed, get the bytecodes of the class from the byteCodesTable, which is sent by

the client across the network.
• Perform bytecodes verification and convert the bytecodes into a class object.

With the help of the JAVMClassLoader, the volunteer will load all the necessary
classes needed for the task execution. Upon completion, the final result obtained is
then returned back to the client.

17

5.3 Security

The Internet is an uncontrolled network and has long been considered an insecure
environment. Stories of security violations such as machines being hacked and
network communications path being tapped, which resulted in the loss or theft of
important data, are rampant.

JAVM aims to provide an Internet-based computing environment that ensures
security. On top of the existing protection provided by the Java language itself, JAVM
offers encrypted communication exchanges among coordinators, volunteers and
clients. Every host in JAVM possesses a common secretkey that is used for the
encryption and decryption of messages. Hence, even when the communication path is
tapped, the information that could be viewed by the intruder is useless.

JAVM has also implemented authentication by the use of identification numbers and
passwords, which the sending hosts must provide to the receiving hosts. It is only
after verification that the identification numbers and passwords match with those at
the receiving hosts that the incoming connections are accepted. With this feature,
computational resources of volunteers are guarded against unauthorized clients.

5.3.1 JCA/JCE and the DSTC Security Provider

Before we delve into the details of the cryptographic mechanisms used in JAVM, let’s
talk about the security API provided in Java.

The Java Cryptography Architecture (JCA) provides a standard set of APIs for
cryptographic operations. As noted in [21], to ensure the highest degree of flexibility
for both the developer and the end user, the JCA places great emphasis on algorithm
independence and implementation independence. To achieve these two requirements,
the design of the Java Cryptography API is based on a system of engines (also known
as factory methods) and providers. Details can be found in [21,22,23]. JCA adopts a
Service Provider architecture whereby it is easy to install, configure and use third
party implementations of cryptographic algorithms.

Because of US export restrictions, Sun split its cryptographic classes into two groups.
The first group, java.security.* packages, forms part of JDK 1.2 and can be exported
without restriction. The second group, the Java Cryptography Extension (JCE), is only
for distribution within US and Canada. The JCE is a standard extension library to JCA
supporting encryption and key agreement operations.

Due to the US export restrictions, we are not able to use Sun’s JCE implementation
for the cryptography required in JAVM. Fortunately, Distributed Systems Technology
Centre (DSTC) provides a clean room implementation of JCE 1.2 and a service
provider (the DSTC Provider) [20]. The implementations from DSTC are adopted for
the cryptography needs in JAVM.

5.3.2 Cryptography in JAVM

18

In JAVM, we make use of DES (Data Encryption Standard), a symmetric cipher, for
the encryption of communication messages. DES was first published in 1975 and has
withstood intense cryptanalytic scrutiny since then. The major weakness of DES is its
use of 56-bit key size, which makes it vulnerable to key search attack.

For secure communication in JAVM, a message at the sending party is first stored as a
serializable object. Before sending out to the receiver, the object is encrypted by
making use of the javax.crypto.SealedObject utility class in JCE 1.2. The
SealedObject constructor wraps around the supplied serializable object and encrypts it
with a supplied cipher. At the receiving party, the getObject() method is used to
retrieve the original, unencrypted object with the same cipher.

In JAVM, the CipherObjectOutputStream and CipherObjectInputStream classes are
developed to hide the implementation details of the encryption and decryption
processes. Specifications of the two classes can be found in Appendix I.

5.4 Programming Model and Developer Interface

Figure 5.2. JAVM Programming Model

As mentioned, one of the objectives JAVM is to provide programming interface that
can help developers to program parallel applications with as much ease as sequential
ones. Figure 5.2 gives an illustration of how simple developing parallel applications in
JAVM could be. The APIs called by the developer hides all the implementation
details of encryption and decryption of network communications, fault tolerance and

public static void main (String[] args) {

 ….
 // (1) Create the environment
 JAVM_Env env = new JAVM_Env(className, appnClassNames,

 “SecretKey.ser”, director, password);
 ….
 // (2) Generate tasks to TaskPool
 for (int i=0; i<numVolunteers; i++) {
 ….
 tidarray[I] = env.AddToTaskPool((Object) task)
 }
 ….

 // (3) Distribute tasks to volunteers
 env.SendTasks();
 ….
 // (4) Collect computed results
 for (int i=0; i<numVolunteers, i++) {
 ….
 result[i] = env.getResult(tidarray[i], waitTime);
 }
 ….
 // (5) Stop all unfinished tasks at volunteers
 env.StopTasks();

}

19

network load balancing. To the developer, the pool of volunteers in the JAVM system
will appear as just one virtual supercomputer.

The programming model in Figure 5.2 encompasses the following steps:

(1) Create the environment. In the background, the client contacts the director
for the available coordinators in the JAVM system. An empty linked list
(called the TaskPool) is also generated for the storage of tasks that will be
generated.

(2) Generate tasks to TaskPool. The number of tasks generated depends on the

number of volunteers specified by the developer for execution of the
application. The tasks generated, in the form of arguments for the application,
are stored in the TaskPool. For each task created, the developer will be issued
a task-id, which is needed in the retrieval of result at stage (4).

(3) Distribute tasks to volunteers. In the background, the client contact the
coordinators to get the volunteers needed. It will then transfer the bytecodes of
the application and the respective argument to each of the volunteers found by
invoking the TaskPlacer thread. The client might not be able to get all the
volunteers it needs and the existing volunteers allocated might leave the
system abruptly without finishing the task allocated. As such, the client will
invoke the VolunteerHunter thread, which will hunt for new volunteers from
the coordinators whenever there is a shortage. It will also invoke the
VolunteerAliveHandler thread to check, at regular intervals, whether the
volunteers allocated with tasks are still alive. Detection of failed volunteers
will spin off the whole process of finding new volunteers and transferring of
tasks, once allocated to those failed volunteers, to the new volunteers. This
recovery mechanism is automatic and transparent to the developers. At this
stage, for collecting results back from the volunteers, the client will also
invoke the ResultCollector thread.

(4) Collect computed results. Results computed by the volunteers will be
received by the ResultCollector thread and stored. The coordinator will also be
informed to release allocations of the volunteers held by the client. To retrieve
the computed results, the developer will have to supply the necessary task-ids
issued earlier at stage (2).

(5) Stop all unfinished tasks at volunteers. This step is optional as it depends on

the application’s need. If the developer has acquired the necessary results, it
can terminate existing execution of tasks at all volunteers by invoking the
StopTasks() method. For applications that need to collect back all computed
results, such invocation will not be necessary.

6. JAVM Performance

This section gives descriptions of the experiment setup for measuring the performance
of the JAVM system. The experiments conducted are based on parallel applications
developed for the JAVM system. An analysis of the results obtained from the
experiments is also presented.

20

6.1 Experimental Setup

The test bed for conducting the experiments is as illustrated in Figure 6.1. For the
sake of consistency in the measurement of the experimental results, a homogeneous
collection of 64 Pentium PCs, running WinNT OS, is used to form the volunteers
cluster. To show heterogeneity of the JAVM system, machines of different hardware
configurations and OS (UltraSPARC, Solaris 2.7 OS) are chosen to form the director,
coordinators and client. All the machines are connected to the network of School of
Computing via 100Mbps links.

Figure 6.1. Experimental Setup for JAVM Performance Measurement

The details of the hardware configurations of the machines are as shown:

 Processor OS RAM
Volunteer 2 x Pentium III

450 MHz
WinNT 4.0 256 MB

Director 4 x
UltraSPARC-II
300 MHz

Solaris 2.7 4 GB

Coordinator 2 x
UltraSPARC-II
300 MHz

Solaris 2.7 2 GB

Client 1 x
UltraSPARC-II
300 MHz

Solaris 2.7 1.2 GB

Table 6.1. Machine Configurations

SOC Network

Director Coordinators

Volunteers
Cluster

Switch

Client

21

For the sake of consistency, the experiments are conducted when the load of all the
machines and the network are low.

6.2 RC5 Cracking

RC5 [27] is fast block cipher that uses a parameterized algorithm with a variable
block size, a variable key size and a variable number of rounds. Typical choices for
the block size will be 32, 64 or 128 bits. The number of rounds can range from 0 to
255 and the key can range from 0 to 2048 bits in size.

The encryption routine of RC5 consists of three primitive operations: integer addition,
bitwise exclusive-or, and variable rotation. The heavy use of data-dependent rotations
and the mixture of different operations provide the security of RC5.

6.2.1 Experimental Results

For this, a sequential RC5 cracking program [28], for uncovering the 32-bits secret
key used to encrypt a message, is ported over to JAVM.

The sequential version adopts a “brute force” search on all possible keys until it finds
the one that decrypts the message. Time (Tseq) needed to run the program on a
machine (with same configuration as the volunteers) is measured. This value is 8.24 x
106 milliseconds.

 The JAVM-ised version breaks up the key space to search into smaller ones (of equal
size) and distribute them to the volunteers so that the search can be performed in
parallel. For this experiment, the program is run with different number of volunteers
in the network. Time (Tdis) is measured from the moment the client creates the JAVM
environment to the moment when the secret key is found by one of the volunteers and
the result returned to the client. The speedup (Tseq/Tdis) for each of above experiments
is then computed.

No. of Volunteers
(n)

Time Taken (Tdis)
(x 106 ms)

Speedup

2

4.108 2.005

4

2.053 4.013

8

1.028 8.011

16

0.529 15.552

32 0.283 29.018

64 0.154 53.426

Table 6.2. RC5 Cracking Experimental Results

22

0

10

20

30

40

50

60

70

2 4 8 16 32 64

No. of Volunteers (n)

Sp
ee

du
p

RC5 Crack

Ideal

Figure 6.2. RC5 Cracking Experimental Results

6.2.2 Performance

The speedup curve (in Figure 6.2) obtained for JAVM-ised parallel cracking is very
close to the ideal situation. Characteristics of this application are as follows:

• Highly computational intensive.
• Low bandwidth requirement. The bulk of the network communications

among the entities in the system is only during task distribution and result
collection stage. In these stages, the amount of data exchanged is usually not
high.

6.3 Ray Tracing

Ray tracing is a method that creates photo-realistic synthetic images from a
mathematical description of the scene to be generated. This computer graphics
technology simulates light rays in a 3D environment. The algorithm attempts to
calculate the exact coloring of each ray-object intersection by tracing light rays as
they bounce around the scene, reflecting and refracting until they end up in the lens of
the imaginary camera. The computations involved can involve millions of floating-
point operations and consume large amount of processor time even with scenes of
modest complexity. Fortunately, each ray in the algorithm is independent of each

23

other, making ray tracing an ideal candidate for parallel processing. As such, time
taken for image processing can be drastically shortened.

6.3.1 Experimental Results

For our experiments, a sequential Java Ray Tracing program [29] is ported to JAVM.
The same setup in Section 6.2 is used.

The sequential version is run on a standalone machine to generate a scene of 512 x
512 pixels. Time (Tseq) needed to run this program is 0.586x 106 milliseconds.

The JAVM-ised version breaks up the scene to be generated into smaller sub-regions
and distribute them to the volunteers so that the generation can be performed in
parallel. Time (Tdis) is measured from the moment the client creates the JAVM
environment to the moment the client collects back all the computed results from the
volunteers. The speedup (Tseq/Tdis) is then computed. The experimental results
collected are as shown in Table 6.3.

No. of Volunteers
(n)

Time Taken (Tdis)
(x 106ms)

Speedup

2

0.297 1.976

4

0.181 3.240

8

0.094 6.220

16

0.053 11.140

32

0.034 17.106

64

0.029 20.117

Table 6.3. Ray Tracing Experimental Results

24

0

10

20

30

40

50

60

70

2 4 8 16 32 64

No. of Volunteers (n)

Sp
ee

du
p

Ray Tracing

Ideal

Figure 6.3. Ray Tracing Experimental Results

6.3.2 Performance

Unlike the previous case, from Figure 6.3, the speedup for JAVM-ised Ray Tracing
starts to level off with 32 processors. The characteristics associated with this
application are:
• Not as computationally intensive as RC5 cracking, basing on the time required for

executing the program.
• Low bandwidth requirement. Data exchanges among entities are not too high.

6.4 Matrix Multiplication

The multiplication of two matrices is one of the most basic operations of linear
algebra and scientific computing, and has provided an important focus in the search
for methods to speed up scientific computation. The algorithm for performing matrix
multiplication is fundamentally very simple and involves a series of multiplications
and additions. A typical example of matrix multiplication is as follows:

25

Figure 6.4. Matrix Multiplication

6.4.1 Experimental Results

The sequential version is run on a standalone machine to perform matrix
multiplication on two square matrices of size 128 x 128. Time (Tseq) needed to run the
program is measured. This value is 141 ms.

A number of parallel algorithms have been developed to perform matrix
multiplication in an efficient manner [30]. However, in our experiments for
performing parallel matrix multiplication on the JAVM system, efficiency is not the
main objective. Instead, we hope to investigate the impact of transferring large
amount of data between entities (in particular, client and volunteers) on the JAVM
performance.

In the parallel program that we developed, matrix A is broken up into groups of equal-
sized rows, basing on the number of volunteers that are used. During computations,
each sub-matrix A of certain rows and the entire matrix B are transferred to a
volunteer to generate the results for the same rows in matrix C. All computed results
would be sent back to the client to form matrix C.

Time (Tdis) is measured from the moment the client creates the JAVM environment to
the moment the client collects back all the computed results from the volunteers. The
speedup (Tseq/Tdis) is then computed. The experimental results collected are as shown
in Table 6.4.

)

 A 11 A 12 … A 1M
A 2 1 A 2 2 … A 2 M

 …

 A N 1 A N2 … A N M

()

B 11 B 12 … B 1N
B 21 B 22 … B 2 N

 …

 B M1 BM 2 … B MN

()

C11 C 12 … C 1N
C2 1 C 22 … C 2 N

 …

 CN 1 C N 2 … C N N

(
=

where C11 = A11*B11 + A12*B21 + … + A1M*BM1

 C12 = A11*B12 + A12*B22 + … + A1M*BM2

 …

 CNN = AN1*B1N + AN2*B2N + … + ANM*BMN

26

No. of Volunteers
(n)

Time Taken (Tdis)
(x 103ms)

Speedup

2

3.11 0.045

4

3.593 0.039

8

5.688 0.025

16

8.000 0.018

32

13.219 0.011

64

22.781 0.006

Table 6.4. Matrix Multiplication Experimental Results

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

2 4 8 16 32 64

No. of Volunteers (n)

Sp
ee

du
p

Mat. Mult.

Figure 6.4. Matrix Multiplication Experimental Results

6.4.2 Performance

From Figure 6.4, the performance for JAVM-ised matrix multiplication is very poor.
Not only there is no performance improvement, the speedup value decreases with the
use of more volunteers. Characteristics of this application are:

27

• Low computation requirement. The size of the matrices used in experiments is
not very large.

• High bandwidth requirement. The amount of data for a matrix of size 128 x
128 to be transferred from the client to a volunteer is already 1 Mbits. Hence,
as more volunteers are involved in the computation, the network throughput at
the client’s end becomes a performance bottleneck.

• Long encryption and decryption time. In the JAVM system, the
communication exchanges among the entities are encrypted. As the amount of
data involved in the exchanges is huge, time taken for encryption and
decryption of the data would be significantly high.

Experiments are conducted to measure the time for transferring data from client to
a volunteer and for the volunteer to perform the necessary decryption, during task
allocation. From our measurements, these overheads take up about 25% of the
overall processing time.

6.5 Remarks

From the above experiments, the speedup of a JAVM-ised application depends largely
on the computation to communication ratio involved. For good speedup results,
computational performance gained for executing an application in parallel with a
group of volunteers must be able to offset the loss incurred by communications
overhead. In general, JAVM is well suited for executing coarse-grained applications
(such as RC5 cracking) with high computation to communication ratio.

7. Conclusions

7.1 Summary of Work Achieved

Despite the dynamic and unpredictable nature of Internet as a computational resource,
the potential of utilizing it for metacomputing is still great. Java, with all the features
that it can provide as a programming language for network applications, is an
attractive tool for developing systems that can harness this resource. Presently, there
are a number of Java-based implementations for parallel computing. In general, these
implementations can be categorized into Java applet based and Java standalone
application based. However, most of these systems are not designed with Internet-
based computing in mind. As such, their deployments in the Internet environment
may not be feasible.

JAVM aims to address deficiencies of the existing implementations for Internet-based
parallel computations. Its implementation goals are ease of use, heterogeneity,
portability, security, fault tolerance, load balancing, scalability and accountability.
As of our knowledge, it is the only Internet-based computing system that supports
dynamic code execution without the use of applets, network load scheduling and
encryption of network communications. Preliminary testing based on the execution of
parallel applications developed for the JAVM system has also turned out to be
promising.

28

7.2 Future Directions

The initial objectives set for this project has been achieved. However, there are still
several areas whereby JAVM could be further improved and enhanced.

1. Code Obfuscation. Much of the information of Java source code remains in
the bytecode. As such, decompilation of Java class files into the sources codes
can be easily performed. This threat of reverse engineering is even more
serious in the JAVM system whereby application bytecodes are dynamically
transferred to machines that are not trustworthy. To counter this, code
obfuscation has to be applied to the application class files before the transfer
takes place. Code obfuscator, such as Cream [30], is able to scramble the
symbolic information in the class files, so that they become less vulnerable to
decompilation. However, the functionality of the program is still maintained.
In JAVM, besides playing a role in security, code obfuscation can also help to
reduce the size of application bytecodes during task placement. However,
performance overhead caused by code obfuscation should not be overlooked.

2. Detection of Intentional Faults. As mentioned in Section 4.1.4, at this point

in time, JAVM does not provide mechanisms for the detection of intentional
faults, such as submission of erroneous results by volunteers to clients. Once
such faults are detected, there should also be mechanisms to recover from the
faults automatically. Techniques, such as replication and spot-checking [3],
adopted by some systems, though not foolproof, are worthwhile further
investigations.

3. Resource Usage Check and Control by Volunteer. Presently, in the JAVM

system, once a volunteer registers with a coordinator, there is no way for the
volunteer to find out how much of its computing resource is being tapped by
clients. Besides the amount of lease time for volunteering that it can specify
during registration, there is also no other way to control the amount of its
resource that clients can use at one time.

4. GUI-based Monitoring at Coordinator. A graphical-based representation of

the status of all the volunteers registered with the volunteer would help in the
monitoring and management of the JAVM system.

References

[1] A. Baratloo, M. Karaul, Z. Kedem, P. Wyckoff, “Charlotte:

Metacomputing on the Web”, 9th International Conference on Parallel
and Distributed Computing Systems (PDCS), 1996.
http://www.cs.ucsb.edu/research/superweb/

[2] B. O. Christiansen, P. Cappello, M. F. Ionescu, M. O. Neary, K. E.

Schauser, D. Wu, “Javelin: Internet-Based Parallel Computing using
Java”, http://www.cs.ucsb.edu/research/superweb/home.html

29

[3] Luis F. G. Sarmenta, S. Hirano, S. A. Ward, “Towards Bayanihan:

Building an Extensible Framework for Volunteer Computing using
Java, http://www.cag.lcs.mit.edu/bayanihan

[4] P. A. Gray, V. S. Sunderam, “The IceT Framework for

Metacomputing”, http://www.mathcs.emory.edu/~gray/abstract7.html

[5] Data Security. RSA’s Secret-Key Challenge Solved by Distributed

Team in Record Time.
http://www.rsasecurity.com/news/pr/980226.html

[6] L. Peh, “ The Design and Development of a Distributed Scheduler

Agent”, Honours Year Project Report, National University of
Singapore, 1994.

[7] G. C. Fox, “Computing on the Web: New Approaches to Parallel

Processing Petaop and Exaop Performance in the Year 2007”,
http://www.npac.syr.edu

[8] G. C. Fox, W. Furmanski, “Java for Parallel Computing and as a

General Language for Scientific and Engineering Simulation and
Modelling”, http://www.npac.syr.edu/users/gcf/01/terri/SCCS_793

[9] E. R. Harold, "Java Network Programming", O'Reilly & Associates,

1997.

[10] M. O'Connell, "New benchmark results show Java ready for prime

time of servers", http://www.sunworld.com/swol-07-
javabenchmark.html?072098a

[11] A. J. Ferrari, “JPVM: Network Parallel Computing in Java”, Technical

Report CS-97-29, Dept. of Comp. Sci, Unverisity of Virginia,
Charlottesville, VA 22903, USA,
http://www.cs.virginia.edu/~ajf2j/jpvm.html

[12] David A. Thurman, “jPVM: The Java to PVM Interface, December 1996,

http://www.isye.gatech.edu/chmsr/jPVM/

[13] L. Vanhelsuwe, “ Create your own supercomputer with Java”,

http://www.javaworld.com/jw-01-1997/jw-01-dampp.ibd.html

[14] N. Yalamanchilli, W. Cohen, “Communication Performance of Java based Parallel

Virtual Machines”, ACM 1998 Workshop on Java for High Performance Network
Computing, http://www.cs.ucsb.edu/conferences/java98/program.html

[15] Luis F. G. Sarmenta, “An Adaptive, Fault-tolerant Implementation of

BSP for Java-based Volunteer Computing Systems,
http://www.cag.lcs.mit.edu/bayanihan

[16] S. Brody, “Can HotSpot jumpstart your Java applications?”,

http://www.sunworld.com/swol-05-1999/swol-05-hs.html?0524

30

[17] P. Rao, “Using Java: Is Java Secure?”,

http://www.usenix.org/publications/java/usingjava12.htm

[18] MPIJ 1.1, http://ccc.cs.byu.edu/OnlineDocs/docs/mpij/MPIJ.html

[19] A. L. Ananda, G. Tan, L. F. Lau, “Distributed Scheduling Algorithms

for the Astra Virtual Machine”, ACSC’97 (Australian Computer
Science Communications Volume 19, Number 1), 1997

[20] Java Cryptography and Security: JCSI Public Release 3,

http://security.dstc.edu.au/projects/java/release3.html

[21] T. Sundsted, “In Java we trust”, Java World January 1999,

http://www.javaworld.com/javaworld/jw-01-1999/jw-01-howto_p.htm

[22] “JCA/JCE and the DSTC Security Provider”,

http://security.dstc.edu.au/projects/java/misc/dstc_provider

[23] J. Knudesen, “Java Cryptography”, O’Reilly & Associates, 1998

[24] B. Milewski, “The battle of languages – Java vs C++”,

http://www.relisoft.com/java/c_java.html

[25] S.C. Chan, “An Overview of the Java Security”,

http://home.hkstar.com/~alanchan/papers/javaSecurity/index.html

[26] Sun Microsystems, “The 100% Pure Java Initiative White Paper”,

http://java.sun.com/100percent/wp.html

[27] R.L. Rivest, “The RC5 encryption algorithm”, CryptoBytes, 1(1): 9-11,

1995

[28] G. Hewgill, “RC5 and Java Toys”,

http://www.hewgill.com/rc5/index.html
[29] M. Armstrong, Y. Ma, “Java Ray Tracer”,

http://robotics.eecs.berkeley.edu/~mayi/CS184/

[30] S. C. Chan, “An Overview of the Java Security”,

http://home.hkstar.com/~alanchan/papers/javaSecurity/index.htm

[31] Search for Extraterrestrial Intelligence (SETI) Project,

http://seti@home.ssl.berkeley.edu

