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Abstract. Modern concurrent programming languages like Java and
C# have a programming language level memory model; it captures the
set of all allowed behaviors of programs on any implementation platform
— uni- or multi-processor. Such a memory model is typically weaker than
Sequential Consistency and allows reordering of operations within a pro-
gram thread. Therefore, programs verified correct by assuming Sequen-
tial Consistency (that is, each thread proceeds in program order) may
not behave correctly on certain platforms! The solution to this problem
is to develop program checkers which are memory model sensitive. In this
paper, we develop such an invariant checker for the programming lan-
guage C#. Our checker identifies program states which are reached only
because the C# memory model is more relaxed than Sequential Con-
sistency. Furthermore, our checker identifies (a) operation reorderings
which cause such undesirable states to be reached, and (b) simple pro-
gram modifications — by inserting memory barrier operations — which
prevent such undesirable reorderings.

1 Introduction

Modern mainstream programming languages like Java and C# support multi-
threading as an essential feature of the language. In these languages multiple
threads can access shared objects. Moreover, synchronization mechanisms exist
for controlling access to shared objects by threads. If every access to a shared
object by any thread requires prior acquisition of a common lock, then the
program is guaranteed to be “properly synchronized”. On the other hand, if
there are two accesses to a shared object/variable v by two different threads, at
least one of them is a write, and they are not ordered by synchronization — the
program is then said to contain a data race, that is, the program is improperly
synchronized. Improperly synchronized programs are common for more than one
reason — (a) programmers may want to avoid synchronization overheads for
low-level program fragments which are executed frequently, (b) programmers
may forget to add certain synchronization operations in the program, or (c)
programmers forget to maintain a common lock guarding accesses to some shared
variable v since there are often many lock variables in a real-life program.

Problem Statement The work in this paper deals with formal verification (and
subsequent debugging) of multi-threaded C# programs which are improperly
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synchronized. As a simple example consider the following schematic program
fragment, and suppose initially x = y = 0. Moreover l1, l2 are thread-local
variables while x, y are shared variables.

x = 1;
y = 1;

l1 = y;
l2 = x;

If this program is executed on a uni-processor platform, we cannot have l1 =
1, l2 = 0 at the end of the program. However, on a multiprocessor platform
which allows reordering of writes to different memory locations this is possible.
On such a platform, the writes to x, y may be completed out-of-order. As a
result, the following completion order is possible 〈y = 1, l1 = y, l2 = x, x = 1〉.

Since an improperly synchronized program can exhibit different sets of be-
haviors on different platforms, how do we even specify the semantics of such
programs and reason about them? Clearly, we would like to reason about pro-
grams in a platform-independent fashion, rather than reasoning about a pro-
gram’s behaviors separately for each platform. Languages like Java, C# allow
such platform-independent reasoning by defining a memory model at the pro-
gramming language level. Now, what does a memory model for a programming
language like C# mean? The C# memory model (also called the .NET mem-
ory model [15]) is a set of abstract rules which capture the behaviors of multi-
threaded programs on any implementation platform — uni-processor or multi-
processor. Given a multi-threaded C# program P , the set of execution traces
of P permitted under the .NET memory model is a superset of the traces ob-
tained by interleaving the operations of program P ’s individual threads. The
operations in any thread include read/write of shared variables and synchro-
nization operations like lock/unlock. The .NET memory model permits certain
operations within a thread to be completed out-of-order, that is, the program-
ming language level memory model essentially specifies which reorderings are
allowed. So, to consider all program behaviors we need to take into account
— (a) arbitrary interleavings of threads, and (b) certain (not all) reorderings
within a thread. This makes the formal verification of improperly synchronized
multi-threaded programs especially hard.

Basic Approach In this paper, we develop a memory-model sensitive invariant
checker for the programming language C#. Our checker verifies a C# program
at the level of bytecodes. The checker proceeds by representing and managing
states at the level of C#’s stack-based virtual machine. Moreover, the checker’s
state space exploration takes the .NET memory model into account. In other
words, it allows the reorderings permitted by .NET memory model to explore
additional reachable states in a program. Thus, the programming language level
memory model is treated as a formal contract between the program and the lan-
guage implementation; we then take this contract into account during software
verification.

Furthermore, we note that programmers usually understand possible behav-
iors of a multi-threaded program by using a stronger model called Sequential
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Consistency [10]. An execution model for multi-threaded programs is sequen-
tially consistent if for any program P (a) any execution of P is an interleaving of
the operations in the constituent threads (b) the operations in each constituent
thread execute in program order. Thus, if we are model checking an invariant ϕ,
our checker may uncover counter-example traces which (a) violate ϕ , and (b)
are not allowed under Sequential Consistency. Disallowing such counter-example
traces requires disabling reorderings among operations. This is usually done by
inserting memory barriers or fence operations; a memory barrier is an operation
such that instructions before the barrier must complete before the starting of
instructions after the barriers. Since memory barriers are expensive operations
(in terms of performance) we use a maxflow-mincut algorithm to insert minimal
number of barriers/fences for ruling out program states which are unreachable
under Sequential Consistency.

Technical Contributions Our work involves the following steps — which
taken together constitute the technical contributions of this paper.

– Memory Model Specification We first understand and formally specify the
.NET memory model. Previous works [23] have investigated this issue and
discussed certain corner cases in the .NET memory model description. Unlike
[23], our specification is not operational/executable, making it more acces-
sible to system designers (who may not have formal methods background).

– The Checker We use the .NET memory model specification to develop a
memory model sensitive invariant checker at the level of bytecodes. It allows
all execution traces permitted by .NET memory model. The checker issues
operations in program order but allows them to complete out-of-order as
long as the reordering is permitted by .NET memory model.

– Memory Barrier Insertion Our checker is useful for uncovering all execution
traces allowed by the .NET memory model. However, when the programmer
finds “unexpected” execution traces using our checker how does (s)he disal-
low this behavior? We use the well-known maxflow-mincut algorithm [7] to
rule out program states unreachable under Sequential Consistency. The min-
cut yields (a minimal number of) places in the program where the memory
barriers are to be inserted.

In Section 3 we show a simple working example to explain our identification and
removal of undesirable program behaviors.

2 Related Work

Programming language level memory models are relatively new. In the recent
years, substantial research efforts have been invested in developing the Java
Memory Model (e.g. see [1, 11, 13]). These works mostly focus on what should
be the programming language level memory model for Java.

For the .NET memory model, a formal executable specification based on
Abstract State Machines has been discussed in [23]. In this paper, we formally
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present the .NET memory model in a tabular non-operational format — clearly
showing which pairs of operations can be reordered. This makes the formal spec-
ification more accessible to system designers as well. Furthermore, even though
our memory model specification itself is not executable (unlike [23]) we show
how it can be exploited for exploring the state space of a program.

As far as program verification is concerned, typically most works on multi-
threaded program verification are oblivious of the programming language mem-
ory model. For all such works, the execution model implicitly assumed is Se-
quential Consistency — operations in a thread proceed in program order and
any interleaving among the threads is possible. Integrating programming lan-
guage level memory models for reasoning about programs has hardly been stud-
ied. In particular, our previous work [21] integrated an operational specification
of the Java Memory Model for software model checking. Also, the work of [24]
integrates an executable memory model specification for detecting data races in
multi-threaded Java programs.

Our checker verifies programs at the level of bytecodes; its state space rep-
resentation has similarities with the Java Path Finder (JPF) model checker [9].
However, JPF is not sensitive to Java memory model, and it implicitly considers
sequential consistency as the program execution model. In fact, works on byte-
code level formal reasoning (e.g., see [18] and the articles therein) typically have
not considered the programming language level memory model.

The work of [12] develops a behavioral simulator to explore program be-
haviors allowed by the Java memory model. Apart from the differences in pro-
gramming language (Java and C#) there are at least two conceptual differences
between our work and [12]. First of all, their explorer works at the level of ab-
stract operations such as read/write/lock/unlock whereas our checker operates
at the lower (and more realistic) bytecode level. Secondly, and more importantly,
our tool does not only explore all program executions allowed by the .NET mem-
ory model. It can also suggest which barriers are to be inserted for disallowing
program executions which are not sequentially consistent but are allowed by
the (more relaxed) .NET memory model. This technique is generic and is not
restricted to C#.

Finally, an alternative to our strategy of inserting memory barriers might be
to mark all shared variables in the program as volatile [14]. We however note
this does not work due to the weak definition and implementation of volatiles
in C#. In particular, C# language documents [14] and C# implementations
(e.g., .NET 2.0) seem to allow reordering of volatile writes occurring before
volatile reads in a program thread. On the other hand, memory barriers have
a clear well-understood semantics but they incur performance overheads. For
this reason, given an invariant property ϕ we insert minimal memory barriers in
the program text which disallow all non-sequentially consistent execution traces
violating invariant ϕ. Note that we are inserting memory barriers to disallow
execution traces (in a state transition graph) which violate a given invariant
property. Thus, we do not seek to avoid all data races, our aim is to avoid
violations of a given program invariant.
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3 A Working Example

We consider Peterson’s mutual exclusion algorithm [20] to illustrate our ap-
proach. The algorithm uses two lock variables and one shared turn variable to
ensure mutually exclusive access to a critical section; a shared variable counter
is incremented within the critical section. Initially, we have lock0 = lock1 =
turn = counter = 0.

Thread 1
1. lock0 = 1;

2. turn = 1;

3. while(1){
4. if (lock1!=1)||(turn==0)

5. break; }
6. counter++;
7. lock0 = 0;

Thread 2
A. lock1 = 1;

B. turn = 0;

C. while(1) {
D. if (lock0!=1)||(turn==1)

E. break; }
F. counter++;
G. lock1 = 0;

In this program we are interested in the value of the variable counter when
the program exits. Under sequential consistency, the algorithm is proven to allow
only a single thread running in the critical section at the same time and thus
when the program exits, we always have counter == 2. However when we run
the program in a relaxed memory model (such as the .NET memory model) we
can observe counter == 1 at the end. One execution trace that can lead to such
an observable value is as follows.

Thread 1 Thread 2
write lock0 = 1 (line 1)
write turn = 1 (line 2)
read 0 from lock1, break (line 4,5)
read 0 from counter (line 6)

write lock1 = 1 (line A)
write turn=0 (line B)

At this point, Thread 1 can write 1 to counter (line 6), then write 0 to lock0
(line 7). However if the writes to counter and lock0 are reordered, lock0 = 0
is written while counter still holds the old value 0. Thread 2 reads lock0 = 0,
it will break out of its loop and load the value of counter which is now still 0.
So both threads will write the value 1 to counter, leading to counter == 1 at
the end of the program.

Finding out such behaviors is a complex and error-prone task if it is done
manually. Moreover even after we find them, how do we disable such behaviors?
A quick way to fix the problem is to disable all reorderings within each thread;
this clearly ensures Sequential Consistency. Recall that a memory barrier re-
quires all instructions before the barrier to complete before the starting of all
operations after the barrier. We can disable all reorderings allowed by a given
relaxed memory model by inserting a memory barrier after each operation which
can possibly be reordered. This will lead to very high performance overheads.
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Note that running the above code with all shared variables being volatile also
does not work. In Microsoft .NET Framework 2.0 on Intel Pentium 4, the variable
counter is still not always observed to be 2 at the end of the program. This
seems to be due to the possibility of (volatile-write → volatile-read) reorderings,
an issue about which the CLI specification is also ambiguous. We discuss this
matter in more details in the next section.

In this paper, we provide a solution to the problem of finding additional
behaviors under a relaxed memory model and then disabling those behaviors
without compromising program efficiency. Using our checker we can first explore
all reachable states under Sequential Consistency and confirm that counter == 2
is guaranteed at the end of the program. This amounts to verifying the invariant
property AG((pc == end) ⇒ (counter == 2)) expressed in Computation Tree
Logic (CTL). Here pc stands for the program counter (capturing the control
locations of both the threads) and end stands for the last control location (where
both threads have terminated). We then check the same invariant property under
the .NET memory model; this check amounts to exploring more reachable states
from the initial state (as compared to the set of reachable states computed
under Sequential Consistency). We find that under the .NET memory model,
our property can be violated since counter == 1 is possible at the end of the
program. The checker does a full reachable state space exploration and returns
all the counter-example traces, that is, all possible ways of having counter �= 2
at the end of the program.

However, more importantly, our checker does not stop at detecting possible
additional (and undesirable) behaviors under the .NET memory model. After
finding that the property AG((pc == end) ⇒ (counter == 2)) is violated under
.NET memory model, our checker employs a memory barrier insertion heuris-
tic to suggest an error correction strategy; it finds three places in each thread
for inserting memory barriers. We only show the modified code for Thread1;
Thread2’s modification is similar.

lock0 = 1; MemoryBarrier; turn = 1;

while(1){
MemoryBarrier; if((lock1 != 1) || (turn == 0)) break;

}
counter++; MemoryBarrier; lock0 = 0;

The inserted memory barriers are sufficient to ensure that the algorithm will
work correctly under the relaxed memory model of C# (while still allowing the
compiler/hardware to reorder other operations for maximum performance). This
claim can again be verified using our checker — that is, by running the checker
on the program with barriers under the relaxed .NET memory model we can
verify that AG((pc == end) ⇒ (counter == 2)) holds. Moreover, the number of
inserted barriers is also “optimal” — that is, at least so many barriers are needed
to disallow all possible violations of AG((pc == end) ⇒ (counter == 2)) under
the .NET memory model.
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4 .NET Memory Model and its Implementation

In this section, we first describe the programming language level memory model
for C#, also called the .NET memory model, based on the information in two
Microsoft’s official ECMA standard document [15] and [14].

We present which reorderings are allowed by .NET memory model as a re-
ordering table. We first describe the bytecode types it considers and then present
allowed bytecode reorderings. The bytecode types are:

– Volatile reads/writes: Reads/writes to volatile variables (Variables in a C#
program can be marked by the programmer by the keyword “volatile” indi-
cating that any access to such a variable should access its master copy).

– Normal reads/writes: Reads/writes to variables which have not been marked
as volatile in the program.

– Lock/unlock: The synchronization operations.

Among these operations, the model allows the reorderings summarized by Ta-
ble 1. The model leaves a lot of possibility for optimization as long as program
dependencies within a thread are not violated (e.g., store x; load x is never
executed out-of-order due to data dependency on x). While data-dependency
removal may allow more optimizations, the CLI documents explicitly prohibit
doing so — see execution order rules in section 10.10 of [14]. Furthermore, here
we are presenting the memory model in terms of allowed bytecode reorderings
and not in terms of reorderings of abstract program actions. Optimizations which
remove dependencies are usually performed by the compiler (the hardware plat-
forms respect program dependencies) and hence would already be reflected in
the bytecode.

Reorder 2nd bytecode

1st bytecode Read Write Volatile Read Volatile Write Lock Unlock

Read Yes Yes Yes No Yes No

Write Yes Yes Yes No Yes No

Volatile-Read No No No No No No

Volatile-Write Yes Yes Yes No Yes No

Lock No No No No No No

Unlock Yes Yes Yes No No No

Table 1. Bytecode reordering allowed by the .NET memory model

Our reordering table is constructed based on the following considerations.

– Normal Reads and Writes are freely reordered.
– Locks and Unlocks are never reordered.
– Volatile Reads and writes have acquire-release semantics, that is, operations

after (before) volatile-read (volatile-write) cannot be moved to before (after)
the volatile-read (volatile-write).
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An interesting case is when a volatile write is followed by a volatile read (to
a different variable). If we adhere to a strict ordering of all volatile operations,
this reordering is disallowed.1 But it seems that Microsoft’s .NET 2.0 allows this
reordering on Peterson’s mutual exclusion example shown in Section 3 e.g., the
reads in Line 4 (or Line D) can get reordered w.r.t. writes in Lines 1,2 (Lines A,
B) thereby leading to violation of mutual exclusion. The ECMA documents [15]
and [14] are also silent on this issue; they only mention that operations cannot
be moved before (after) a volatile read (volatile write), thus leaving out the case
when a volatile write is followed by a volatile read.

Our checker implements the .NET Common Language Infrastructure (CLI)
instruction set specified in [15]. We allow reordering of operations by (a) re-
quiring all bytecodes to issue in program order and (b) allow certain bytecodes
(whose reordering is allowed by the memory model) to complete out-of-order.
Allowing reorderings according to the .NET memory model involves additional
data structures in the state representation of our checker. In particular, for each
thread we now need to maintain a list of “incomplete” bytecodes — bytecodes
which have been issued but have not completed. The execution model allows a
program thread to either execute its next bytecode or complete one of the incom-
plete bytecodes. We now proceed to elaborate on the state space representation
and the reachability analysis.

5 Invariant Checker

The core of our checker is a virtual machine that executes .NET Common Lan-
guage Infrastructure (CLI) bytecode using explicit state representation. It sup-
ports many threads of execution by interleaving issuing and completing of byte-
codes from all threads. We implemented only a subset of the CLI features. Fea-
tures such as networking, I/O, class polymorphism and exception handling are
not included in the implementation.

5.1 State Representation

We first consider the global state representation without considering the effects
of the reorderings allowed by .NET memory model. To describe a global state
we use the notion of data units of the CLI virtual machine. The virtual machine
uses data units to hold the value of variables and stack items in the program.
Each data unit has an identifier (for it to be referred to), and a modifiable value.
The type of the modifiable value can be (a) one of the primitive data types, (b)
reference types (pointers to objects), or (c) objects. New data units are created
when a variable or a new object instance is allocated, or when a load instruction
is executed. A global state of a program now consists of the following data units,
corresponding to the different memory areas of the CLI virtual machine [15].
1 Note that even if we allow (volatile-write → volatile-read) reorderings, we can still

ensure that all writes to volatile variables are seen in the same order from all threads
of execution.
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Program counter for each thread Each thread has a program counter to
keep track of the next bytecode to be issued.

Stack for each thread Each thread has a stack which is used by most byte-
codes to load/store data, pass parameters and return values from functions
(or certain arithmetic / branch operations).

Heap The virtual machine has a single heap shared among all threads. Object
instances and arrays are allocated from the heap. A data unit is created for
each object as well each of its fields.

Static variables A data unit is allocated for each static variable on its first use
and this data unit is maintained for subsequent accesses.

Frame Frames store local variables, arguments and return address of a method.
Each time a method is called, a new frame is created and pushed into
frame stack; this frame is popped when the method returns. Each local
variable/argument is assigned one data unit.

All of the above data areas of the virtual machine are included in the global
state space representation of a program. Now, in order to support the memory
model, a new data structure is added to each thread: a list of incomplete byte-
codes (given in program order). Each element of this list is one of the following
type of operations — read, write, volatile read, volatile write, lock, unlock (the
operation types mentioned in the .NET memory model, see Table 1). This com-
pletes the state space representation of our checker. We now describe the state
space traversal.

5.2 Search Algorithm

Our checker performs reachability analysis by an explicit state depth-first search
(starting from the initial state) over the state space representation discussed in
the preceding. Given any state, how do we find the possible next states? This is
done by picking any of the program threads, and letting it execute a single step.
So, what counts as a single step for a program thread? In the usual model check-
ers (which implicitly assume Sequential Consistency), once a thread is chosen to
take one step, the next operation from that thread forms the next step. In our
checker the choices of next-step for a thread includes (a) issuing the next oper-
ation and (b) completing one of the pending operations (i.e., operations which
have started but not completed). The ability to complete pending operations
out of order allows the checker to find all possible behaviors reachable under a
given memory model (in this case the .NET memory model).

Thus, the search algorithm in our checker starts from the initial state, per-
forms depth-first search and continues until there are no new states to be tra-
versed. In order to ensure termination of this search, our checker of course needs
to decide whether a given state has been already encountered. In existing ex-
plicit state software model checkers, this program state equivalence test is often
done by comparing the so-called memory image in the two states, which includes
the heap, stacks, frames and local variables. Our checker employs a similar test;
however it also considers the list of incomplete operations in the two states.
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Formally, two states s and s′ with two sets of data units D = {d1, d2, ..., dn}
and D′ = {d′1, d′2, ..., d′n} are equivalent if and only if the program counters in
all threads are equal and there exists a bijective function f : D → D′ satisfying:

– For all 1 ≤ i ≤ n, the value stored in di and f(di) are equal.
– A static variable x in s is allocated data unit di if and only if it is allocated

data unit f(di) in s′.
– Data unit di is the kth item on the stack (or frame, local variable, argument

list, list of incomplete bytecodes) of the jth thread in s iff f(di) is the kth

item on the stack (or frame, local variable, argument list, list of incomplete
bytecodes) of the jth thread in s′.

– The reference type data unit di points to data unit dj in s if and only if
f(di) points to f(dj) in s′.

In our implementation, the global state representation is saved into a single
sequence so that if two state’s sequences are identical, the two states are equiv-
alent. Like the Java Path Finder model checker [9], we also use a hash function
to make the state comparison efficient.

Search Optimizations By allowing program operations to complete out-of-
order, our checker explores more behaviors than the normal model checkers based
on Sequential Consistency. We employ the following search optimization to speed
up our checker. For each thread, we classify its bytecodes into two categories
— thread-local and non thread-local. In particular, the following are consid-
ered thread-local bytecodes — load/store of local variables, method invocation,
memory allocation, computation and control transfer operations; all others are
considered non thread-local bytecodes. Now, our checker exploits this catego-
rization by trying to atomically execute sequences of thread-local bytecodes in
a thread. Furthermore, our checker does not allow two thread-local operations
to execute out-of-order even if such reordering is allowed by the .NET memory
model. The justification of this optimization is simple — even if thread-local
operations execute out-of-order, the effects of such additional behavior are not
observable by other threads.

6 Disabling Undesirable Program Behaviors

Given a multi-threaded C# program, we are interested in computing the set
of reachable states from the initial state. The set of reachable states under the
.NET memory model is guaranteed to be a superset of the reachable state set
under Sequential Consistency. In this section, we discuss tactics for disallowing
the additional states reached under the .NET memory model. Since these addi-
tional states are reached due to certain reordering of operations within program
threads, we can avoid those states if such reorderings are disabled by inserting
barriers/fences in the program text.

While doing reachability analysis we build (on-the-fly) the state transition
graph. Each vertex represents one state, each directed edge represents a transi-
tion from one state to another. Consider the state transition system constructed
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for the .NET memory model. Because this memory model is more relaxed than
Sequential Consistency, we can divide the graph edges into two types: solid edges
correspond to transitions which can be performed under the Sequential Consis-
tency (complete the bytecodes in order within a thread) and dashed edges cor-
respond to transitions which can only be performed under .NET memory model
(requires completing bytecodes out-of-order). From initial state, if we traverse
only solid edges we can visit all states reachable under Sequential Consistency.
We color the corresponding vertices as white and the remaining vertices as black.
The black vertices denotes the additional states which are reached due to the
reorderings allowed by the relaxed memory model (see Figure 1 for illustration).
Note that if (a) we are seeking to verify an invariant property ϕ under Sequential
Consistency as well as the .NET model, (b) ϕ is true under Sequential Consis-
tency and (c) ϕ is false under the .NET memory model — the states violating
ϕ must be black states. However, not all the black states may denote violation
of ϕ as shown in the schematic state transition graph of Figure 1.

Initial state

Violating states

Fig. 1. State transition graph under a relaxed memory model; only white states can
be reached under Sequential Consistency. A cut is shown separating the initial state
from “violating” states.

Basic Mincut Formulation To prevent the execution from reaching the violat-
ing black states, we need to remove some of the edges from the graph. The solid
edges cannot be removed because their corresponding transitions are allowed
under Sequential Consistency. The dashed edges can be removed selectively by
putting barriers. However note that the barriers will appear in the program text,
so inserting one barrier in the program can disable many dashed edges in the
state transition graph. We find out the minimal number of dashed edges to be
removed so that the violating black states become unreachable; we then find
out the memory barriers to be inserted in the program text for removing these
dashed edges. Now we describe our strategy for computing the minimal number
of dashed edges to be removed. We compute the minimum cut C = {e1, e2, ..., en}
where e1, . . . , en are dashed edges in the state transition graph such that there
is no directed path from the initial state to any violating black state (denoting
violation of the invariant ϕ being verified) without passing through an edge in
C. We find the minimal set of dashed edges by employing the well-known Ford-
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Fulkerson maxflow-mincut algorithm [7]. To find the minimal number of dashed
edges in the state transition graph as the mincut, we can set the capacity of each
dashed edge to 1 and each solid edge to infinity.

b1, b2,  …, bk, ..., bm

complete b1 complete b2 complete bk complete bm

b1, b2,  …, bk-1,bk+1 ..., bm

s

t

Fig. 2. Transitions from a state, a dashed edge indicates the transition requires an
out-of-order completion of bytecodes

How can we locate the barrier insertion point in the program such that a given
dashed edge in the state transition graph is removed? Recall that a dashed edge
in the state transition graph denotes a state transition which is caused by out-of-
order completion of a bytecode. In Figure 2 state s has m incomplete bytecodes
〈b1, b2, . . . , bk, . . . , bm〉 (given in program order). The transition that completes
bytecode b1 does not require an out-of-order completion of bytecodes while the
transitions that complete bk with 2 ≤ k ≤ m do. The removal of edge from state
s to state t (corresponding to the completion of bytecode bk, see Figure 2) is
identified with inserting a barrier before bytecode bk.

Modified Mincut Formulation Note that the minimal set of dashed edges
in the state transition graph may not always produce the minimal number of
barriers in the program text. At the same time, inserting minimal number of
barriers in the program text may not be desirable in the first place since they do
not indicate the actual number of barriers encountered during program execu-
tion.2 However if we want to minimize the number of barriers inserted into the
program, we can do so by simply modifying the capacities of the dashed edges
in the state transition graph. We partition the dashed edges in the state tran-
sition graph into disjoint partitions s.t. edges e, e′ belong to the same partition
iff disabling of both e and e′ can be achieved by inserting a single barrier in
the program. We can then assign capacities to the edges in such a way that the
sum of capacities of the edges in each partition is equal — thereby giving equal
importance to each possible program point where a barrier could be inserted.
The maxflow-mincut algorithm is now run with these modified capacities (of the

2 A single barrier inside a loop which is iterated many times can introduce higher
performance overheads than several barriers outside the loop.
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dashed edges); the solid edges still carry a weight of infinity to prevent them
from appearing in the min cut.

Complexity The Maxflow-mincut algorithm has time complexity of O(m ∗ f)
where m is the number of edges in the state transition graph and f is the value
of the maximum flow. The quantity f depends on how the capacities of the state
transition graph edges are assigned. In all our experiments, f was less than 150
for all our test programs (using basic or modified mincut formulation).

7 Experiments

Benchmark Description # bytecodes

peterson Peterson’s Mutual exclusion algorithm [20] 120

tbarrier Tournament barrier algorithm —
Barrier benchmark from [8] 153

dc Double-checked locking pattern [22] 77

rw-vol Read-after-Write Java volatile semantic test by [19] 92

rowo Multiprocessor diagnostic tests ARCHTEST (ROWO)[4] 87

po Multiprocessor diagnostic tests ARCHTEST (PO) [4] 132

Table 2. Test Programs used in our Experiments

In this section, we report the experiments used to evaluate our checker. The
multi-threaded programs used in our experiments are listed in Table 2. Out
of these, peterson, and tbarrier are standard algorithms that work correctly
under Sequential Consistency, but require more synchronizations to do so in
the C# memory model. The tournament barrier algorithm (taken from Java
Grande benchmarks) provides an application program level implementation of
the concurrency primitive “barrier” (different from our memory barriers which
prevent reordering of operations) which allows two or more threads to handshake
at a certain program point.

The programs rw-vol and dc have been discussed recently in the context of
developing the new Java memory model [1]. In particular, dc has been used in
recent literature as a test program to discuss the possible semantics of volatile
variables in the new Java memory model [6]; this program involves the lazy
initialization of a shared object by several threads.

The other programs rowo and po are test programs taken from the ARCHT-
EST benchmark suite [4, 17]. ARCHTEST is a suite of test programs where the
programs have been systematically constructed to check for violations of mem-
ory models (by generating violation of memory ordering rules imposed by the
memory models). In particular, the program rowo checks for violation of order-
ing between multiple reads as well as multiple writes within a program thread;
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the program po checks for violation of program order among all operations in a
program thread. These programs are effective for evaluating whether our checker
can insert memory barriers to avoid behaviors not observable under Sequential
Consistency.

For all of the above benchmarks we employ our checker to find all reachable
states under (a) Sequential Consistency and (b) .NET memory model. For the
latter, recall that we allow each program thread to maintain a list of incomplete
bytecodes so that bytecodes can be completed out of order. For our experiments
we do not impose a bound on the size of this list of incomplete bytecodes. So
in practice it is bounded only by the (finite) number of bytecodes in a program
thread. This exposes all possible behaviors of a given program under the .NET
memory model.

# # S.C. .NET
Benchmark states transitions Time (secs) #

(secs) CE FR Mflow Total barriers

peterson 903 2794 0.09 0.05 1.06 0.04 1.10 3

tbarrier 1579 5812 0.21 1.57 3.99 0.05 4.04 3

dc 228 479 0.10 0.11 0.27 0.03 0.30 1

rw-vol 1646 5616 0.20 0.29 2.75 0.23 2.98 4

rowo 1831 4413 0.16 0.23 1.87 0.05 1.92 2

po 6143 22875 0.29 0.60 13.07 1.48 14.55 6

Table 3. Summary of Experimental Results. Column 4 shows the time to perform
full reachability analysis under Sequential Consistency. Under the heading .NET, the
CE column shows time to find the first counter-example, while FR shows time for full
reachability analysis under .NET memory model. The column Mflow indicates the time
to run the Maxflow algorithm for inserting barriers. The Total column denotes time
for full reachability and barrier insertion, that is, Total = FR + Mflow.

Our checker for C# programs is itself implemented in C#. It takes the bi-
naries of the benchmarks, disassembles them and checks the bytecode against
a given invariant property via state space exploration. For each of our bench-
marks in Table 2 we provide a program invariant for the reachability analysis
to proceed and report violations. For the Peterson’s algorithm (peterson) this
invariant is the mutually exclusive access of shared resource. The invariant for
tbarrier follows from the definition of the concurrency primitive “barrier”. For
the Double checked Locking pattern (dc) this invariant states that whenever the
shared object’s data is read, it has been initialized. The invariant for rw-vol
benchmark is obtained from [19]. For the ARCHTEST programs rowo and po,
this invariant is obtained from the rules of read/write order and program order
respectively (see [4, 17]).

Our checker performs reachability analysis to explore the reachable states
under Sequential Consistency and the .NET memory model. Clearly, the reach-
ability analysis under the .NET memory model takes more time since it involves
exploring a superset of the states reachable under Sequential Consistency. In
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Table 3 we report the running time of our checker for obtaining the first counter-
example (column CE) and for performing full reachability analysis (column FR).
The time taken to find the first counter-example is not high; so if the user is
only interested in detecting a violation our checker can produce one in a short
time. The time to perform full reachability analysis (thereby finding all counter-
example traces) is tolerable, but much larger than the time to find one counter-
example. All experiments were conducted on a 2.2 Ghz machine with 2.5 GB of
main memory.

After exploring all reachable states under the .NET memory model, our
checker can insert barriers via a maxflow-mincut algorithm (we used the “Modi-
fied Mincut Formulation” presented in Section 6). The time to run the maxflow
algorithm is small as shown in column Mflow of Table 3. The results of the bar-
rier insertion step are shown in the # barriers column of Table 3. This column
shows the total number of barriers inserted by our tool into the program so that
any program execution trace which (a) violates the invariant being verified and
(b) is disallowed by Sequential Consistency, — is not observed even when the
program is run under the relaxed .NET memory model.

Interestingly, the reader may notice that our checker inserts only one barrier
for the Double Checked Locking pattern (same as the solution in [16], [3] and
[2]) while the solution using ”explicit memory barriers” given in [6] suggests
putting two barriers. Both solutions are correct, because they work for different
memory models. Our checker only inserts those barriers that enforce the pro-
gram’s correctness under a .NET memory model compliant implementation. It
will not insert barriers to disable behaviors which are not even allowed by the
.NET memory model (the additional barrier in [6] is needed if the memory model
allows reorderings which do not respect program dependencies).

More details about our checker (including its source code) and the test pro-
grams are available from http://www.comp.nus.edu.sg/~release/mmchecker

8 Discussion

In this paper, we have presented an invariant checker which works on the byte-
code representation of multi-threaded C# programs. The main novelties of our
work are (a) we can expose non sequentially consistent execution traces of a
program which are allowed by the .NET memory model, and (b) after inspect-
ing the counter-example traces violating a given invariant, we can automatically
insert barriers to disallow such executions.

We are now in the process of integrating partial order reduction with dynamic
escape analysis [5] into our checker. This will allow us to safely reduce the set of
explored program states during invariant checking.
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