
CARPENTER: Finding Closed Patterns in Long Biological
Datasets

Feng Pan, Gao Cong,
Anthony K. H. Tung ∗†

Natl. University of Singapore
{panfeng,conggao,atung}
@comp.nus.edu.sg

Jiong Yang
University of Illinois, Urbana

Champaign

jioyang@cs.uiuc.edu

Mohammed J. Zaki ‡

Rensselaer Polytechnic
Institute

zaki@cs.rpi.edu

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
Data Mining

Keywords
frequent pattern, closed pattern, row enumeration

ABSTRACT
The growth of bioinformatics has resulted in datasets with
new characteristics. These datasets typically contain a large
number of columns and a small number of rows. For ex-
ample, many gene expression datasets may contain 10,000-
100,000 columns but only 100-1000 rows.
Such datasets pose a great challenge for existing (closed)

frequent pattern discovery algorithms, since they have an
exponential dependence on the average row length. In this
paper, we describe a new algorithm called CARPENTER
that is specially designed to handle datasets having a large
number of attributes and relatively small number of rows.
Several experiments on real bioinformatics datasets show
that CARPENTER is orders of magnitude better than pre-
vious closed pattern mining algorithms like CLOSET and
CHARM.

1. INTRODUCTION
The growth of bioinformatics has resulted in datasets with

new characteristics. These datasets typically contain a large
number of columns and a small number of rows. For ex-
ample, many gene expression datasets may contain 10,000-
100,000 columns or items but usually have only 100-1000
rows or transactions. Such datasets pose a great challenge

∗Contact Author
†This work was supported in part by NUS ARF grant R252-
000-121-112 and R252-000-142-112.
‡This work was supported in part by NSF CAREER Award
IIS-0092978, DOE Career Award DE-FG02-02ER25538, and
NSF grant EIA-0103708.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
SIGKDD ’03, August 24-27, 2003, Washington, DC, USA
Copyright 2003 ACM 1-58113-737-0/03/0008 ...$5.00.

for existing frequent pattern discovery algorithms. While
there are a large number of algorithms that had been de-
veloped for frequent pattern mining [1, 5, 11], their run-
ning time increases exponentially with increasing average
row length, thus such high-dimensional data renders most
current algorithms impractical. This also holds for extant
methods for mining closed patterns [6, 2, 7, 10].
Previous (closed) frequent pattern mining methods work

well for datasets with small average row length, since if i is
the maximum row size, there could be 2i potential frequent
itemsets; usually i < 100. However, for the gene expresion
datasets in bioinformatics domain i can be in the range of
tens of thousands. As a result, search over the itemset space
is impractical. Since these datasets have a small number of
rows (saym) usually in the range of a hundred or a thousand
(i.e., m ¿ i), it appears reasonable to design an algorithm
that searches the row set space instead of the usual itemset
space.
In this paper, we describe a new algorithm called CAR-

PENTER 1, that is specially designed to handle datasets
having a large number of items and relatively small number
of rows. CARPENTER is a novel algorithm which discov-
ers frequent closed patterns by performing depth-first row-
wise enumeration instead of the usual itemset enumeration,
combined with efficient search pruning techniques, to yield a
highly optimized algorithm. Our experiments show that this
unconventional approach produces good results when min-
ing long biological datasets and outperforms current meth-
ods like CHARM[10] and CLOSET[7] by more than an order
of magnitude.

2. PRELIMINARIES
Let F = {f1, f2, .., fm} be a set of items, also called fea-

tures. Our datasetD consists of a set of rowsR = {r1, .., rn},
where each row ri is a set of features, i.e., ri ⊆ F . Figure
1(a) shows an example dataset in which the features are rep-
resented using alphabets a through t. There are altogether
5 rows, r1,...,r5. The first row r1 contains the feature set
{a, b, c, l, o, s}. For convenience, in the sequel, we drop set
notation and denote a set of features {a, c, f} as acf , and
we denote a row set {r2, r3, r5} as 235.
Given a set of features F ′ ⊆ F , we define the feature

support set, denoted R(F ′) ⊂ R, as the maximal set of
rows that contain F ′. Likewise, given a set of rows R′ ⊂ R,
we define the row support set, denoted F(R′) ⊂ F , as
the maximal set of features common to all the rows in R′.

1CARPENTER stands for Closed Pattern Discovery by
Transposing Tables that are Extremely Long; the “ar” in
the name is gratuitous.

dcstunga
Text Box
The binary executable of CARPENTER is now available at http://nusdm.comp.nus.edu.sg/resources.htm

http://nusdm.comp.nus.edu.sg/resources.htm

i ri

1 a,b,c,l,o,s
2 a,d,e,h,p,l,r
3 a,c,e,h,o,q,t
4 a,e,f,h,p,r
5 b,d,f,g,l,q,s,t
(a) Example Table

fj R(fj)
a 1,2,3,4
b 1,5
c 1,3
d 2,5
e 2,3,4
f 4,5
g 5
h 2,3,4
l 1,2,5
o 1,3
p 2,4
q 3,5
r 2,4
s 1,5
t 3,5
(b) Transposed Table, TT

Figure 1: Running Example

fj R(fj)
a 4
e 4
h 4

Figure 2: TT |{2,3}

As an exmaple consider Figure 1(a). Let F ′ = aeh, then
R(F ′) = 234 since these are all the rows that contain F ′.
Also let R′ = 23, then F(R′) = aeh since it is the maximal
set of features common to both r2 and r3.
Given a set of features F ′, the number of rows in the

dataset that contain F ′ is called the support of F ′. By
definition, the support of F ′ is given as |R(F ′)|. A set of
features F ′ ⊆ F is called a closed pattern if there exists no
F ′′ such that F ′ ⊂ F ′′ and |R(F ′′)| = |R(F ′)|, i.e., there is
no superset of F ′ with the same support. Put another way,
the row set that contains superset F ′′ must not be exactly
the same as the row set of F ′. A feature set F ′ is called a fre-
quent closed pattern, if it is i) closed, ii) |R(F ′)| ≥ minsup,
where minsup is a user specified lower support threshold.
For example, given minsup = 2, the feature set aeh is a
frequent closed pattern in Figure 1(a) since it occurs three
times. ae, on the other hand, is not a frequent closed pat-
tern, since it is not closed (|R(aeh)| = |R(ae)|), although
its support is more than minsup.
Given a dataset D which contains records that are subset

of a set of features F , our problem is to discover all fre-
quent closed patterns with respect to a user support thresh-
oldminsup. In addition we assume that the dataset satisfies
the condition |R| ¿ |F |.

3. THE CARPENTER ALGORITHM
To illustrate CARPENTER , we will use the tables in

Figure 1 as a running example. Table 1(b) is a transposed
version of Table 1(a), denoted TT . In TT , each tuple lists a
feature, along with the row ids where that feature occurs in
the original table. As an example 15 is the set of rows that
contain feature b, which produces the second tuple in TT .
In the sequel we always refer to entries of the transposed
table as tuples, and entries of the original table as rows.
Unlike existing algorithms which perform their search by

enumeration of feature sets [6, 7], CARPENTER performs
search by enumeration of row sets. Figure 3 illustrates the

{bls}
15

{l}
125

{a}
124

{a}
123

{al}

{aco}

{abclos}

{}

13

12

1 134

{f}

{}

{}

{}

{}

{a}

1245

1345

1235

1234

{}
345

12345

{aeh}
34

35

45

{q}

{acehoqt}
3

{}
245

{a}

2345

{bdfglqst}
5

{aefhpr}
4

{adehplr}
2

{dl}
25

{aehpr}
24

{aeh}
23

{}
235

{aeh}
234

{}
135

{}
145{a}

14

{}

Figure 3: The Row Enumeration Tree.

complete row set enumeration tree without application of
any pruning strategies. Each node in the tree represents a
row set R′; also shown is F(R′). For example, the node
12 represents the row set {r1, r2}, along with it supporting
feature set F(12) = al.
To find frequent closed patterns, CARPENTER performs

a depth first search (DFS) of the row set enumeration tree.
By imposing a total order, such as lexicographic order on
the row sets, we are able to perform a systematic search for
closed patterns. For example, DFS on the row enumeration
tree in Figure 3 will be {1, 12, 123, 1234, 12345, 1235,...,45,
5} (in absence of any optimization and pruning strategies).

Lemma 3.1. Let F be a closed pattern and R(F) be the set
of rows that contain F , then R(F) is unique. In other words,
there does not exist a closed pattern F ′, F ′ 6= F , that satis-
fies R(F) = R(F ′).
Proof: We prove by contradiction. Assume there exists a
closed pattern F ′ that satisfies R(F) = R(F ′) but F ′ 6= F .
Let pattern CF = F ′ ∪ F . Then R(CF) = R(F) = R(F ′).
Since F ′ ⊂ CF , this contradicts the fact that F ′ is closed.

2

By Lemma 3.1, each closed pattern corresponds to a unique
set of rows. By enumerating all combinations of rows as
shown in Figure 3, we ensure that all closed patterns in
the datasets are enumerated. It is obvious that a complete
traversal of the row enumeration tree is not efficient and
pruning techniques must be introduced to prune off unnec-
essary searches.
LetX be a subset of rows. Given the transposed table TT ,

a X-conditional transposed table, denoted as TT |X , is
a subset of tuples from TT such that: 1) For each tuple x
in TT , there exist a corresponding tuple x′ in TT |X . 2) x′

contains all rows in x with row ids larger than any row in
X. As an example, let the transposed table in Figure 1(b)
be TT and let X = 23. The X-conditional transposed table,
TT |X is as shown in Figure 2.
Our formal algorithm is shown in Figure 4. For clarity, we

assume that the database is already transposed with infre-
quent features removed. This pre-processing step is trivial

Algorithm CARPENTER
Input: Transposed table TT , features set F and support level
minsup
Output: Complete set of frequent closed patterns, FCP
Method:

1. Initialization. FCP = ∅. Let R be the (numerically sorted)
set of rows in the original table;

2. Mine Frequent Closed Pattern. MinePattern(TT |∅,R,
FCP);

Subroutine: MinePattern(TT ′|X ,R′, FCP).
Parameters:

• TT ′|X : A X-conditional transposed table;

• R′: A subset of rows which have not been considered in the
enumeration;

• FCP : The set of frequent closed patterns that have been
found;

Method:

1. Scan TT ′|X and count the frequency of occurrences for each
row, ri ∈ R′. Y = ∅.

2. Pruning 1: Let U ⊂ R′ be the set of rows in R′ which
occur in at least one tuple of TT ′|X . If |U |+|X| ≤ minsup,
then return; else R′ = U ;

3. Pruning 2: Let Y be the set of rows which are found
in every tuple of the X-conditional transposed table. Let
R′ = R′ − Y and remove all rows of Y from TT ′|X ;

4. Pruning 3: If F(X) ∈ FCP , then return;

5. If |X|+ |Y | ≥ minsup, add F(X) into FCP ;

6. For each ri ∈ R′,
R′ = R′ − {ri}
MinePattern(TT ′|X |ri

, R′, FCP);

Figure 4: The CARPENTER Algorithm

and take negligible time since our datasets usually fit in
main memory. CARPENTER does recursive generation
of conditional transposed tables, performing a depth-first
traversal of the row enumeration tree. Each computed con-
ditional table represents a node in the enumeration tree of
Figure 3. For example, the 23-conditional table represents
the node 23. After initializing FCP , the set of frequent
closed pattern, to be empty and letting R to be the set
of rows in the original table, CARPENTER calls the sub-
routine MinePattern to recursively generate X-conditional
tables.
The subroutine MinePattern takes in three parameters

TT ′|X , R′ and FCP . TT ′
X is a X-conditional table. R′

contains the set of rows that will be used to enumerate the
next level of conditional transposed table while FCP con-
tains the frequent closed patterns that have been discovered
so far.
Steps 1 to 4 in the subroutine perform the counting and

pruning. They are extremely important for efficiency of
CARPENTER . Before we explain these 4 steps, we will
first show that the MinePattern subroutine will only out-
put a pattern if and only if it is a frequent closed patterns (in
the absence of these 4 steps). This is done at Step 5 which
checks whether F(X) is a frequent closed pattern before in-
serting F(X) into FCP , and at Step 6 which continues the
next level of enumeration in the search tree. We prove the
correctness of the two steps by two lemmas as follows:

Lemma 3.2. Let X be a subset of rows from the original
table, then F(X) must be a closed pattern (not necessarily
frequent).
Proof: We will prove by contradiction. Assuming F(X) is

not a closed pattern, then there exists a feature fi such that
R(F(X)) = R(F(X) ∪ fi). Since X contains all features
of F(X), then X ⊂ R(F(X)). This means that fi belongs
to in every row in X, which contradicts the definition that
F(X) is the maximal set of features common to rows of X.

2

Lemma 3.2 ensures that Step 5 only inserts closed patterns
that are frequent into FCP . The main observation used in
the proof is that F(X) cannot be a maximal feature set that
is common in all rows of X unless it is a closed pattern. A
check on |X| + |Y | is needed to ensure that the minimum
support threshold is satisfied (Note that Y is an empty set
if the Steps 1 to 4 of MinePattern are not executed). To-
gether with Lemma 3.1, we know that the complete and
correct set of frequent closed patterns will be in FCP .

Lemma 3.3. TT ′|X |ri
= TT ′|X∪ri

2

Lemma 3.3 is useful for explaining Step 6. It simply states
that a X ∪ ri conditional transposed table can be computed
from a X conditional transposed table, TT ′|X , by selecting
those tuples that contain ri in TT ′|X . This is utilized in
Step 6 where a recursive call onMinePattern is called with
TT ′|X |ri

as the conditional transposed table. This is in fact
generating the X + ri conditional transposed table that is
needed to represent the next level of row set enumeration.
Note that Step 6 implicitly represents a form of pruning

too since it is possible to have R′ = ∅. It can be observed
from the enumeration tree that there exist some combina-
tions of rows, X, such that F(X) = ∅ (an example is node
“134”). This implies that there is no feature which exists in
all the rows in X. When this occurs, R′ will be empty and
no further enumeration will be performed.
We next look at the pruning techniques that are used in

CARPENTER to enhance its efficiency. Our emphasis here
is to show that our pruning steps do not prune off any fre-
quent closed patterns, while preventing unnecessary traver-
sal of the enumeration tree. This guarantees correctness.
The first pruning step is executed in Step 2 ofMinePattern.

The pruning is essentially aimed at removing search branches
which can never yield closed patterns that satisfy theminsup
threshold. The following lemma is applied in the pruning.

Lemma 3.4. Let TT ′|X be a X conditional transposed table.
Let U be a set of rows which occur in at least one tuple of
TT ′|X . If |U | + |X| < minsup, then it is not possible that
for any U ′ ⊂ U , F(X ∪ U ′) is a frequent closed pattern.
Proof: By definition, any row not in TT ′|X cannot be com-
bined with X to produce a non-empty closed pattern. Thus
X can only be combined with some U ′ ⊂ U in order to con-
tinue the enumeration. It is clear that the maximum support
is bounded by |U |+|X|. If |U |+|X| < minsup, we can safely
conclude that all the patterns in further enumeration will not
be frequent. 2

In Step 3 of MinePattern, our second pruning strategy
is applied. This pruning deals with rows that occur in all
tuples of the X conditional transposed table. Such rows are
immediately removed from TT ′|X because of the following
lemma

Lemma 3.5. Let TT ′|X be a X conditional transposed table
and Y be a set of rows which occur in every tuple of TT ′|X .
Given any subset R′ ⊂ R, we have F(X ∪R′) = F(X ∪ Y ∪
R′).
Proof: By definition, F(X ∪ R′) contains a set of features
which occur in every row of X∪R′. Since the rows in Y occur

in every tuple of TT ′|X , this means that these rows also
occur in every tuples of TT ′|(X∪R′) (Note: TT ′|(X∪R′) ⊂
TT ′|X). Thus, the set of tuples in TT ′|(X∪R′) is exactly the
set of tuples in TT ′|(X∪R′∪Y). From this, we can conclude
that F(X ∪R′) = F(X ∪ Y ∪R′). 2

As an example to illustrate Lemma 3.5, let us consider
the 23 conditional transposed table in Figure 2. Since row
4 occurs in every tuple of TT |23, we can conclude that
F(23)=F(234) =aeh. Thus, we need not create TT |234 in
our search and row 4 need not be considered for further
enumeration down that branch of the enumeration tree.
Our final and most complex pruning strategy is shown

in Step 4 of MinePattern. This step will prune off any
further search down the branch of node X if it is found that
F(X) was already discovered previously in the enumeration
tree. The inituitive reasoning which we will prove later is as
follows: the set of closed patterns that will be enumerated
from the descendants of node X must have been enumerated
previously.
Unlike feature-based mining algorithms, such as CHARM

and CLOSET, we need not perform detection of superset-
subset relationship among the patterns since Lemma 3.2 al-
ready shows that only closed patterns will be enumerated in
our search tree. For example, in Figure 3, it is not possible
for the pattern {a, c} to be enumerated although both {a}
and {a, c, o} are closed patterns with support of 80% and
40% respectively. This is unlike CHARM and CLOSET,
both of which will enumerate {a, c} and check that it has
the same support as a superset {a, c, o} before discarding it
as a non-closed pattern.
Another important thing to note here is that the correct-

ness of the third pruning strategy (Step 3) is dependent
on the second pruning criteria. This is essential because
of the following lemma.

Lemma 3.6. Let X be the set of rows in the current search
node and X ′ be the set of rows that result in F(X) (which is
the same as F(X’)) being inserted into FCP in earlier enu-
meration. If pruning strategy 2 is applied consistently in the
algorithm, then the node representing X in the enumeration
tree will not be the descendent of the node representing X ′

in the enumeration tree.
Proof: Assume otherwise, then X ′ ⊂ X. Let Z = X −X ′.
Since F(X) = F(X ′), all rows in Z must be contained in
all tuples of the X ′ conditional transposed table. Based on
pruning strategy 2, the rows in Z would be added to X ′ and
will be removed from subsequent transposed table down that
search branch. Thus the node representing X will not be
visited, which contradicts the fact that node X is currently
being processed in the enumeration tree. 2

Consider the node 23 in Figure 3. As mentioned earlier,
its descendant node 234 will not be visited since row 4 occurs
in every tuple of 23-conditional transposed table. Without
pruning strategy 2, this will not be the case.
We next try to prove that all branches from a node X in

the enumeration tree can be pruned off if F(X) is already
in FCP . We have the following lemma.

Lemma 3.7. Let TT ′|X be the conditional transposed table
in the current search node. Let X ′ be the set of rows which
result in F(X) (which equals to F(X ′)) being inserted into
FCP in earlier enumeration. Let xfi

and x′fi
be the two

tuples that represent feature fi in TT ′|X and TT ′|X′ respec-
tively. We will have xfi

⊂ x′fi
for all fi ∈ F(X).

Proof: We know that F(X) = F(X ′) which implies that the

set of features represented by tuples in both the conditional
transposed tables are the same.
Let the maximal set of rows that contains the feature set
F(X ′) be R′

max = {r1, ..., rn} which is sorted in numerical
order. Let X ′ = {r′1, ..., r

′
m} be the first row set that causes

F(X ′) to be inserted into FCP and X ′ = {r′1, ..., r
′
m} is also

sorted in numerical order.
Based on Lemma 3.6, X cannot be a descendent of X ′ in

the enumeration tree. Thus, X must be of the form (X ′ −
A) ∪ B where A ⊂ X ′ and B ⊂ R′

max −X ′, A 6= ∅, B 6= ∅.
By lexicographic row set search, we can conclude from here
that there exists a row r′i such that i > m and r′i ∈ X.
By definition of a conditional transposed table, we know

that all rows which occur before r′m will be removed in TT ′|X′ .
Likewise, all rows occurring before r′i will be removed in
TT ′

X . Since i > m, a tuple x′fi
representing feature fi in

TT ′|X′ will have less rows being removed than the corre-
sponding tuple xfi

representing feature fi in TT ′|X . Hence
the proof. 2

In a less formal term, Lemma 3.7 shows that if X ′ is the
first combination of rows that cause F(X ′) to be inserted
into FCP , then the conditional transposed table TT ′|X′ will
be more “general” than any other conditional transposed
table TT ′|X in which F(X) = F(X ′). “General” in this
case, refers to the fact that each tuple in TT ′|X′ is in fact a
superset of the corresponding tuple in TT ′|X . We will now
formalize our third pruning strategy as a theorem.

Theorem 3.1. Given a node representing a set of rows X
in the enumeration tree, if F(X) is already in FCP , then
all enumeration down that node can be pruned off.
Proof Let X ′ be the combination of rows that first cause
F(X) to be inserted into FCP . From Lemma 3.7, we know
that any tuple x′fi

in the X ′ conditional table will be a super-
set of a corresponding tuple xfi

in the X conditional table
and X ′ conditional table has the same number of tuples with
X conditional table.
Since we know that the next level of search at node X in

the enumeration tree is based on the set of rows in the X
conditional transposed table, it is easy to conclude that the
possible enumeration at the node X is a subset of the possible
enumeration at node X ′. Since X ′ had been visited, it is thus
not necessary to perform any enumeration from the node X
onwards. 2

Consider the node 23 in Figure 3 which is the first node
that results in the insertion of aeh based on the enumeration
order. Thus, R′

min = 23. Next look at node 34. We have
F(34) = F(23) = aeh. It can be seen that node 34 is not
a descendant of node 23 and that 34 satisfies the formula
(R′

min − A) ∪ B, A = 2, B = 4. In this case, pruning
strategy 3 can be applied and no further enumeration will
be done from node 34.
CARPENTER is implemented by adopting the in-memory,

pointer-based approach in BUC [3] 2. With the in-memory
pointer, CARPENTER does not construct conditional trans-
posed table physically, thus saving space. Due to space lim-
itation, we will not give details on the implementation of
CARPENTER .

2We note also that there are other alternatives for imple-
mentation including building a FP-tree [4] on the trans-
posed table and adopting the vertical data representation
in the row-wise manner [10]. However, our central theme of
row enumeration is independant of these techniques and we
leave it to interested readers to explore them during their
own implementation.

4. PERFORMANCE STUDIES
In this section, we compare the performance of CARPEN-

TER against other algorithms. All experiments were per-
formed on a PC with a Pentium III 1.4 Ghz CPU, 1GB
RAM and a 80GB hard-disk. Algorithms were coded in
Standard C.

Algorithms: We compare CARPENTER against two other
closed pattern discovery algorithms, CHARM [10] and CLOSET
[7] Experiments in [7, 10] have shown that depth-first mining
algorithms like CHARM and CLOSET are substantially bet-
ter than levelwise mining algorithms like Close[6] and Pascal
[2]. To make a fair comparison, CHARM and CLOSET are
also run in the main memory after one disk scan is done to
load the datasets. The run time for CARPENTER includes
the time for transposing the datasets.

Datasets: We choose 3 real-life gene/protein expression
datasets to analyze the performance of CARPENTER . The
Lung Cancer (LC) dataset 3 is a gene expression dataset.
The rows in the dataset represent sample tissues and these
tissues can come from either malignant pleural mesothe-
lioma (MPM) or adenocarcinoma (ADCA) of the lung. There
are 181 tissue samples and each sample is described by the
activity level of 12533 genes or features. The Acute Lym-
phoblastic Leukemia (ALL) dataset 4 is also a gene
expression dataset containing tissues from cancerous/non-
cancerous cells. There are 215 tissue samples described by
activity level of 12533 genes. The Ovarian Cancer (OC)
dataset 5 is for identifying proteomic patterns in serum that
distinguish ovarian cancer from non-cancer cases. There are
253 samples each described by activity level of 15154 pro-
teins. These expression datasets have real valued entries,
which have to be discretized to obtain binary features; we
do an equal-depth partition for each attribute using 20 buck-
ets. 6

Parameters: Two parameters are varied in our experiment,
minimum support (minsup) and length ratio (l). We use a
default value of minsup = 4%. The parameter length ra-
tio, l, has a value between 0 and 1. It is used to generate
new datasets with different average row size from the orig-
inal datasets. A dataset with a length ratio of l retains
on average l ∗ 100% of the columns in the original dataset.
Columns to be retained are randomly selected for each row.
The default value used is l = 0.6, unless otherwise stated.

4.1 Varying Minimum Support
Figure 5 shows how CARPENTER compares against

CHARM and CLOSET as minsup is varied with l = 0.6.
Note that the y-axis is in logarithmic scale. There is a
large variation in the running time for both CHARM and
CLOSET even though the variation in absolute minsup is
small. This is because the average length of each row af-
ter removing the infrequent features can increase (decrease)
substantially due to a small decrease (increase) in minsup
value. This increases (decreases) the search space of both
CHARM and CLOSET substantially, resulting in a large
difference in running time.
Among the three algorithms, we find that CLOSET is the

slowest and has the steepest increases in run time asminsup

3available from http://www.chestsurg.org
4http://www.stjuderesearch.org/data/ALL1/
5http://clinicalproteomics.steem.com/
6Fewer buckets results in a extremely high running time (up
to a few days) for CHARM and CLOSET.

is decreased. CHARM on the other hand is generally 2 to
3 orders of magnitude slower than CARPENTER and only
outperforms CARPENTER at higher support level, where
the difference in time is under 10 seconds.

4.2 Varying Length Ratio
Figure 6 shows the performance comparison of the meth-

ods as we vary l, with minsup = 4. The growth in run
time of all the algorithms is exponential with respect to the
length ratio (note the log scaled y-axes). CARPENTER is
however substantially faster than CHARM and CLOSET.
While CHARM outperforms CLOSET, CARPENTER can
be up to a 100 times faster than CHARM and 1000 times
faster than CLOSET.
As we can see, in all the experiments we conducted, CAR-

PENTER outperforms CHARM and CLOSET in most cases.
These results clearly demonstrate that CARPENTER is
very efficient in finding frequent closed patterns on datasets
with small number of rows and large number of features.

5. RELATED WORK
Frequent pattern mining [1, 5, 11, 8] as a vital topic has

received a significant amount of attention during the past
decade. The number of frequent patterns in a large data
set can be very large and many of these frequent patterns
may be redundant. To reduce the frequent patterns to a
compact size, mining frequent closed patterns has been pro-
posed. The followings are some new advances for mining
closed frequent patterns.
Close [6] and Pascal [2] are two algorithms which discover

closed patterns by performing breadth-first, column enumer-
ation. Close [6] is an Apriori-like algorithm to determine a
closed itemset. Due to the level-wise approach of Close and
Pascal, the number of feature sets enumerated will be ex-
tremely large when they are run on long biological datasets.
In [7], the CLOSET algorithm was proposed for mining

closed frequent patterns. Unlike Close and Pascal, CLOSET
performs depth first, column enumeration. CLOSET uses a
novel frequent pattern tree (FP-structure) for a compressed
representation of the datasets. It then performs recursive
computation of conditional tables to simulate the search on
the column enumeration tree. CLOSET is unable to handle
long biological datasets because of two reasons. First, the
FP-tree is unable to give good compression for long rows.
Second, there are too many combinations when performing
column enumerations. CLOSET+ [9] is a recent improve-
ment on CLOSET. Our study show that CARPENTER
still outperforms CLOSET+ on average by around 500-600
times. 7

Another algorithm for mining frequent closed pattern is
CHARM [10]. Like CLOSET, CHARM performs depth-
first, column enumeration. However, unlike CLOSET, CHARM
stores the dataset in a vertical format where a list of row ids
is stored for each feature. These row id lists are then merged
during the column enumeration to generate new rows id lists
that represent nodes in the enumeration tree. In addition,
a technique called diffset is used to reduce the size of the
row id lists and the computational complexity for merg-
ing them. Although performance studies in [10] shows that
CHARM is substantially faster than all other algorithm on
most datasets, CHARM is still unable to handle long biolog-

7We will like to thank Jianyong Wang and Jiawei Han for
making the executable code of CLOSET+ available to us.
They have indicated that the version of CLOSET+ that they
pass to us at press time is not optimized for our datasets and
an optimized version will be released in the future.

Figure 5: Varying minsup with l=0.6: a) LC, b) ALL, c) OC

Figure 6: Varying l with minsup = 4%: a) LC, b) ALL, c) OC

ical dataset efficiently because it performs feature enumera-
tion.

6. CONCLUSION
In this paper, we proposed an algorithm called CARPEN-

TER for finding frequent closed patterns in long biological
datasets. CARPENTER makes use of the special charater-
istic of biological datasets to enhance its efficiency. It adopts
the novel approach of performing row enumeration instead of
the conventional column enumeration so as to overcome the
extremely high dimensionality of many biological datasets.
Experiments show that this bold approach yields good pay-
off as CARPENTER outperforms exisiting closed pattern
discovery algorithms like CHARM and CLOSET by a large
order of magnitude when they are running on long biological
datasets. In the future, we will look at how CARPENTER
can be extended to work on other datasets by using a com-
bination of column and row enumerations.

7. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In Proc. 1994 Int. Conf. Very Large
Data Bases (VLDB’94), pages 487–499, Santiago,
Chile, Sept. 1994.

[2] Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and
L. Lakhal. Mining frequent closed itemsets with
counting inference. In SIGKDD Explorations, 2(2),
Dec. 2000.

[3] K. Beyer and R. Ramakrishnan. Bottom-up
computation of sparse and iceberg cubes. In Proc.
1999 ACM-SIGMOD Int. Conf. Management of Data
(SIGMOD’99), pages 359–370, Philadelphia, PA, June
1999.

[4] J. Han, J. Pei, and Y. Yin. Mining partial periodicity
using frequent pattern trees. In Computing Science

Techniqcal Report TR-99-10, Simon Fraser University,
July 1999.

[5] H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient
algorithms for discovering association rules. In Proc.
AAAI’94 Workshop Knowledge Discovery in Databases
(KDD’94), pages 181–192, Seattle, WA, July 1994.

[6] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.
Discovering frequent closed itemsets for association
rules. In Proc. 7th Int. Conf. Database Theory
(ICDT’99), pages 398–416, Jerusalem, Israel, Jan.
1999.

[7] J. Pei, J. Han, and R. Mao. CLOSET: An efficient
algorithm for mining frequent closed itemsets. In Proc.
2000 ACM-SIGMOD Int. Workshop Data Mining and
Knowledge Discovery (DMKD’00), pages 11–20,
Dallas, TX, May 2000.

[8] P. Shenoy, J. Haritsa, S. Sudarshan, G. Bhalotia,
M. Bawa, and D. Shah. Turbo-charging vertical
mining of large databases. In Proc. 2000
ACM-SIGMOD Int. Conf. Management of Data
(SIGMOD’00), pages 22–23, Dallas, TX, May 2000.

[9] J. Wang, J. Han, and J. Pei. Closet+: Searching for
the best strategies for mining frequent closed itemsets.
In Proc. 2003 ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining (KDD’03),
Washington, D.C., Aug 2003.

[10] M. Zaki and C. Hsiao. Charm: An efficient algorithm
for closed association rule mining. In Proc. of SDM
2002, 2002.

[11] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li.
New algorithms for fast discovery of association rules.
In Proc. 1997 Int. Conf. Knowledge Discovery and
Data Mining (KDD’97), pages 283–286, Newport
Beach, CA, Aug. 1997.

Sample-Wise Enumeration Methods
for Mining Microarray Datasets

Anthony K. H. Tung
Department of Computer Science
National University of Singapore

http://www.comp.nus.edu.sg/~atung/talks/sample_enum.htm
http://www.comp.nus.edu.sg/~atung/talks/sample_enum.htm

A Microarray Dataset
1000 - 100,000 columns

Class Gene1 Gene2 Gene3 Gene4 Gene5 Gene6 Ge

Sample1 Cancer
Sample2 Cancer

.

.

.
SampleN-1 ~Cancer
SampleN ~Cancer

100-
500
rows

• Find closed patterns which occur frequently among genes.
• Find rules which associate certain combination of the columns

that affect the class of the rows
– Gene1,Gene10,Gene1001 -> Cancer

Challenge I

lower bounds

• Large number of patterns/rules
– number of possible column combinations is extremely high

• Solution: Concept of a closed pattern
– Patterns are found in exactly the same set of rows are

grouped together and represented by their upper bound
• Example: the following patterns are found in row 2,3

and 4 i ri Class
1 a ,b,c,l,o,s C
2 a ,d, e , h ,p,l,r C
3 a ,c, e , h ,o,q,t C
4 a , e ,f, h ,p,r ~C
5 b,d,f,g,l,q,s,t ~C

ae ah eh

e h

upper
bound
(closed
pattern)

aeh

“a” however not part of
the group

Challenge II
• Most existing frequent pattern discovery

algorithms perform searches in the column/item
enumeration space i.e. systematically testing
various combination of columns/items

• For datasets with 1000-100,000 columns, this
search space is enormous

• Instead we adopt a novel row/sample
enumeration algorithm for this purpose.
CARPENTER (SIGKDD’03) is the FIRST
algorithm which adopt this approach

Column/Item Enumeration Lattice

• Each nodes in the lattice represent
a combination of columns/items

• An edge exists from node A to B if
A is subset of B and A differ from B
by only 1 column/item

• Search can be done

a,c a,e bb,ca,b

b,ca,b,e a,c,ea,b,c

a b c

a,b,c,e

{}start

a b ca b c

a,c a,e bb,ca,b a,c b,c

b,cb,c

 i ri Class
1 a,b,c,l,o,s C
2 a,d,e,h,p,l,r C
3 a,c,e,h,o,q,t C
4 a,e,f,h,p,r ~C
5 b,d,f,g,l,q,s,t ~C

breadth first

a b ca b ca b c

a,c a,e b,ca,b a,c a,e b,ca,b a,c b,c

b,ca,b,e a,c,ea,b,c b,cb,c

Column/Item Enumeration Lattice
• Each nodes in the lattice represent

a combination of columns/items
• An edge exists from node A to B if

A is subset of B and A differ from B
by only 1 column/item

• Search can be done depth first
• Keep edges from parent to child

only if child is the prefix of parent
a,c a,e bb,ca,b

b,ca,b,e a,c,ea,b,c

a b c

a,b,c,e

{}start

a b ca b c

a,c a,e bb,ca,b a,c b,c

b,cb,c

 i ri Class
1 a,b,c,l,o,s C
2 a,d,e,h,p,l,r C
3 a,c,e,h,o,q,t C
4 a,e,f,h,p,r ~C
5 b,d,f,g,l,q,s,t ~C

a

a,b

a,b,c a,b,e

a,c

a,c,e

General Framework for Column/Item
Enumeration

Read-based Write-based Point-based

Association Mining Apriori[AgSr94],
DIC

Eclat,
MaxClique[Zaki01],

FPGrowth
[HaPe00]

Hmine

Sequential Pattern
Discovery

GSP[AgSr96] SPADE
[Zaki98,Zaki01],

PrefixSpan
[PHPC01]

Iceberg Cube Apriori[AgSr94] BUC[BeRa99], H-
Cubing [HPDW01]

A Multidimensional View

types of data or
knowledge

lattice trans
main operations

others

associative
pattern

sequential
pattern

iceberg
cube

point

other interest
measure

compression method

pruning method

constraints

closed/max
pattern

versal/

read write

Sample/Row Enumeration Algorihtms
• To avoid searching the large column/item

enumeration space, our mining algorithm search
for patterms/rules in the sample/row
enumeration space

• Our algorithms does not fitted into the
column/item enumeration algorithms

• They are not YAARMA (Yet Another Association
Rules Mining Algorithm)

• Column/item enumeration algorithms simply
does not scale for microarray datasets

Existing Row/Sample Enumeration Algorithms

• CARPENTER(SIGKDD'03)
– Find closed patterns using row enumeration

• FARMER(SIGMOD’04)
– Find interesting rule groups and building classifiers

based on them
• COBBLER(SSDBM'04)

– Combined row and column enumeration for tables with
large number of rows and columns

• FARMER's demo (VLDB'04)
• Balance the scale: 3 row enumeration algorithms

vs >50 column enumeration algorithms

Concepts of CARPENTER

C ~C
a 1,2,3 4
b 1 5
c 1,3
d 2 5
e 2,3 4
f 4,5
g 5
h 2,3 4
l 1,2 5
o 1,3
p 2 4
q 3 5
r 2 4
s 1 5
t 3 5

ij R (ij)

 i ri Class
1 a,b,c,l,o,s C
2 a,d,e,h,p,l,r C
3 a,c,e,h,o,q,t C
4 a,e,f,h,p,r ~C
5 b,d,f,g,l,q,s,t ~C

 C ~C
 a 1,2,3 4
 e 2,3 4
 h 2,3 4

TT|{2,3}Example Table

Transposed Table,TT

Row Enumeration

{bls}
15

{l}
125
{a}124

{a}123

{al}

{aco}

{abclos}

{}
13

12

1 134

{f}

{}

{}

{}

{}

{a}

1245

1345

1235

1234

{}
345

12345

{aeh}
34

35

45

{q}

{acehoqt}
3

{}245

{a}

2345

{bdfglqst}
5

{aefhpr}
4

{adehplr}
2

{dl}
25

{aehpr}
24

{aeh}
23

{}235

{aeh}234

{}135

{}145

{a}
14

{}

C ~C
a 1,2,3 4
b 1 5
c 1,3
d 2 5
e 2,3 4
f 4,5
g 5
h 2,3 4
l 1,2 5
o 1,3
p 2 4
q 3 5
r 2 4
s 1 5
t 3 5

ij R (ij)

C ~C
a 1,2,3 4
b 1 5
c 1,3
l 1,2 5
o 1,3
s 1 5

ij R (ij)

TT|{1}

C ~C
a 1,2,3 4
l 1,2 5

ij R (ij)

TT|{12}

C ~C
a 1,2,3 4

ij R (ij)

TT|{123}

C ~C
a 1,2,3 4

ij R (ij)

TT|{124}

Pruning Method 1
• Removing rows that appear in all

tuples of transposed table will not
affect results

 C ~C
 a 1,2,3 4
 e 2,3 4
 h 2,3 4

r2 r3 r4
{aeh}

r2 r3
{aeh}

TT|{2,3}

r4 has 100% support in the conditional table of
“r2r3”, therefore branch “r2 r3r4” will be
pruned.

Pruning method 2
• if a rule is discovered

before, we can prune
enumeration below this
node
– Because all rules

below this node has
been discovered
before

– For example, at node
34, if we found that
{aeh} has been
found, we can prune
off all branches
below it

{bls}
15

{l}
125
{a}124

{a}123

{al}

{aco}

{abclos}

{}
13

12

1 134

{f}

{}

{}

{}

{}

{a}

1245

1345

1235

1234

{}
345

12345

{aeh}
34

35

45

{q}

{acehoqt}
3

{}245

{a}

2345

{bdfglqst}
5

{aefhpr}
4

{adehplr}
2

{dl}
25

{aehpr}
24

{aeh}
23

{}235

{aeh}234

{}135

{}145

{a}
14

{}

 C ~C
 a 1,2,3 4
 e 2,3 4
 h 2,3 4

TT|{3,4}

Pruning Method 3: Minimum Support

C ~C
a 1,2,3 4
b 1 5
c 1,3
l 1,2 5
o 1,3
s 1 5

ij R (ij)

TT|{1}

• Example: From TT|{1}, we
can see that the support of
all possible pattern below
node {1} will be at most 5
rows.

From CARPENTER to FARMER

• What if classes exists ? What more can
we do ?

• Pruning with Interestingness Measure
– Minimum confidence
– Minimum chi-square

• Generate lower bounds for classification/
prediction

Interesting Rule Groups
• Concept of a rule group/equivalent class

– rules supported by exactly the same set of rows are grouped
together

• Example: the following rules are derived from row 2,3
and 4 with 66% confidence

 i ri Class
1 a ,b,c,l,o,s C
2 a ,d, e , h ,p,l,r C
3 a ,c, e , h ,o,q,t C
4 a , e ,f, h ,p,r ~C
5 b,d,f,g,l,q,s,t ~C

ae-->C (66%)

lower bounds

ah--> C(66%) eh-->C (66%)

e-->C (66%) h-->C (66%)

upper
boundaeh--> C(66%)

a-->C however is not in
the group

Pruning by Interestingness Measure
• In addition, find only interesting rule groups

(IRGs) based on some measures:
– minconf: the rules in the rule group can predict the

class on the RHS with high confidence
– minchi: there is high correlation between LHS and

RHS of the rules based on chi-square test
• Other measures like lift, entropy gain, conviction

etc. can be handle similarly

Ordering of Rows: All Class C
before ~C

{bls}
15

{l}
125
{a}124

{a}123

{al}

{aco}

{abclos}

{}
13

12

1 134

{f}

{}

{}

{}

{}

{a}

1245

1345

1235

1234

{}
345

12345

{aeh}
34

35

45

{q}

{acehoqt}
3

{}245

{a}

2345

{bdfglqst}
5

{aefhpr}
4

{adehplr}
2

{dl}
25

{aehpr}
24

{aeh}
23

{}235

{aeh}234

{}135

{}145

{a}
14

{}

C ~C
a 1,2,3 4
b 1 5
c 1,3
d 2 5
e 2,3 4
f 4,5
g 5
h 2,3 4
l 1,2 5
o 1,3
p 2 4
q 3 5
r 2 4
s 1 5
t 3 5

ij R (ij)

C ~C
a 1,2,3 4
b 1 5
c 1,3
l 1,2 5
o 1,3
s 1 5

ij R (ij)

TT|{1}

C ~C
a 1,2,3 4
l 1,2 5

ij R (ij)

TT|{12}

C ~C
a 1,2,3 4

ij R (ij)

TT|{123}

C ~C
a 1,2,3 4

ij R (ij)

TT|{124}

Pruning Method: Minimum Confidence

 C ~C
 a 1,2,3,6 4,5
 e 2,3,7 4,9
 h 2,3 4

• Example: In TT|{2,3} on the
right, the maximum
confidence of all rules below
node {2,3} is at most 4/5

TT|{2,3}

Pruning method: Minimum chi-square

 C ~C
 a 1,2,3,6 4,5
 e 2,3,7 4,9
 h 2,3 4

• Same as in computing
maximum confidence

TT|{2,3}
C ~C Total

A max=5 min=1 Computed

~A Computed Computed Computed

Constant Constant Constant

Finding Lower Bound, MineLB
– Example: An upper

bound rule with
antecedent A=abcde
and two rows (r1 : abcf
) and (r2 : cdeg)

– Initialize lower bounds
{a, b, c, d, e}

– add “abcf”--- new
lower {d ,e}

– Add “cdeg”--- new
lower bound{ad, bd,
ae, be}

a,b,c,d,e

a
b c d

e

abc

Candidate lower bound: ad, ae, bd, be, cd, ce

Removed since d,e are still lower bound

cde

Candidate lower bound: ad, ae, bd, be

Kept since no lower bound override them

ad ae bd be

Implementation
• In general, CARPENTER

FARMER can be implemented in
many ways:
– FP-tree
– Vertical format

• For our case, we assume the
dataset can be fitted into the
main memory and used pointer-
based algorithm similar to BUC

C ~C
a 1,2,3 4
b 1 5
c 1,3
d 2 5
e 2,3 4
f 4,5
g 5
h 2,3 4
l 1,2 5
o 1,3
p 2 4
q 3 5
r 2 4
s 1 5
t 3 5

ij R (ij)

Experimental studies
• Efficiency of FARMER

– On five real-life dataset
• lung cancer (LC), breast cancer (BC) , prostate cancer

(PC), ALL-AML leukemia (ALL), Colon Tumor(CT)
– Varying minsup, minconf, minchi
– Benchmark against

• CHARM [ZaHs02] ICDM'02
• Bayardo’s algorithm (ColumE) [BaAg99] SIGKDD'99

• Usefulness of IRGs
– Classification

Example results--Prostate

1

10

100

1000

10000

100000

9876543

minimum sup p o r t

FARM ER

Co lumnE

CHARM

Example results--Prostate

0

200

400

600

800

1000

1200

0 50 70 80 85 90 99

minimum confidence(%)

FARM ER:minsup=1:minchi=10

FARM ER:minsup =1

Naive Classification Approach

• Generate the upper bounds of IRGs
• Rank the upper bounds, thus ranking the IRGs;
• Apply coverage pruning on the IRGs;
• Predict the test data based on the IRGs that it

covers.

Classification results

Summary of Experiments
• FARMER is much more efficient than existing

algorithms
• There are evidences to show that IRGs is useful

for classification of microarray datasets

COBBLER: Combining Column and Row Enumeration

• Extend CARPENTER to handle datasets with
both large number of columns and rows

• Switch dynamically between column and row
enumeration based on estimated cost of
processing

Single Enumeration Tree

{ }

a
{r1r2}

b
{r1r3}

c
{r1r2r3}

d
{r2r4}

ab
{r1}

ac
{r1r2}

abc
{r1}
abd { }

r1
{abc}

r2
{acd}

r3
{bc}

r4{d}

r1r2
{ac}

r1r3
{bc}
r1r4 { }

r1r2r3
{c}
r1r2r4 { }

r1r2r3r4
{ }

abcd
{ }

acd { r2} r1r3r4 { }

ad {r2}

bcd
{ }

bc
{r1r3}

bd { }

r2r3
{c}

cd
{r2 }

{ }

r2r4{d }

r2r3r4 { }

r3r4
{ }

r1 a b c

r2 a c d

r3 b c

r4 d

Feature enumeration Row enumeration

Dynamic Enumeration Tree
abcd

{ }

{ }

a
{r1r2}

b
{r1r3}

c
{r1r2r3}

d
{r2r4}

r1
{bc}

r2
{cd}

r1r2
{c} ab

{r1}

r1
{c}
r3

{ c}

r1r3
{ c}

r2
{d }

Feature enumeration to Row enumeration

ac
{r1r2}

ad
{r2}

abc
{r1}
abd
{ }
acd
{ r2}

r1 bc

r2 cd a
{r1r2}

abc: {r1}

ac: {r1r2}

acd: {r2}

b r1

c r1 r2

d r2

Dynamic Enumeration Tree

r1r2 {ac}

r1r3 {bc}

r1r4 { }

r1r2r3
{c}
r1r2r4 { }

r1r2r3r4
{ }

{ }

r1
{abc}

r2
{acd}

r3
{bc}

a{r2}

b{r3}

r4
{d}

c{r2r3 }

ab {}

ac { r2}

bc {r3 }

a{r1}

r1
{abc} r1r3r4 { }

d {r4 }

ac{r1 }

b{r1 }

c {r1r3}

ad{ }

acd { }

cd { } ac: {r1r2}

bc: {r1r3}

c: {r1r2r3}bc {r1 }

c{r1r2 }

Row enumeration to Feature Enumeration

Switching Condition
• Naïve idea of switching based on row number and feature

number does not work well
• to estimate the required computation of an enumeration

sub-tree, i.e., row enumeration sub-tree or feature
enumeration sub-tree.
– Estimate the maximal level of enumeration for each children sub-

tree

• Example of estimating the maximal level of enumeration:
– Suppose r=10, S(f1)=0.8, S(f2)=0.5, S(f3)=0.5, S(f4)=0.3 and

minsup=2
– S(f1)*S(f2)*S(f3)*r =2 ≥ minsup
– S(f1)*S(f2)*S(f3)*S(f4)*r =0.6 < minsup
– Then the estimated deepest node under f1 is f1f2f3

Switching Condition

Switching Condition

To estimate for a node:

To estimate for a path:

To sum up estimation of all paths as the final estimation

Length and Row ratio

0

2000

4000

6000

8000

10000

12000

14000

0.75 0.8 0.85 0.9 0.95 1 1.05

Length Ratio

R
un

tim
e

(s
ec

.)

COBBLER
CLOSET+
CHARM

0

10000

20000

30000

40000

50000

60000

70000

80000

0.5 1 1.5 2
Row Ratio

Ru
nt

im
e

(s
ec

.)

COBBLER
CLOSET+
CHARM

Synthetic data

Extension of our work by other groups
(with or without citation)

• [1] Using transposition for pattern discovery from microarray data, Francois
Rioult (GREYC CNRS), Jean-Francois Boulicaut (INSA Lyon), Bruno Cremileux
(GREYC CNRS), Jeremy Besson (INSA Lyon)

• See the presence and absence of genes in the
sample as a binary matrix. Perform a transposition
of the matrix which is essentially our transposed
table. Enumeration methods are the same
otherwise.

http://www.cs.rpi.edu/~zaki/DMKD03/papers/10-rioult.ps.gz

Extension of our work by other groups
(with or without citation) II

• [2] Mining Coherent Gene Clusters from Gene-Sample-Time Microarray Data.
D. Jiang, Jian Pei, M. Ramanathan, C. Tang and A. Zhang. (Industrial full
paper, Runner-up for the best application paper award). SIGKDD’2004

Gene1 Gene
2

Gene3 Gene
4

Sample1
Sample2

.

.

.
SampleN-
1
SampleN

http://portal.acm.org/citation.cfm?id=1014052.1014101

Extension of our work by other groups
(with or without citation) III

Gene
1

Gene
2

Gene
3

Gen
4

S1 1.23
S2 1.34

.

.

.
SN-1 1.52
SN

A gene in two samples are say to
be coherent if their time series
satisfied a certain matching
condition

In CARPENTER, a gene in two
samples are say to be matching if
their expression in the two
samples are almost the same

Extension of our work by other groups
(with or without citation) IV

[2] Try to find a subset of
samples S such that a subset
of genes G is coherent for
each pair of samples in S.
|S|>mins, |G|>ming

In CARPENTER, we try to
find a subset of samples S in
which a subset of genes G is
similar in expression level for
each pair of samples in S.
|S|>mins, |G|>0

Gene1 Gene2 Gene
3

Gene4

S1 1.23
S2 1.34

.

.

.
SN-1 1.52
SN

Extension of our work by other groups
(with or without citation) V

{bls}
15

{l}
125
{a}

{a}123

{aco}

{abclos}
{}

13

12

1 134

{

{

{

{a

12

13

12

12

{acehoqt}
3

245

{a}

23
{adehplr}

2

{dl}
25

{aehpr}
24

{aeh}
23

{}235

{aeh}234

{}135

{}145

{a}
14

{

[2] Perform sample-wise
enumeration and remove
genes that are not pairwise
coherent across the samples
enumerated

CARPENTER: Perform sample-
wise enumeration and remove
genes that does not have the
same expression level across
the samples enumerated

Extension of our work by other groups
(with or without citation) VI

From [2]: Pruning Rule 3.1
(Pruning small sample
sets). At a node v = fsi1 ; :
: : ; sikg, the subtree of v
can be pruned if (k +
jTailj) < mins

• Pruning Method 3 in CARPENTER:
From TT|{1}, we can see that the
support of all possible pattern below
node {1} will be at most 5 rows.

C ~C
a 1,2,3 4
b 1 5
c 1,3
l 1,2 5
o 1,3
s 1 5

ij R (ij)

TT|{1}

Extension of our work by other groups
(with or without citation) VII

• [2] Pruning Rule 3.2
(Pruning subsumed sets).
At a node v = {si… sik} if
{si1,…sik} U Tail is a
subset of some maximal
coherent sample set, then
the subtree of the node
can be pruned.

• CARPENTER Pruning
Method 2: if a rule is
discovered before, we
can prune enumeration
below this node

{bls}
15

{l}
125
{a}124

{a}123

{al}

{aco}

{abclos}
{}

13

12

1 134

{f}

{}

{}

{}

{a}

1245

1345

1235

1234

{}
345

{aeh}
34

35

45

{q}

{acehoqt}
3

{}245

{a}

2345

{bdfglqst}
5

{aefhpr}
4

{adehplr}
2

{dl}
25

{aehpr}
24

{aeh}
23

{}235

{aeh}234

{}135

{}145

{a}
14

{}

 C ~C
 a 1,2,3 4
 e 2,3 4
 h 2,3 4

TT|{3,4}

Extension of our work (Conclusion)
• The sample/enumeration framework had been

successfully adopted by other groups in mining
microarray datasets

• We are proud of our contribution as the group the
produce the first row/sample enumeration algorithm
CARPENTER and is happy that other groups also
find the method useful

• However, citations from these groups would have
been nice. After all academic integrity is the most
important things for a researcher.

Future Work: Generalize Framework for
Row Enumeration Algorithms?

types of data or
knowledge

lattice transversal/
main operations

others

associative
pattern

sequential
pattern

iceberg
cube

read write point

other interest
measure

compression method

pruning method

constraints

closed/max
pattern

Only if real life applications require it.

Conclusions
• Many datasets in bioinformatics have very different

characteristics compared to those that has been
previously studied

• These characteristics can either work against you or
for you

• In the case of microarray datasets with large number
columns but small number of rows/samples, we turn
what is against us to our advantage
– Row/Sample enumeration
– Pruning strategy

• We show how our methods have been modified by
other groups to produce useful algorithm for mining
microarray datasets

Thank you!!!
atung@comp.nus.edu.sg

www.comp.nus.edu.sg/~atung/sfu_talk.pdf

mailto:atung@comp.nus.edu.sg

