
MAY/JUNE 2021 | IEEE SOFTWARE 79

FOCUS: ON SOFTWARE QUALITY

Th is wo r k i s l i censed unde r a C rea t i ve Commons
At t r ibu t i on 4.0 L icense. Fo r more i n fo rmat ion, see
h t tps://c rea t i vecommons.o rg / l i censes/by/4.0/deed.as t.

T HE INTERNET AND the world’s
Digital Economy run on a shared,
critical open source software infra-
structure. A security flaw in a single
library can have severe consequences.
For instance, OpenSSL implements
protocols for secure communication
and is widely used by Internet serv-
ers, including the majority of HTTPS
websites. The Heartbleed vulnerabil-
ity in an earlier version of OpenSSL
would leak secret data and caused

huge financial losses. It is important
for us to develop practical and effec-
tive techniques to discover vulner-
abilities automatically and at scale.
Today, fuzzing is one of the most
promising techniques in this regard.
Fuzzing is an automatic bug and vul-
nerability discovery technique that
continuously generates inputs and
reports those that crash the program.
There are three main categories of
fuzzing tools and techniques: black-,
gray-, and white-box fuzzing.

Black-box fuzzing generates in-
puts without any knowledge of the

program. There are two main vari-
ants of black-box fuzzing: mutational
and generational. In mutational
black-box fuzzing, the fuzz campaign
starts with one or more seed inputs.
These seeds are modified to gener-
ate new inputs. Random mutations
are applied to random locations in
the input. For instance, a file fuzzer
may flip random bits in a seed file.
The process continues until a time
budget is exhausted. In generational
black-box fuzzing, inputs are gen-
erated from scratch. If a structural
specification of the input format is
provided, new inputs are generated
that meet the grammar. Peach (http://
community.peachfuzzer.com) is one
popular black-box fuzzer.

Gray-box fuzzing leverages pro-
gram instrumentation to get light-
weight feedback, which is used to
steer the fuzzer. Typically, a few con-
trol locations in the program are in-
strumented at the compile time and an
initial seed corpus is provided. Seed
inputs are mutated to generate new in-
puts. Generated inputs that cover new
control locations and, thus, increase
code coverage are added to the seed
corpus. The coverage feedback allows
a gray-box fuzzer to gradually reach
deeper into the code. To identify bugs
and vulnerabilities, sanitizers inject
assertions into the program. Existing
gray-box fuzzing tools include Ameri-
can fuzzy lop (AFL) (https://lcamtuf
.coredump.cx/afl/), LibFuzzer (https://
llvm.org/docs/LibFuzzer.html), and
Honggfuzz (https: //github.com/
google/honggfuzz).

White-box fuzzing is based on
a technique called symbolic execu-
tion,1 which uses program analysis
and constraint solvers to system-
atically enumerate interesting pro-
gram paths. The constraint solvers
used as the back end in white-box
fuzzing are Satisfiability Modulo

Digital Object Identifier 10.1109/MS.2020.3016773
Date of current version: 13 August 2020

Fuzzing:
Challenges and
Reflections
Marcel Böhme, M onash University

Cristian Cadar, I mperial College London

Abhik Roychoudhury, N ational University of Singapore

// W e summarize the open challenges and

opportunities for fuzzing and symbolic

execution as they emerged in discussions

among researchers and practitioners

in a Shonan Meeting and that were

validated in a subsequent survey. //

80 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: ON SOFTWARE QUALITY

Theory (SMT) solvers, which al-
low for reasoning about (quantifier-
free) first-order logic formulas with
equality and function/predicate
symbols drawn from different back-
ground theories. White-box fuzzers
calculate the path condition of an in-
put i—the set of inputs that traverse
the same path as i. The path condition
is represented as an SMT formula,
e.g., .i ii 00 42 1 7[] [][] / 2= -

Given seed input s, the path con-
dition is calculated and mutated (as
opposed to mutating the program
input). The mutated path condition
is then sent to a constraint solver
to generate new inputs. The main
benefit of this technique is that by
carefully keeping track of path con-
ditions of all inputs seen so far, it al-
ways generates an input traversing a
new path (new control flow). Exist-
ing white-box fuzzing tools include
KLEE2 and SAGE.3

In this article, we provide reflec-
tions on recent advances in the field
as well as concrete directions for fu-
ture research. We discuss recent im-
pacts and enumerate open research
challenges from the perspective of
both practitioners and researchers.
For a detailed, technical review, we
refer the reader to Godefroid.4

Recent Impact
Fuzzing for automatic bug and vul-
nerability discovery has taken both
the software industry and the re-
search community by storm. The
research problem of finding bugs in
a program by automatic input gen-
eration has a long-standing history,
which began well before Miller’s
inception of the term “fuzzing” in
1990,5 yet only now do we see main-
stream deployment of fuzzing tech-
nology in industry.

Using gray-box fuzzing, Google
has discovered more than 16,000

bugs in the Chrome browser over
the past eight years and more than
11,000 bugs in more than 160 open
source software projects over the
past three years (https://google
.github.io/clusterfuzz/#trophies).
Microsoft credits its white-box fuzz-
ing tool SAGE with saving millions
of dollars during the development of
Windows 7.3 Trail of Bits has been
developing various fuzzing tools,
including DeepState, a unit testing
framework that allows developers
to fuzz the various units of their sys-
tem (https://github.com/trailofbits/
deepstate). The 2016 DARPA Cyber
Grand Challenge had machines at-
tack and defend against other ma-
chines by exploiting and hardening
against software vulnerabilities.
The Mayhem system,6 which was
awarded US$2 million for winning
the competition, made extensive use
of white-box fuzzing.7

What has enabled this recent
surge of interest in fuzzing? First,
there is a tremendous need. Life
and business are increasingly per-
meated by software systems, and
a security vulnerability in even the
smallest system can have dire con-
sequences. Second, we now have the
incentives and the required mindset.
Some software companies have
established lucrative bug bounty
programs that pay top dollar for
critical bugs. Anyone, including the
reader, can offer vulnerability re-
wards on bug bounty platforms,
such as HackerOne (https://www
.hackerone.com/), which provides
ethical coordination and responsible
disclosure. Independent security re-
searchers can report the discovered
vulnerabilities and collect the boun-
ties. Some stakeholders take matters
into their own hands, with several
companies continuously fuzzing
their own software.

Third, we now have the tools.
Many fuzzers are open source, freely
available, easy to use, and very suc-
cessful in finding bugs. For instance,
the KLEE symbolic execution engine
(https://klee.github.io/) has been
freely available, maintained, and
widely used for more than 10 years.
As a result, several companies, such
as Baidu, Fujitsu, and Samsung, have
used and extended it to test their
software products. Similarly, the
AFL gray-box fuzzer (http://lcamtuf
.coredump.cx/afl/) is highly effective
and easy to use. Its trophy case in-
cludes bugs and security vulnerabili-
ties found in a large number of open
source systems.

Finally, this open science ap-
proach and meaningful engagement
between industry and academia have
facilitated rapid advances in fuzz-
ing. For instance, fuzzers are getting
faster, find more types of bugs, and
work for more application domains.

Challenges
In September 2019, we organized a
Shonan Meeting on Fuzzing and Sym-
bolic Execution in Shonan Vil-
lage Center, Japan (https://shonan
.nii.ac.jp/seminars/160/). The meeting
brought together thought leaders, dis-
tinguished researchers, tool builders,
founders, and promising young scien-
tists from the gray- and white-box
fuzzing (symbolic execution) commu-
nities. Next, we discuss the main chal-
lenges identified during the meeting. We
phrase the challenges as research ques-
tions and hope that they provide guid-
ance and direction going forward.

Automation
Automated vulnerability discovery is
a game between adversaries. Given
the same resources, the adversary
with the fuzzer that finds more vul-
nerabilities has the advantage.

 MAY/JUNE 2021 | IEEE SOFTWARE 81

More Software

How can we efficiently fuzz more types of
software systems? We already know
how to fuzz command-line tools
(AFL and KLEE) and application
programming interfaces (APIs) (Lib-
Fuzzer). The fuzzer generates inputs
and observes the program’s output.
The community is actively working
on how to fuzz programs that take
highly structured inputs, such as file
parsers or object-oriented programs.
However, fuzzing cyberphysical
systems, which interact with the
environment as part of their execu-
tion, or machine learning systems,
whose behavior is determined by
their training data, is an underex-
plored area.

How do we fuzz stateful software,
such as protocol implementations,
which can produce different outputs
for the same input? Most gray-and
white-box fuzzers are written with
a single programming language in
mind. How do we fuzz polyglot soft-
ware, which is written in several lan-
guages? How do we fuzz GUI-based
programs that take as inputs a se-
quence of events executed on a user
interface? For white-box fuzzing, we
already know how symbolic execu-
tion can formulate constraints on nu-
meric or string-based input domains.
However, given a program whose in-
put domain is defined by a grammar
and/or protocol, how can a symbolic
execution tool effectively formulate
constraints on such “structured” in-
put domains?

More Bug Types

How can the fuzzer identify more types
of vulnerabilities? A significant por-
tion of current work on fuzzing fo-
cuses on simple oracles, such as
finding crashes. We need studies of

security-critical classes of bugs that
do not manifest as crashes and de-
velop oracles that can efficiently de-
tect them. Vulnerabilities are often
encoded as assertions on the pro-
gram state. Using such assertions, we
already know how we can discover
memory- or concurrency-related er-
rors. The discovery of side-channel
vulnerabilities, such as information
leaks or timing, cache, or energy-re-
lated side channels, is currently an ac-
tive research topic.8 Going forward,
we should invent techniques to auto-
matically detect and invoke privilege
escalation, remote code execution,
and other types of critical security
flaws not only in C/C++ but also in
other programming languages.

More Difficult Bugs

How can we find “deep bugs” for which ef-
ficient oracles exist but which nevertheless
evade detection? There are bugs that
evade discovery despite long fuzz-
ing campaigns, e.g., because they are
guarded by complex conditions or
because existing techniques require
impractical amounts of resources to
find them. Are there certain kinds
of deep bugs that can be found effi-
ciently with specialized approaches?
Structure-aware and grammar-based
fuzzing as well as the integration of
static analysis and symbolic execu-
tion with gray-box fuzzing are prom-
ising directions.9,10 Second, software
also changes all of the time—tech-
niques that can target software
patches will prove essential for find-
ing bugs as they are introduced.11,12
Third, we should investigate strate-
gies to boost fault finding, such as
AFLFast, which enables faster crash
detection in gray-box fuzzers,13 and
study the utility of GPUs and other
means of efficient parallelization to
maximize the number of executions

per unit time.14 Finally, ranking bugs
in terms of their importance can also
improve the effectiveness of fuzzing
in practice.

More Empirical Studies

What is the nature of vulnerabilities that
have evaded discovery despite long fuzz-
ing campaigns? Why have they evaded
discovery? We need empirical studies
to understand the nature and distri-
bution of security vulnerabilities in
source code.

The Human Component

Human-in-the-Loop Approach

How can fuzzers leverage the ingenuity of
the auditor? Many researchers think
of fuzzing as a fully automated pro-
cess that involves the human only at
the beginning, when the software
system is prepared for the fuzzer,
and at the end, when the fuzzer-dis-
covered vulnerabilities need to be re-
ported. In reality, security auditors
use fuzzers in an iterative manner.
During our meeting, Ned William-
son, a prolific security researcher at
Google, demonstrated his semiauto-
mated approach to vulnerability dis-
covery. Williamson would first audit
the code to identify units that may
contain a security flaw. He would
prepare the unit for fuzzing, run
the fuzzer for a while, and identify
roadblocks for the fuzzer. He would
manually patch out the roadblock to
help the fuzzer make better progress.
If the fuzzer spent more time fuzzing
less relevant portions of the code,
he would adjust the test driver and
refocus the fuzzer. Once a potential
vulnerability was found, he would
backtrack, add each roadblock back,
and adjust the vulnerability-expos-
ing input accordingly.

82 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: ON SOFTWARE QUALITY

This semiautomated process raises
several research questions. How can
we facilitate a more effective commu-
nication between fuzzer and security au-
ditor? How can the security auditor

dynamically direct the fuzzer? How
can the fuzzer explain what prevents
it from progressing, and how can the
auditor instruct the fuzzer to over-
come the roadblock?

Usability

How can we improve the usability of fuzz-
ing tools? Ethical hacking requires
a very special set of skills. Fuzzing
already simplifies the process by au-
tomating at least the test input gen-
eration. How can we make fuzzing
more accessible to developers and
software engineers? How can we
make it easier to develop test drivers
for fuzzers? How can we integrate
fuzzing into the day-to-day develop-
ment process, e.g., as a component
of the continuous integration pipe-
line pipeline or as a fuzz-driven unit
testing tool in the IDE? In particu-
lar, our industry participants and re-
spondents identified usability as the
most important.

How can we prepare the output of
a fuzzer for human consumption? A
fuzzer produces an input that crashes
the program, and the developer must
find out why it crashes. How can we

extend the fuzzer such that it gener-
ates a detailed bug report or even a
bug fix for each identified vulnerabil-
ity? Automated repair techniques that
have emerged recently can help in

this regard.15 Recent work on Linux
kernel fuzzing16 discusses techniques
to address usability challenges while
deploying the kernel fuzzer syzkaller
on enterprise Linux distributions.
Generalizing such enhancements to
a fuzzer for general-purpose software
remains a challenge.

Fuzzing Theory
It is important for any discipline to
stand on a firm scientific founda-
tion. We have seen many technical
advances in the engineering of fuzz-
ing tools. But why do some fuzzers
work so much better than others?
What are their limitations? We want
to be able to explain interesting
phenomena that we have observed
empirically, make predictions, and
extrapolate from these observations.
To do this, we need a sound theoret-
ical model of the fuzzing process.

Residual Risk

How can we assess residual security risk
if the fuzzing campaign was unsuccess-
ful? Black- and white-box fuzzing sit
on two ends of a spectrum. A white-
box fuzzer might provide a formal

guarantee about the absence of de-
tectable vulnerabilities. If we assume
that a symbolic execution engine
can enumerate all paths in a piece
of code and the oracle is encoded
as assertions, then white-box fuzz-
ing can formally verify the absence
of bugs. If it can enumerate only
some paths in a reasonable time,
we can still provide partial guaran-
tees.17 To make symbolic execution
applicable in practice, correctness
or completeness are traded for scal-
ability. How does this tradeoff affect
the guarantees?

In contrast, a black-box fuzzer
can never guarantee the absence of
vulnerabilities for all inputs. What is
the residual risk that, at the end of
a fuzzing campaign, a bug still ex-
ists in the program that has not been
found? If we model black-box fuzz-
ing as a random sampling from the
program’s input space, we can lever-
age methods from applied statistics
to estimate the residual risk.

A gray-box fuzzer uses program
feedback to boost the efficiency of
finding errors. However, this pro-
gram feedback introduces an adap-
tive bias. How do we account for
this adaptive bias when assessing
residual risk? To answer such ques-
tions, we should develop statistical
and probabilistic frameworks and
methodologies for sound estimation
with quantifiable accuracy.

Theoretical Limitations

What are the theoretical limitations of
black-, gray-, white-box fuzzing? Black-
and gray box-fuzzers are highly
efficient—but at the cost of effective-
ness. Unlike white-box fuzzers, they
struggle to generate inputs that exer-
cise paths frequented by few inputs.
This tension raises several research
questions. Given a program and a

How can the fuzzer explain what
prevents it from progressing, and
how can the auditor instruct the

fuzzer to overcome the roadblock?

 MAY/JUNE 2021 | IEEE SOFTWARE 83

time budget, how can we select the
fuzzing technique, or combination of
techniques, that finds the most vul-
nerabilities within the time budget?
How do program size and complex-
ity affect the scalability and per-
formance of each technique? How
much more efficient is an attacker
that has an order of magnitude more
computational resources? With an
understanding of the limitations of
existing approaches, we can develop
more advanced techniques.

Evaluation and
Benchmarks
To validate a claim of superiority for
novel fuzzing tools and techniques,
we need sound methods for evalu-
ation. Generally speaking, the bet-
ter fuzzer finds a larger number of
important bugs in software that we
care about within a reasonable time.
But what is a “reasonable time,”
“software that we care about,” or
“important bugs?” If no important
bugs are found, how do we measure
effectiveness? How do we prevent
overfitting? What is a fair baseline
for comparison?

To measure progress, we need
to develop reasonable standards for
comparison against previous work.
We encourage the community to be
open about releasing tools, bench-
marks, and experimental setups
publicly for anyone to reproduce the
results and to build upon.

Benchmarks

Specialized Fuzzers

How can we evaluate specialized fuzz-
ers? There are programs that take
structured and those that take un-
structured inputs. There are stateful
and stateless programs. There are
programs where the source code is

available and programs where only
the compiled binary is available.
There are programs that take inputs
via a file, a GUI, or an API. Extending
fuzzing to different types of software
systems is a key technical challenge
(see the “More Software” section).

Similarly, some fuzzers are spe-
cialized for a specific purpose. For
instance, there are fuzzers that seek
to reach a program location11,12 or
that focus on exposing specific types
of bugs, such as performance bugs.18

However, existing benchmarks
are often not designed for these spe-
cialized tasks. If there is no previous
work, we need standards for research-
ers to choose suitable subject pro-
grams and baselines for comparison.

Preventing Overfitting

How can we prevent overfitting to a spe-
cific benchmark? For any benchmark
suite, there is always the danger of
overfitting. Despite a demonstration
of superiority on the benchmark sub-
jects, a fuzzer might still be inferior
in general. What are reasonable strat-
egies to mitigate overfitting? Can
we propose a fair and sound policy
to collect benchmarks? How can
we avoid “single-source” types of
benchmarks that are contributed by
just one group and might give un-
due control to a single set of people?

Fuzzing tool competitions could
be part of the solution for the chal-
lenges in the “Evaluation” and
“Preventing Overfitting” sections.
One model, inspired by constraint
solving and verification competi-
tions, is to have different competition
categories, such as coverage-based
fuzzing, directed fuzzing, and so on.
Within each category, there can be a
further division based on the type of
bugs and applications the fuzzer is
suited for. Tool builders can submit

their own benchmarks and fuzz-
ers, which would allow independent
scrutiny of the entire process. Test-
Comp (https://test-comp.sosy-lab
.org/) is an existing competition that
illustrates this model.

A second model is to come up
with challenge problems in the form
of buggy programs and have tool de-
velopers directly apply the fuzzers to
find the hidden bugs. This has the
advantage of tool developers config-
uring their tools in the best possible
way for each task but makes indepen-
dent reproduction of the results more
challenging. Rode0Day (https: //
rode0day.mit.edu/) is an existing com-
petition that illustrates this model.

Another approach is a continu-
ous evaluation, where fuzzers are re-
peatedly used to fuzz real programs.
For instance, as a concrete outcome
of our Shonan meeting, Google has
developed FuzzBench (https://github
.com/google/fuzzbench) and commit-
ted computational resources to eval-
uate submitted fuzzers on submitted
benchmarks. In addition to scientific
evaluation of technical advances, this
approach allows direct application of
these technical advances to a large
set of actual open source software to
make critical software systems safer
and more secure.

Measures of Fuzzer
Performance
During the evaluation of two fuzzing
techniques, which quantities should
we compare? What do we measure?
Today, fuzzers are typically evaluated
in terms of their effectiveness and ef-
ficiency. When we are interested in
security vulnerabilities, a fuzzer’s ef-
fectiveness for a software system is
determined by the total number of
vulnerabilities a fuzzer has the capa-
bility of finding. In contrast, a fuzz-
er’s efficiency for a software system is

84 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: ON SOFTWARE QUALITY

determined by the rate at which vul-
nerabilities are discovered.

Synthetic Bugs

Are synthetic bugs representative? For
evaluation, buggy software systems
can be generated efficiently simply by
injecting artificial faults into an exist-
ing system.19 We need to study empir-
ically whether such synthetic bugs are
indeed representative of real and im-
portant security vulnerabilities. If they
are not representative, how are they
different from actual vulnerabilities?
What can we do to make synthetic
bugs more like real bugs? Which
types of vulnerabilities are not repre-
sented in synthetic bug benchmarks?

Real Bugs

Are real bugs, which have previously been
discovered with other fuzzers, representa-
tive? Another approach is to collect
actual vulnerabilities that have been
found through other means into a
benchmark. However, this process
is tedious, such that the sample size
may be relatively small, which would
affect the generality of the results.
Second, the evaluation only estab-
lishes that the newly proposed fuzzer
finds at least the same vulnerabili-
ties that have been found before. It
does not evaluate how well the newly
proposed fuzzer finds new vulner-
abilities. How representative are the
discovered vulnerabilities of all (un-
discovered) vulnerabilities? We could
build a large, shared database of vul-
nerabilities in many software systems
that have been found by several fuzz-
ers or auditors over a period of time.

Coverage

Is coverage a good measure of fuzzer ef-
fectiveness? When no suitable bug

benchmark is available, we need
other means of evaluating the effec-
tiveness of a fuzzer. Code coverage
is the classic substitute measure. The
intuition is that vulnerabilities can-
not be exposed if the code containing
the vulnerability is never executed.
How effective is coverage really at
measuring the capability of a fuzzer
to expose vulnerabilities? We need
empirical studies that assess how
strongly the increase in different cov-
erage metrics correlates with an in-
crease in the probability of finding a
vulnerability. In addition to code cov-
erage, there are many other measures
of coverage, such as GUI, constraint,
model, grammar, or state coverage.
We should conduct empirical studies
to determine correlation and agree-
ment of various proxy measures of
effectiveness.

Time Budget

What is a fair choice of time budget? It is
not possible to measure fuzzer effec-
tiveness directly. If our measure is
the number of bugs found, then ef-
fectiveness is the total number of bugs
the fuzzer finds in the limit, i.e., when
given infinite time. Instead, research-
ers can derive a trivial lower bound
on the effectiveness, i.e., the total
number of bugs a fuzzer finds, by fix-
ing a time budget. Currently, this time
budget is typically anywhere between
one hour and one day. However, an
extremely effective fuzzer may take
some time to generate test cases, dur-
ing which time another fuzzer can
generate several orders of magnitudes
more test cases.20 If the chosen time
budget is too small, the faster, yet less
effective, fuzzer might appear more
effective. Thus, we should develop
standards that facilitate a fair choice
of time budget when evaluating the
effectiveness of a fuzzer.

Techniques Versus
Implementations

Technique Evaluation

How do we evaluate techniques instead
of implementations? To demonstrate
claims of the superiority of a proposed
technique, researchers compare an
implementation of the proposed tech-
nique to that of an existing technique.
In the implementation, the researcher
can make engineering decisions that
can substantially affect the effective-
ness of the fuzzer.21 For instance, a
comparison between the AFL gray-
box fuzzer against the KLEE white-
box fuzzer to determine whether a
white-box fuzzing technique outper-
forms a gray-box fuzzing technique
should always be taken with a grain
of salt. If possible, the proposed tech-
nique (e.g., an improvement to gray
box fuzzing) is implemented directly
into the baseline (e.g., AFL).

Survey
To request feedback from the larger
community on the identified challenges,
we surveyed further experts from indus-
try and academia. Our objective was to
identify points of contention, to add
challenges or reflections that we might
have overlooked, and to solicit concrete
pathways or initiatives for some of the
identified challenges. We sent an email
invitation to software security experts
who have previously published in fuzz-
ing or have professional work on auto-
matic vulnerability discovery. Out of 24
respondents, 14 work in academia and
10 work in industry; three attended the
Shonan meeting.

The survey participants marked
improving automation (71%), build-
ing a theory of fuzzing (63%), and
finding valid measures of fuzzer per-
formance (63%) as their top three
most important challenges. While

 MAY/JUNE 2021 | IEEE SOFTWARE 85

practitioners and researchers were
mostly in agreement, practitioners
demonstrated a particularly greater
interest in the development of
human-in-the-loop approaches (+0.8
Likert points). On average, a respon-
dent marked all identified challenges
as important or very important on a
5-point Likert scale. No major ad-
ditional challenges were identified.
Other survey results were directly
added to the corresponding sections.

F uzzing is used today in corpo-
rations in a significant man-
ner, often on a daily basis,

for detecting bugs and security flaws.
Despite advances in static analysis
and formal verification, fuzzing re-
mains the primary automatic mecha-
nism for vulnerability discovery in
most software products. However,
the security of our software systems is
in the hands of each and every soft-
ware engineer, including future volun-
teers who contribute to critical open
source software. We believe awareness
and education, in the small and in the
large, are of paramount importance.

One mechanism is the organiza-
tion of security-oriented hackathons
and Capture-the-Flag competitions.
For instance, the Build it Break it Fix
it contest from Maryland (https://
builditbreakit.org/) represents an
early successful attempt in this di-
rection. The community could also
move toward competitions between
fuzzing tools (such as FuzzBench,
Test-Comp, and Rode0Day) or orga-
nize regular fuzzing camps.

Another mechanism is to teach
about fuzzing in software engineer-
ing and cybersecurity courses. The
second and third authors were ac-
tively involved in designing and de-
livering such courses at the university
level. A key challenge in developing

such educational content is that the
students need to be exposed to sev-
eral tools, which takes a significant
amount of the students’ time. The re-
cent development of online books22
can alleviate some of these issues by
presenting an integrated resource and
repository for getting familiarized
with various variants of fuzzing.

Acknowledgments
We thank the participants at the
Shonan Meeting on Fuzzing and Sym-
bolic Execution and the survey respon-
dents. This work was partially funded
by the Australian Research Council
through a Discovery Early Career
Researcher Award (DE190100046).
This project has received funding
from European Research Council un-
der the European Union’s Horizon
2020 research and innovation pro-
gram (grant agreement 819141) and
from the United Kingdom Engineer-
ing and Physical Sciences Research
Council through grant EP/R011605/1.
This work was partially supported by
the National Satellite of Excellence in
Trustworthy Software Systems and
funded by National Research Foun-
dation Singapore under the National
Cybersecurity R&D program.

References
1. C. Cadar and K. Sen, “Symbolic

execution for software testing: Three

decades later,” Commun. ACM, vol.

56, no. 2, pp. 82–90, Feb. 2013. doi:

10.1145/2408776.2408795.

2. C. Cadar, D. Dunbar, and D. Engler,

“KLEE: Unassisted and automatic

generation of high-coverage tests

for complex systems programs,” in

Proc. USENIX Conf. Operating

Systems Design and Implementation

(OSDI’08), 2008, pp. 209–224. doi:

10.5555/1855741.1855756.

3. P. Godefroid, M. Y. Levin, and D.

Molnar, “Automated whitebox fuzz

testing,” in Proc. Network and

Distributed System Security Symp.

(NDSS 2008), 2008, pp. 1–16.

4. P. Godefroid, “Fuzzing: Hack, art, and sci-

ence,” Commun. ACM, vol. 63, no. 2, pp.

70–76, Jan. 2020. doi: 10.1145/3363824.

5. B. P. Miller, “Foreword for fuzzing

book,” Univ. of Wisconsin, Madison,

Mar. 22, 2009. [Online]. Available:

http://pages.cs.wisc.edu/~bart/fuzz/

Foreword1.html

6. S. K. Cha, T. Avgerinos, A. Rebert,

and D. Brumley, “Unleashing May-

hem on binary code,” in Proc. IEEE

Symp. Security and Privacy (S&P’12),

2012, pp. 380–394. doi: 10.1109/

SP.2012.31.

7. ““Mayhem” Declared Preliminary

Winner of Historic Cyber Grand

Challenge,” DARPA, Arlington,

VA, Aug. 4, 2016. [Online]. Avail-

able: https://www.darpa.mil/

news-events/2016-08-04

8. S. Nilizadeh, Y. Noller, and C. S.

Pasareanu, “DifFuzz: Differential

fuzzing for side-channel analysis,” in

Proc. Int. Conf. Software Engineer-

ing (ICSE 2019), 2019, pp. 176–187.

doi: 10.1109/ICSE.2019.00034.

9. C. Holler, K. Herzig, and A. Zeller,

“Fuzzing with code fragments,” in

Proc. USENIX Security Symp. (USE-

NIX Security 2012), 2012, pp. 1–38.

doi: 10.5555/2362793.2362831.

10. N. Stephens et al., “Driller: Augment-

ing fuzzing through selective sym-

bolic execution,” in Proc. Network

and Distributed System Security

Symp. (NDSS 2016), 2016, pp. 1–16.

doi: 10.14722/ndss.2016.23368.

11. M. Böhme, V.-T. Pham, M.-D.

Nguyen, and A. Roychoudhury,

“Directed greybox fuzzing,” in

Proc. ACM Conf. Computer

and Communications Security

(CCS’17), 2017, pp. 2329–2344. doi:

10.1145/3133956.3134020.

12. P. D. Marinescu and C. Ca-

dar, “KATCH: High-coverage

86 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: ON SOFTWARE QUALITY

testing of software patches,” in

Proc. ACM Symp. Foundations

Software Engineering (ESEC-FSE

2013), 2013, pp. 235–245. doi:

10.1145/2491411.2491438.

13. M. Böhme, V.-T. Pham, and A.

Roychoudhury, “Coverage-based

greybox fuzzing as Markov chain,”

in Proc. ACM Conf. Computer

and Communications Security

(CCS’16), 2016, pp. 1032–1043. doi:

10.1145/2976749.2978428.

14. A. Rajan, S. Sharma, P. Schrammel,

and D. Kroening, “Accelerated test

execution using GPUs,” in Proc. Int.

Automated Software Engineering

Conf. (ASE 2014), 2014, pp. 97–102.

doi: 10.1145/2642937.2642957.

15. C. L. Goues, M. Pradel, and A.

Roychoudhury, “Automated program

repair,” Commun. ACM, vol. 62,

no. 12, pp. 56–65, Dec. 2019. doi:

10.1145/3318162.

16. H. Shi et al., “Industry practice of

coverage-guided enterprise Linux

kernel fuzzing,” in Proc. ACM Symp.

Foundations Software Engineer-

ing (ESEC-FSE 2019), 2019, pp.

986–995. doi: 10.1145/3338906.

3340460.

17. A. Filieri, C. S. Pasareanu, and

W. Visser, “Reliability analysis in

Symbolic PathFinder,” in Proc. Int.

Conf. Software Engineering (ICSE

2013), 2013, pp. 622–631. doi:

10.5555/2486788.2486870.

18. J. Burnim, S. Juvekar, and K. Sen,

“WISE: Automated test generation

for worst-case complexity,” in Proc.

2009 Int. Conf. Software Engineer-

ing (ICSE 2009), pp. 463–473. doi:

10.1109/ICSE.2009.5070545.

19. B. Dolan-Gavitt et al., “LAVA:

Large-scale automated vulnerability

addition,” in Proc. IEEE Symp. Se-

curity and Privacy (IEEE S&P 2016),

2016, pp. 110–121. doi: 10.1109/

SP.2016.15.

20. G. Klees, A. Ruef, B. Cooper, S. Wei,

and M. Hicks, “Evaluating fuzz test-

ing,” in Proc. ACM Conf. Computer

and Communications Security (CCS

2018), 2018, pp. 2123–2138. doi:

10.1145/3243734.3243804.

21. E. F. Rizzi, S. Elbaum, and M. B.

Dwyer, “On the techniques we cre-

ate, the tools we build, and their

misalignments: A study of KLEE,” in

Proc. Int. Conf. Software Engineer-

ing (ICSE 2016), 2016, pp. 132–143.

doi: 10.1145/2884781.2884835.

22. A. Zeller, R. Gopinath, M. Böhme,

G. Fraser, and C. Holler, The Fuzz-

ing Book. 2019. [Online]. Available:

https://www.fuzzingbook.org/

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

MARCEL BÖHME is an Australian Research Council Discov-

ery Early Career Researcher Award Fellow and a senior

lecturer at Monash University, Melbourne, VIC, 3168, Australia.

He leads his research group with a reproducibility policy

(https://mboehme.github.io/manifesto), which means that

experiment data and tools are usually published with the

peer-reviewed article to facilitate open science. He received

his Ph.D. from the National University of Singapore and is a

member of the Association for Computing Machinery. Further

information about him can be found at https://mboehme

.github.io/. Contact him at marcel.boehme@acm.org.

CRISTIAN CADAR is a professor in the Department of Com-

puting at Imperial College London, London, SW7 2AZ, U.K.,

where he leads the Software Reliability Group. His research

interests span the areas of software engineering, computer

systems, and software security, with a focus on building

practical techniques for improving the reliability and security

of software systems. Cadar received his Ph.D. in computer

science from Stanford University. He is a Member of IEEE and

the Association for Computing Machinery. Further information

about him can be found at https://www.doc.ic.ac.uk/~cristic/.

Contact him at c.cadar@imperial.ac.uk.

ABHIK ROYCHOUDHURY is Provost’s Chair professor of

computer science at the National University of Singapore,

117417, Singapore. His research interests are in program

analysis, software security, and trustworthy systems. He is the

director of the National Satellite of Excellence in Trustworthy

Software Systems, 117417, Singapore. Roychoudhury received

his Ph.D. in computer science from Stony Brook University.

Further information about him can be found at https://www

.comp.nus.edu.sg/~abhik/. He is a Senior Member of IEEE

and a distinguished member of the Association for Computing

Machinery. Contact him at abhik@comp.nus.edu.sg.

