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Abstract

We present a new geographic routing algorithm, Greedy
Distributed Spanning Tree Routing (GDSTR), that finds
shorter routes and generates less maintenance traffic than
previous algorithms. While geographic routing poten-
tially scales well, it faces the problem of what to do at
local dead ends where greedy forwarding fails. Existing
geographic routing algorithms handle dead ends by pla-
narizing the node connectivity graph and then using the
right-hand rule to route around the resulting faces.

GDSTR handles this situation differently by switch-
ing instead to routing on a spanning tree until it reaches a
point where greedy forwarding can again make progress.
In order to choose a direction on the tree that is most
likely to make progress towards the destination, each
GDSTR node maintains a summary of the area covered
by the subtree below each of its tree neighbors. While
GDSTR requires only one tree for correctness, it uses
two for robustness and to give it an additional forward-
ing choice.

Our simulations show that GDSTR finds shorter routes
than geographic face routing algorithms: GDSTR’s
stretch is up to 20% less than the best existing algorithm
in situations where dead ends are common. In addition,
we show that GDSTR requires an order of magnitude less
bandwidth to maintain its trees than CLDP, the only dis-
tributed planarization algorithm that is known to work
with practical radio networks.

1 Introduction

Geographic routing algorithms [2, 12, 16, 17,20] are an
attractive alternative to traditional ad hoc routing algo-
rithms [8, 23, 24] for wireless networks, because they
scale better: the routing state maintained per node is de-
pendent only on local network density and not on net-
work size [10, 13]. Recently, geographic routing algo-
rithms have also been proposed as a routing primitive for

data-centric applications [21,28]. Even when physical
locations are not available, geographic routing can still
be applied using virtual coordinates [22,26].

All previously proposed geographic routing algo-
rithms are based on face routing [15], which guarantees
packet delivery by routing on a planar subgraph of the
network. It turns out that distributed planarization is dif-
ficult for real wireless networks [11] and the problem
was only solved recently by Kim et al. with the Cross-
Link Detection Protocol (CLDP) [13]. However, CLDP
is complex and somewhat costly, while face routing re-
quires the handling of many subtle corner cases [14].
While practical distributed planarization is now a solved
problem, the high maintenance costs and complexities
associated with the deployment of face routing algo-
rithms (with CLDP) make it worthwhile to consider an
alternative approach to face routing.

We have developed a new geographic routing algo-
rithm, the Greedy Distributed Spanning Tree Routing
(GDSTR) algorithm, that does not require planarization.
GDSTR is better than existing geographic face routing
algorithms in the following respects:

e It requires significantly less maintenance bandwidth
than CLDP;

o It achieves lower path and hop stretch than existing
geographic face routing algorithms; and

e It is simpler and easier to understand and imple-
ment.

Like existing geographic routing algorithms, we as-
sume that nodes have assigned coordinates and that links
are bi-directional. Unlike some previous work, we do
not require radio ranges to be uniform and to cover unit
disks [2,12].

Geographic routing algorithms forward packets greed-
ily whenever possible, by routing through a directly con-
nected neighbor in the direction of the ultimate destina-
tion. When there is no such neighbor, face routing algo-



rithms avoid the obstacle by forwarding around the faces
of a planar subgraph of the network graph. GDSTR,
in contrast, switches to forwarding along the edges of
a spanning tree.

A common technique for achieving scalability in tradi-
tional networking is the aggregation of information about
the address space. A key insight of our work is that
GDSTR can apply the same principle to help it route
along its spanning tree by aggregating the locations cov-
ered by subtrees using convex hulls. We call a tree an-
notated with convex hulls a hull tree. GDSTR uses the
convex hulls to decide which direction in the tree is most
likely to make progress towards a given geographic des-
tination.

GDSTR requires only one hull tree for correctness.
However, we use a second tree because doing so pro-
vides better robustness in the event of node failures and
an additional routing choice.

A simulation evaluation shows that GDSTR achieves
a peak improvement of about 20% in terms of path and
hop stretch over the best available geographic face rout-
ing algorithm in situations where dead ends are common,
and that GDSTR performance is consistently good over
a wide range of network densities and sizes.

Simulation also shows that GDSTR generates sig-
nificantly less maintenance traffic than CLDP. GDSTR
sends two orders of magnitude fewer messages to build
its trees initially than what CLDP sends to construct a
planar subgraph, and GDSTR’s communication when
maintaining existing trees is one order of magnitude less
than CLDP.

The remainder of this paper is organized as follows:
in Section 2, we provide a review of existing and re-
lated work. In Section 3, we describe the maintenance
of hull trees and the GDSTR routing algorithm in detail,
and explain why hull trees work in practice. We describe
our simulation methodology in Section 4 and present our
simulation results in Sections 5 and 6. Finally, we con-
clude in Section 7.

2 Related Work

The early proposals for geographic routing were simple
greedy forwarding schemes that did not guarantee packet
delivery in a connected network [3,7,31]. Packets are
simply dropped when greedy forwarding causes them to
end up at a local minimum.

The first geographic (or geometric) routing algorithm
to provide guaranteed delivery was face routing [15]
(originally called Compass Routing II). Several practi-
cal algorithms that are variations of face routing have
since been developed, including GFG [2], GPSR [12]
and the GOAFR+ family of algorithms [16, 17]. The

latest addition to the family is GPVFR, which im-
proves routing efficiency by exploiting local face infor-
mation [20]. While GOAFR+ is asymptotically optimal
and bounds worst-case performance with an expanding
ellipse search, GPVFR generally achieves the best aver-
age case stretch performance among existing geographic
face routing algorithms.

The planarization algorithms that were initially avail-
able [5, 33] relied on the assumption that the underly-
ing network is a Unit Disk Graph (UDG) for correct-
ness and were unusable in practical networks. A ma-
jor breakthrough was made by Kim et al. in developing
the Cross-Link Detection Protocol (CLDP) [13], which
produces a subgraph on which face-routing-based algo-
rithms are guaranteed to work correctly. Their key in-
sight is that starting from a connected graph, nodes can
independently probe each of their links using a right-
hand rule to determine if the link crosses some other link
in the network. CLDP uses a two-phase locking proto-
col to ensure that no more than one link is removed at
any time from any given face; in this way it guarantees
that the removal of a crossed link will not disconnect the
network. While CLDP is able to planarize an arbitrary
graph, every single link in the network has to be probed
multiple times and it has a high cost.

There are previous routing algorithms for ad hoc net-
works that also use spanning trees, though none of them
leverages location information like GDSTR. Radhakr-
ishnan et al. first proposed the use of a set of dis-
tributed spanning trees for routing in ad hoc wireless
networks [25]. Their algorithm constructs the spanning
trees in an ad hoc manner and messages are delivered
using a flooding-based algorithm.

Newsome and Song proposed an approach for rout-
ing in sensor networks called GEM, which embeds a la-
beled graph in the network topology [22]. They proposed
Virtual Polar Coordinate Routing (VPCR), which routes
packets on an embedded ringed tree graph. VPCR was
evaluated in a regime where average node degree is about
15 and was found to achieve a stretch (which the authors
refer to as dilation) of about 1.2. This does not com-
pare favorably with geographic routing algorithms, since
in the same regime, geographic routing algorithms are
able to achieve unit stretch almost all the time. How-
ever, considering that VPCR does not require nodes to
have access to location information because it assigns its
own virtual polar coordinates, the achieved performance
is reasonably good.

Beacon Vector Routing (BVR) [4] and HopID [35] are
routing algorithms that employ a set of landmark nodes
(beacons). Coordinates are assigned to nodes based on
their hop count distances to the beacons. Routing is done
by minimizing a distance function to these coordinates.
When a packet is trapped at a local minimum, they resort



to scoped flooding. The major drawback of this approach
is that it requires a large number of beacons (about 40) to
achieve routing performance comparable to geographic
routing algorithms. It is also somewhat cumbersome to
have to specify a destination with a large set of distance
vectors, and it may be costly to keep updating a node’s
coordinates when distance vectors change over time un-
der network churn.

A common application of the spanning tree in the
wired domain is the Ethernet spanning tree. The Ethernet
spanning tree is not efficient for large networks because
packets often have to be routed through the root of the
tree. GDSTR does not suffer from the same problem, for
several reasons. First it usually forwards packets greed-
ily; the spanning tree is used only to route around voids
and GDSTR reverts to greedy forwarding as soon as it is
safe to do so. Second, the location information in the tree
allows it to route efficiently. Finally, the location infor-
mation also allows it to avoid routing through the root.

3 Greedy Distributed Spanning Tree Rout-
ing (GDSTR)

In this section, we describe our approach. We describe
hull trees, explain how routing works, discuss why hull
trees work well, and describe how hull trees are built and
maintained.

3.1 Hull Trees

It is well-known that, given a spanning tree that contains
all » nodes in a network, we can successfully deliver
packets to any node on the network by traversing the tree
in a manner analogous to a depth-first search as shown in
Figure 1(a). The problem with such an approach, how-
ever, is that it is unlikely to route efficiently: the approach
can guarantee that a packet will be delivered in no more
than 2n — 3 hops, but we need to do much better than
that.

A major contribution of our work is the definition of
a new kind of spanning tree, which we call hull tree, for
use in networks where each node has an assigned coor-
dinate. A hull tree is a spanning tree where each node
has an associated convex hull that contains within it the
locations of all its descendant nodes in the tree. Hull
trees provide a way of aggregating location information
and they are built by aggregating convex hull informa-
tion up the tree. This information is used in routing to
avoid paths that will not be productive; instead we are
able to traverse a significantly reduced subtree, consist-
ing of only the nodes with convex hulls that contain the
destination point. An example of a hull tree correspond-
ing to the spanning tree shown in Figure 1(a) is illustrated
in Figure 1(b).
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Figure 1: Examples of a spanning tree and a hull tree.
Although convex hulls are polygons, they are represented
with ellipses in Figure 1(b) for simplicity.
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Figure 2: Procedure for reducing the size of a convex
hull.

The convex hull for a set of points is the minimal con-
vex polygon that contains all the points; it is minimal
because the convex hull will be contained in any convex
polygon that contains the given points. The hull is repre-
sented as a set of points (its vertices), and this set could
be arbitrarily large. To ensure that the convex hulls use
only O(1) storage instead of O(N) storage, where N is
the network size, we can limit the number of vertices for
a convex hull to a maximum of r points. To reduce a
convex hull with s vertices to a smaller one with s — 1
points, we can project the boundary lines to form an adja-
cent triangle at every face. We pick the smallest triangle
in this set of s triangles and add that triangle to the hull
as illustrated in Figure 2.

Limiting the number of points on the convex hulls al-
lows us to save storage, but the resulting hulls will be
larger and this increases the probability that the hulls of
two siblings nodes in a tree will intersect. Intersections
between convex hulls are undesirable because they intro-
duce ambiguity in the routing process and make it less
efficient. However, our experiments (described in Sec-
tion 5) show that routing behavior is not affected by us-
ing as few as 5 points to represent a hull.

3.2 Overview of Routing

GDSTR forwards packets using simple greedy forward-
ing whenever possible. It switches to forwarding based
on a hull tree only to route packets around “voids,” and
escape from a local minimum. It switches back to greedy



forwarding as soon as it is feasible to do so.
When a packet reaches a local minimum, there are the
following possibilities:

1. The destination point is not contained in the con-
vex hulls of any of the child nodes: Forward the
packet to the parent node. If the packet reaches a
node whose convex hull contains the destination, it
will be routed down the tree from that node to reach
the destination. If the packet reaches the root node
and none of the convex hulls of its child nodes con-
tain the destination, we can conclude that the packet
is undeliverable.

2. The destination point is contained in the con-
vex hull of at least one child node: We order
the child nodes whose hulls contain the destination
point using a fixed ordering based on node identi-
fiers. The routing decision depends on (i) whether
the packet was previously forwarded in greedy for-
warding mode, and (ii) from which node the packet
was received:

(a) Packet was previously in greedy mode or
was received from parent node: forward
packet to the first child node whose convex
hull contains the destination.

(b) Packet was received from child node (ex-
cept last child node): forward packet to the
next child node whose convex hull contains
the destination.

(c) Packet was received from last child node
among those whose hulls contain the desti-
nation: forward packet to the parent node, or
to the first child if node is the root node and
has no parent node.

By recording the node at which we start the tree traver-
sal in the packet, we can conclude that a packet is un-
deliverable when we come back to the same node. This
termination condition is analogous to that used to termi-
nate traversal of planar faces by existing geographic face
routing algorithms.

Routing using hull trees is illustrated in Figure 3. Fig-
ure 3(a) shows what happens when node ns sends a
packet to node ns: since ng is not in ng’s convex hull,
the packet will be sent first to n1, and from there to no,
since its convex hull contains the destination.

Figure 3(b) illustrates a more complex example in-
volving an undeliverable packet. Suppose node n4 sends
a message to an unreachable destination z, and initially
this packet is routed greedily to ns, and then to ns, which
is a local minimum. At this point ns records itself in the
packet and switches to routing in tree forwarding mode.
The packet is forwarded on the subtree consisting of the

Figure 3: Routing over sample hull trees. Child nodes
of n3, ng and ns are omitted to avoid clutter. The des-
tination of the forwarded packet is marked with a cross
(applicable to (b) only).

nodes with hulls that contain the destination (which in
our example are the nodes n1, na, n3 and ns). The packet
is first sent to the parent node ny and from there to n;.
The destination is contained in the convex hulls of both
of n;’s child nodes, but since the packet was received
from ne, it is forwarded to n3. After forwarding over
subtrees of n3 (not shown on the diagram), the packet
is returned to nq, which forwards it to ns, its first child
whose convex hull contains the packet. ny forwards the
packet to n5. At this point ns sees that it was the orig-
inator of the tree traversal and hence concludes that the
packet is undeliverable.

3.3 Optimization for Undeliverable Pack-
ets

The example in Figure 3(b) illustrates that undeliverable
packets will unfortunately always be routed to the root
of a hull tree. For applications like data-centric sensor
networks where the destination of packets often do not
correspond to actual nodes, this situation is unacceptable.
The problem arises because, during tree traversal, a node
that receives a packet from its last child node does not
know if there is any other convex hull in another part of
the tree that contains the destination and has no choice
but to forward the packet to the parent node.

To remedy this situation, we maintain additional infor-
mation in the tree to allow a node to decide if the destina-
tion of a packet could possibly be in a distant branch of
the tree reachable only by forwarding the packet up the
tree. In addition to its convex hull, each node maintains
information about the set of convex hulls A that intersect
with its own convex hull. We refer to these hulls as con-
flict hulls. A node stores a conflict hull for related nodes
that are not descendants or ancestors, i.e., for siblings and
cousins. More precisely, it stores conflict hulls for nodes
with which it shares a common ancestor, where that node



is immediately below the common ancestor, and its con-
vex hull intersects with this node’s. In the example net-
work shown in Figure 3(b), the hull of n3 is recorded as a
conflict hull by both ny and ns; however, n3 will record
only the hull of ny (and not that for ns) as a conflict hull.

With this additional information, a node that receives a
packet from its last child during tree traversal will check
if any of its conflict hulls contain the destination. If not,
it will forward the packet to its first child instead of the
parent. Effectively, the conflict hulls allow us to prune
some nodes at the root of the routing subtree during tree
traversal.

3.4 Using Multiple Trees

Using a single tree as the basis of routing is inherently
fragile. If the root node fails, the entire tree may collapse
and have to be rebuilt, and while this is happening, rout-
ing will not work well. GDSTR provides some degree of
resilience to such network changes by maintaining a set
of k hull trees, each of which is uniquely defined by its
root node.

With multiple trees, a tree must be chosen when a
packet switches from greedy forwarding to tree forward-
ing mode. We studied a number of heuristics [19] and
found that following simple heuristic works best:

1. From the set of trees that have a child node with
a convex hull containing the destination node, pick
any tree (at random).

2. Otherwise, if none of the child nodes (in any tree)
have convex hulls that contain the destination node,
pick the tree with the root that is nearest to the des-
tination.

3.5 Routing Algorithm

The following is a more precise description of GDSTR
that incorporates the use of multiple trees and the set of
conflict hulls H. A GDSTR data packet p is tagged with
the following state components:

e mode: current forwarding mode (Greedy/Tree),
® n,,in. Node that is nearest to destination,

e tree: identifier for chosen forwarding tree,

® Nanchor. tree traversal anchor node.

Nmin 18 the node at which a packet switches from greedy
forwarding to tree traversal. It is used to determine when
routing should revert to greedy forwarding. ngnchor 1S
the first node encountered by a packet during tree traver-
sal that has a convex hull containing the destination.

While 7,4y, is often the same as ngpchor, they are occa-
sionally not the same node. n,,;, is used by a node to de-
termine whether is it safe for a packet to revert to greedy
forwarding mode and 74ychor 18 Used to determine if the
packet is undeliverable during tree traversal. We use a
tree building algorithm that guarantees the uniqueness of
a tree given a root node. Hence, the tree identifier on a
packet is the node identifier of the root node of the hull
tree.

Algorithm (GDSTR). When a node v re-
ceives packet p for destination node t from a
neighboring node u, do:

Check for switch to Greedy mode: [f
p.mode = Tree and there is at least one
immediate neighbor w such that |wt| <
|(D-Mumin )t|, then set p.mode := Greedy,
PNmin = w and clear p.ngnchor and
p.tree if they are set. Execute step 2 or 3
according to p.mode.

2. Greedy Mode: Find the node w in the
set of immediate neighbors that is closest
to t. If |wt| < |vt|, forward the packet to
w. Otherwise, set p.mode := Tree and
follow step 3.

3. Tree Mode: If p.tree is not set or if
the root for p.tree has changed, follow
step 4, else follow step 5.

4. Choose Hull Tree: Choose one of the
existing hull trees for forwarding and set
p.tree to the chosen tree’s identifier. Fol-
low step 5.

5. Check Hull Tree: If hull tree does not
contain destination node t, follow step 6;
otherwise, follow step 7 instead.

6. Not in Hull Tree: If none of the hulls
in 'H contains the destination node t con-
clude that the packet is not deliverable.
Otherwise, forward p to the parent node
in p.tree.

7. Check Anchor Node: If p.ngnchor IS Set,
follow step 8. Else, set p.Nanchor := v
and follow step 9 instead.

8. Termination Condition: Given a global
ordering for node identifiers, arrange
the child nodes (relative to p.tree) with
convex hulls that contain the destination
point in a ascending sequence according
to the global ordering. Then:



e [fv = p.anchor and either (i) u is
the last child and v is the root node
for p.tree, (ii) u is the last child and
the set of conflict hulls H does not
contain destination node t, or (iii)
u is the parent node, conclude that
packet is not deliverable; else

o If u is the parent node and the set
of conflict hulls 'H does not contain
destination node t, set p.Nanchor ‘=
v. Follow step 9.

9. Tree Traversal:

e [fp.mode = Greedy, set p.mode :=
Tree, forward packet to the first child
node;

o If packet was received from the par-
ent node, forward packet to the first
child node;

o [f packet was received from a child
node, forward packet to the next
child node in the sequence;

o [f packet was received from the last
child node, forward packet to the
parent node if one of the hulls in
‘H contains the destination point;
else, forward packet to the first child
node.

The correctness of this algorithm follows from the fact
that the geometric properties of the routing subtree will
ensure that a packet will eventually visit every node that
can possibly be its destination. Termination is guaran-
teed because |(p.nmin)t| is strictly decreasing while a
packet is in greedy forwarding mode; and if a packet
is not deliverable, it will eventually return to the anchor
node Ngnchor 1N tree traversal mode [19].

3.6 Why and How Hull Trees Work

The common wisdom about spanning trees is that they
result in low total performance: routes can only use tree
links, leaving the majority of links idle. However, this
drawback does not apply to GDSTR for two reasons.
The first reason is that GDSTR uses tree routing only
when greedy geographic forwarding encounters a dead
end. Furthermore GDSTR switches back to greedy for-
warding as soon as possible. Thus typically only a
small fraction of hops use tree routing and few pack-
ets are routed through the root nodes of the hull trees.
Since greedy forwarding yields good stretch when it
works [34], GDSTR provides good overall performance.
The second reason GDSTR performs well is that it
does a good job of routing around voids. GDSTR
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Figure 4: An example illustrating why it helps to have
two trees when traversing a void.

achieves this by using hull trees that are rooted at the
extremities of the network, which allows it to find routes
that conform closely to the voids.

Figure 4 illustrates this point. Suppose that node n; in
Figure 4(a) needs to route a packet around a void to na. A
face routing algorithm is likely to have a face exactly cor-
responding to the void, and must choose between routing
clockwise or counter-clockwise. In this example, the op-
timal choice is counterclockwise. While having some
local face information allows a face routing algorithm to
pick the optimal direction fairly often [20], local infor-
mation alone cannot guarantee that the optimal routing
direction will be picked when the void is large.

Suppose GDSTR is the routing algorithm and has one
hull tree rooted at ;. As illustrated in Figure 4(b), ny
would be forced to route clockwise. However, with an-
other tree rooted at 73, at the opposite end of the network,
nj is presented with the other choice as well, as illus-
trated in Figure 4(c). This example demonstrates how
two trees can effectively “approximate” a planar face.

This insight into how the hull trees work also explains
the expected performance trade off between GDSTR and
face routing algorithms. Face routing techniques are able
to traverse voids in a wireless routing topology relatively
efficiently. The key issue is that they often do not have
sufficient information to choose the optimal forwarding
direction and it can be very costly when they make a bad
choice. It turns out that with GDSTR where there are at
least two extremally-rooted trees, the simple heuristic of
choosing the tree with a root that is nearest to the destina-
tion often allows GDSTR to choose the more favorable
forwarding direction around a void (because it effectively
has global information).

For sparse networks with large voids, GDSTR is thus
able to perform significantly better than geographic face
routing algorithms. For dense networks, the voids tend
to be small and it generally does not matter which for-
warding direction is picked. Because hull trees are not
able to approximate voids quite as well as planar faces,
face routing is expected to achieve slightly better stretch
than GDSTR in such cases.



Figure 5: Examples of “bad” and “good” trees.

3.7 Building and Maintaining Hull Trees

This section explains how we build and maintain hull
trees.

Choosing Root Nodes. Since our goal is to use hull
trees to “approximate” voids, we want the roots of the
k hull trees as far apart as possible. To achieve this, we
choose k rays in different directions, rooted at the ori-
gin, and the roots are the nodes whose projections onto
these rays are farthest from the origin. If there are mul-
tiple extremal nodes, we break ties by imposing a global
ordering on the node identifiers. For example, to main-
tain two trees, we can use one rooted at the node with the
maximal x coordinate and the other rooted at the node
with the minimal z coordinate.

Each node broadcasts a keepalive message periodi-
cally to inform its neighbors of its location. The node
includes in each message its view of the root of each tree
and its distance in both hop count and path distance from
each root. Through these exchanges, all the nodes will
eventually come to a consensus as to which nodes should
be roots; each node will also know both its hop count and
total path distance from the root.

Spanning Tree Algorithm. GDSTR will work cor-
rectly with any distributed spanning tree. However, rout-
ing performance will be best if there is minimal overlap
among the convex hulls of different tree branches. Intu-
itively, we want trees that are geographically “compact.”
Figure 5 illustrates this idea. While the nodes in both
Figures 5(a) and 5(b) are the same, the tree configura-
tion in Figure 5(a) creates an undesirable intersection in
the hulls for nodes n; and ny. From these examples, it is
clear that we want to build trees that cluster nearby nodes
in the same subtree. In addition, we want to be able to
route from the root of the tree to all the nodes in the net-
work in a small number of hops, since this will likely
reduce the routing hop count.

After evaluating a number of spanning tree algorithms,
we found that the minimal-path tree seems to work best.
The minimal-path tree is constructed by having each
node choose the neighbor with the minimal path distance
to the root as its parent (and updating its path distance
accordingly). The details and simulation results for the
other spanning tree algorithms are contained in [19].

Building Hull Trees. Once the tree has been formed,
each node broadcasts its chosen parent node as well as
its convex hull. To compute its convex hull, a node de-
termines the minimal convex hull that contains the union
of the convex hulls of its children in that tree. The con-
vex hull for a set of points can be computed in O(n log n)
operations using the Graham’s Scan algorithm [6].

Once the root acquires hulls from all its children, the
final step is for each node is to determine the set of con-
flict hulls H and add this information to its keepalive
messages. Information about the conflict hulls is propa-
gated down the tree starting at the root; each node in turn
informs its children about intersections between their
hulls and other known hulls. Once the information about
the conflict hulls has propagated down to the leaves of
the tree, the tree is fully built and consistent. This algo-
rithm (like other tree building algorithms) takes at most
3D rounds of message exchanges to complete, where D
is the diameter of the network graph.

Maintenance & Repair. We use the same algorithm
to repair a tree when nodes fail. If the mean inter-
message interval is 7' seconds, even in the worst case
where the root of a tree fails, a hull tree can be restored
within 37'D seconds. To speed up tree repair and recov-
ery, we can trigger immediate transmissions in place of
regular messages when a node failure is detected.

A node concludes that a neighbor has failed when it
does not hear from it after a pre-determined multiple of
the keepalive message interval. If the failed node is a
child, a node will reduce and update its convex hull; if the
failed node is a parent, a node will choose a new parent.
In either case, it sends the new information in its next
keepalive message. When the (new or old) parent hears
about the changes, it will update its state accordingly.

Hence, it is straightforward to update the routing state
when anything changes in the system. When a node
hears the keepalive message from a neighbor, it updates
its own state and the information that it broadcasts in
its subsequent keepalive message. If nothing changes,
a node does not need to update anything.

In fact, a node only has to broadcast its hull tree in-
formation when there are changes to the state of its hull
trees. If nothing changes after the same hull tree in-
formation has been sent for several rounds, subsequent
keepalive messages will contain only the node’s identi-
fier and location. When there is a change in its hull tree
information, a node resumes broadcasting its hull tree in-
formation for another few rounds.

Assumptions. The spanning tree algorithm makes few
assumptions about radio behavior. The only requirement
is that nodes must agree about whether they are neigh-
bors. GDSTR is also robust to location errors [29], be-
cause if a node has a wrong location, the hulls in its part
of the hull trees will grow to include the node’s wrong



location. When greedy routing to that node hits a dead
end, GDSTR’s tree traversal will eventually route to the
tree branch that includes the node because of the large
hull.

4 Simulation Setup

We evaluated the performance of GDSTR with simu-
lations and this section describes our simulation setup.
The simulations are performed using our own high-level
event-driven simulator [18]. Sections 5 and 6 will present
the simulation results.

For our simulations, we use a simple radio model: all
nodes have unit radio range; two nodes can communi-
cate if and only if they are within radio range of each
other and if their line-of-sight does not intersect an ob-
stacle. The simulator supports linear, polygonal and cir-
cular obstacles. Wireless losses are not simulated since
our goal is to compare the basic algorithmic behavior of
GDSTR to other geographic routing algorithms.

As discussed in Section 3, the underlying radio model
does not matter for GDSTR. While the simulator is able
to support non-uniform radio ranges, we consider only
topologies with uniform unit radios since uni-directional
links are not used by GDSTR and topologies with non-
uniform radio ranges can be replicated by adding obsta-
cles. Even under this assumption, we are able to generate
a diverse range of topologies, which we believe is ade-
quate for the purposes of comparing GDSTR to existing
geographic face routing algorithms.

Effect of Network Density: To understand the effects
of network density on routing performance and mainte-
nance costs, we generated networks with 25 to 500 nodes
randomly scattered over a 10 x 10 unit square. This pro-
cess generated networks with average node degrees be-
tween 0.7 to 14.4. For each density, we generated 200
networks, and then routed 20,000 packets using each al-
gorithm between randomly chosen pairs of source and
destination nodes. The performance measurements pre-
sented are the average over the 200 times 20,000 data
points. We also used these topologies to evaluate the ef-
fects of parameters like the number of hull trees and the
value of r, the maximum size for the convex hulls.

A density of 500 nodes in 100 square units is high
enough that greedy forwarding almost always succeeds,
and neither GDSTR nor face routing is needed. For this
reason we did not explore higher densities.

Effect of Obstacles and Network Size: To evaluate
the scaling of maintenance costs and performance and
the effect of obstacles, we generated a range of networks
with constant node density from 50 to 5,000 nodes in
size. The networks were generated for each size by scat-
tering nodes randomly over an x X x unit square, where
x was scaled by a factor of y/n for each network size

n. In addition, we also added a number of cross-shaped
obstacles (0.25 units across) proportional to the size of
the area over which nodes are scattered. This procedure
sometimes generated networks that were not connected.
We discarded such networks and repeated the above pro-
cedure until we had 200 connected networks for each
network size. We found that it is difficult in practice to
generate random connected networks for graphs with a
density of obstacles above a given threshold.

We investigated scaling effects on networks by varying
the density of obstacles. The average node degrees of the
studied networks ranged from 7 to 11. We are interested
in networks of these densities because they are close to
the critical region in which existing geographic routing
algorithms are known to perform poorly [17].

Comparisons. We compare the routing perfor-
mance of GDSTR to GPSR [12], GOAFR+ [16] and
GPVEFR [20]. We evaluate the geographic face routing
algorithms (GPSR, GOAFR+ and GPVFR) with CLDP
planarization, rather than Gabriel Graph (GG) [5] or
Relative Neighborhood Graph (RNG) [33] planarization,
since CLDP is currently the only algorithm that is known
to work for practical networks. In any case, the net-
works with obstacles are not unit-disk graphs (UDGs)
and hence GG and RNG would not planarize them cor-
rectly.

Our implementations of these routing techniques are
based on the algorithms described in [12], [16] and [20]
respectively. The configuration parameters for GOAFR+
are po = 1.4,p = V2 and 0 = 15 as suggested in [16]
and for GPVFR, we limited the length of the propagated
path vectors to 3. Unless stated otherwise, we used two
hull trees for all experiments with GDSTR. Our imple-
mentation of CLDP follows the description in [13].

5 Routing Performance

In this section, we compare the performance of GDSTR
routing to existing geographic face routing algorithms.

We measured routing performance with respect to two
metrics: (i) path stretch, and (ii) hop stretch. Path stretch
is the ratio of the total path length to the shortest path
(in Euclidean distance) between two nodes; hop stretch
is the ratio of the number of hops on the route between
two nodes to the number of hops in the shortest path (in
terms of hops). It turns out that results for these two
metrics are similar, so we present only the plots for hop
stretch below.

5.1 Routing Performance

Figure 6 shows the hop stretch for deliverable packets for
GDSTR, GPSR, GOAFR+ and GPVEFR over a range of
average node degrees.
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Figure 6: Plot comparing the hop stretch for GDSTR to
that for GPSR, GOAFR+ and GPVFR under CLDP pla-
narization for unit radio networks in a 10 10 unit square.

GDSTR has the best performance for most of the
range: that is, GDSTR routes packets along shorter paths
than the other algorithms, and is thus likely to deliver
packets faster and with less consumption of radio re-
sources. The only exception is that GPVFR’s stretch is
a few percent less than GDSTR for node degrees higher
than 9.

The differences in the performance of the various algo-
rithms are most pronounced in the critical region of node
degrees between 4 and 6. The reason is that networks
in this region tend to have large outer perimeters and the
voids that are generated are often concave. Packets tend
to end up in a local minima fairly often for these topolo-
gies and the routing algorithm has to resort to forwarding
the packet along a face (for the face routing algorithms)
or along a tree (for GDSTR).

GPSR performs the worst because it uses a determin-
istic right hand rule when forwarding a packet along a
face. It turns out that topologies in the critical region
typically present nodes that need to switch to face traver-
sal with one good forwarding direction and one terrible
alternative. By choosing the same direction consistently,
GPSR gets it wrong about half the time.

GOAFR+ is better than GPSR because it uses an ex-
panding ellipse to bound the search radius. GOAFR+
picks a random forwarding direction to start with, but in-
stead of forwarding continuously along a face, GOAFR+
keeps track of how far it has gone along the face and
if a packet seems to have wandered far enough along a
face and not made any apparent progress toward the des-
tination, GOAFR will make the packet backtrack. By
expanding the area of the search incrementally, GOAFR
ensures that the length of the final path traversed is no
longer than a constant multiple of the optimal path.

GPVER tries to pick the optimal forwarding direc-
tion when it switches from greedy forwarding to face
traversal. It does so by maintaining several hops worth
of information about its adjacent planar faces. It turns
out that in practice, by maintaining information about
nodes that are up to 4 hops away along the planar faces,
GPVFR will often make the correct decision when the
network density is low. When the network density is rel-
atively high (above an average node degree of 9), CLDP
produces planar faces that are relatively small (usually
with fewer than seven points). Thus, under such circum-
stances, GPVFR has enough information to guarantee
that it chooses the correct forwarding direction almost
all the time, which explains why it performs better than
GDSTR for node degrees higher than 9.

When two forwarding directions are available,
GDSTR’s tree-choosing heuristic of picking the tree with
aroot that is closest to the destination allows us to choose
a good forwarding direction around a void most of the
time. However, we believe that a more significant rea-
son that explains why GDSTR outperforms the other al-
gorithms in the critical region is that the convex hulls
contain sufficient information to allow GDSTR to prune
away many bad routing choices and route on a much
reduced subtree that is often significantly smaller than
large voids or the perimeter of the network (which often
have one hundred or more nodes).

5.2 How Many Trees are Useful?

GDSTR can maintain multiple hull-trees. Figure 7 shows
the effect of increasing the number of trees on the av-
erage hop stretch. Routing performance improves quite
significantly when we increase the number of hull trees
from one to two (achieving a peak improvement of ap-
proximately 10% in path and hop stretch); routing perfor-
mance continues to improve with more trees but beyond
two trees, the improvement is marginal. This is not sur-
prising since two extremally-rooted trees are sufficient to
approximate voids relatively well.

5.3 Effect of Convex Hull Representation

In Sections 5.1 and 5.2, we did not limit r, the maximum
size for the convex hulls.

When we repeated the measurements for routing
stretch for different values of r, we found that surpris-
ingly, the value of r has a negligible effect on both path
and hop stretch, i.e., the stretch for r = 5 was virtually
indistinguishable from stretch when r is unlimited. We
found that the reason for this is that although the hulls are
bigger when r is limited and there are more intersections
between the convex hulls of sibling nodes, intersections
do not necessarily degrade routing performance as long
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Figure 7: Hop stretch performance for GDSTR with dif-
ferent numbers of hull trees.

as they are not particularly large or if they occur close
to the leaves of a tree. In fact, intersections that do not
contain any nodes do not affect routing performance.

It seems that even when r is reduced and the size of the
hulls is increased, it is still relatively rare for nodes to fall
into the intersections of hulls. Furthermore, intersections
only matter when a packet is not forwarded in greedy
mode. Since GDSTR forwards packets in greedy mode
more than 75% of the time in our experimental setup and
only occasionally switches to tree forwarding mode, it is
not completely surprising that » does not seem to affect
the aggregate routing performance.

5.4 Scaling Up

To understand how the routing performance of GDSTR
scales with the size of the networks and also its per-
formance on topologies that are not unit disk graphs
(UDGs), we evaluated the routing performance of
GDSTR on sets of networks with cross-shaped obstacles
for sizes ranging from 50 to 5,000 nodes, while hold-
ing both node and obstacle densities constant. Without
obstacles, the average node degrees of these networks
would be 10; with the addition of obstacles, the average
node degrees are reduced accordingly.

The hop stretch for networks with average node de-
grees approximately 6 and 7 are shown in Figures 8 and 9
respectively. These results are similar to that for random
unit disk graphs with average node degrees 6 and 10 re-
spectively [19].

Our results demonstrate that for sparse networks, the
routing performance of GDSTR is consistently better
than that for existing face routing algorithms, while for
denser and larger networks, existing face routing algo-
rithms can sometimes achieve slightly lower stretch. As
mentioned, the reason is that extremally-rooted trees do
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Figure 8: Plot of hop stretch for non-UDG networks
(with obstacles) of average node degree 6.
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Figure 9: Plot of hop stretch for non-UDG networks
(with obstacles) of average node degree 7.

not approximate voids quite as well when there are a
large number of hops between the leaf nodes and the root.

6 Costs

In this section we present experimental results for the
costs of GDSTR. Our main concern is with bandwidth
since it is likely to be a limiting factor in radio networks.
However we begin by discussing the storage costs of our
system, since storage concerns were once a primary mo-
tivation for geographic routing algorithms.

6.1 Storage Costs

Figure 10 shows the average and maximal storage re-
quired by any nodes over the range of densities investi-
gated. We assume that a set of coordinates and a node
identifier are 8 and 12 bytes in size respectively. We
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Figure 10: Amount of routing state stored at each node
for various values of r for GDSTR with two hull trees.

can see from the figure that the maximum is about 1,000
bytes. This amount of storage is hardly a concern for
modern sensor devices like the Mica2 [32], which has
128K of program memory and 512K of flash RAM.

The figure shows the storage requirements when
GDSTR uses two hull trees. In general, GDSTR with
two hull trees requires more than twice as much stor-
age on average as existing face routing algorithms at low
network densities. However, as the network density in-
creases, the storage requirement of the neighbor set be-
comes comparable to the storage requirement for the hull
trees.

The figure also shows the effect of limiting the size of
the convex hulls, r, on storage. These results show that
by limiting r, there is negligible effect on the average
storage requirement. When r» = 5, we can reduce the
maximum storage required by up to 30% at low network
densities. Since the associated storage costs are small,
we find that there is no compelling reason for us to limit
the size of the convex hulls in practice.

6.2 Bandwidth Costs

In the following experiments that measure the costs of
stabilization and maintenance, we compare the costs of
GDSTR with the cost of building and maintaining a pla-
nar graph with CLDP. The reason is that the other as-
sociated costs of existing geographic face routing algo-
rithms [12,16,20] are small relative to the cost of CLDP.
The costs for GPSR [12] and GOAFR+ [16] are negligi-
ble; GPVFR [20] does impose some maintenance cost on
the network to maintain its face information, but the cost
is also small relative to CLDP.

We quantify the bandwidth costs for each algorithm
in terms of the number of messages sent or forwarded
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Figure 11: Comparing the sizes of CLDP probes and
GDSTR broadcast messages.

by nodes during stabilization and repair. For GDSTR,
we count the number of keepalive messages that contain
new hull information. For CLDP, we count the probe
messages.

The average size of these messages is shown in Fig-
ure 11. As shown, the relative sizes of the CLDP probes
and GDSTR broadcast messages are comparable. CLDP
probes are largest in the critical region (average node de-
gree 4 to 8) because the probes contain the points on the
faces and these networks tend to have the largest perime-
ters.

Startup Costs. To investigate the startup costs for a
network, we start all the nodes in the network at approx-
imately the same time and measure the average number
of messages sent by each node before the network con-
verges.

CLDP involves a locking mechanism, so a configura-
tion involving binary backoff will likely be able to opti-
mize its startup performance. We do not know the opti-
mal parameters, so we used the following simple probe
model: all nodes have the same probing period with a
20% jitter (to avoid synchronization), and at the start of
each period, a node probes all the links that require prob-
ing. If a reply is received, it is acted on immediately.
If a probe message is dropped because it encounters a
locked edge, the node will resend the probe during the
next probe interval. A node is deemed to have converged
when all its links are marked either dormant or non-
routable and it does not have to initiate any more probes
during the next probing interval. Similarly, a GDSTR
node is deemed to have converged when it no longer
needs to broadcast hull information in its keepalive mes-
sages.

In Figure 12, we plot the average number of mes-
sages that each node in the network would have sent or
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Figure 12: Packets sent or forwarded per node for stabi-
lization.

forwarded before the network stabilizes, with all nodes
starting up without any state. As shown, CLDP sends
about two orders of magnitude more messages than
GDSTR before the network stabilizes. For node degrees
between 6 and 14, each CLDP node will send about
1,500 messages; for GDSTR, the corresponding number
is slightly more than 10 messages.

There are two main reasons why CLDP imposes such
a high overhead:

e Many links to probe. When the network just
starts up, all links are routable and the effective for-
warding graph is highly non-planar. Every edge is
probed at least twice, once by each node on either
side. Also, the final probes that allow a node to
mark a link as dormant must fully traverse a face,
so the number of messages required to probe a face
grows quadratically with the size of the face;

e Locking mechanism causes packets to be
dropped. Every link removal operation consists of
a prepare step and a commit step. In between the
two, an edge is locked and packets that arrived at it
are dropped.

We see in Figure 12 that the startup costs for CLDP
increases rapidly until node degree 6 and starts to taper
off thereafter. This is because below node degree 6, the
experimental topologies usually consist of several small
disjoint networks. As the node degree increases, the net-
works become larger and more tree-like, and they tend
to have larger perimeters that are costly to probe. After
a critical density of about node degree 6, the networks
become more connected, and their perimeters are some-
what more convex. The probing costs do not increase
much at this stage with increasing density because the
network perimeters either stay relatively constant or may
even shrink slightly. The probing costs for CLDP are also
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proportional to the number of edges in the network graph
however, so when the network density increases beyond
node degree 8, the increase in the number of edges (links)
becomes the dominating factor and we again see an in-
crease in the CLDP probing cost.

Figure 12 also shows that the number of messages re-
quired per node by GDSTR plateaus at node degree 6
and increases only slightly thereafter. The reason for this
is that the number of update messages that GDSTR re-
quires is a function of the network diameter D. It turns
out that since the nodes have unit radio range and are all
contained within a 10 x 10 unit square, D is somewhat
constant for densities higher than node degree 6.

Incremental Costs. To quantify the bandwidth re-
quired to update routing state when a new node joins and
to repair routing state after a node fails, we measure the
costs of adding and removing a single node from a stable
network as follows: after a network has stabilized, we
remove one node and count the number of messages sent
per node. After the network has stabilized once again,
we add the removed node back to the network and take
the same measurement. We repeat this process on 20 ran-
domly chosen nodes for each network and average the re-
sults to obtain the average cost per node change in each
network.

In Figure 13, we plot the number of messages that are
sent per node in order for the system to converge after
one node join or departure. The peak for CLDP is about
200 messages per node at a node degree of 6. When
a node joins the network for CLDP, new links are cre-
ated between it and all its immediate neighbors and these
new links are probed independently by the various nodes;
when a node fails, its adjoining neighbors will probe all
the adjacent links that are marked non-routable, in case
there is the need to revive a non-routable link to restore
connectivity. We see that the costs for node joins and
departures are comparable, except for high network den-
sities. The likely reason for this is that at high densi-
ties, node failures are significantly more costly than node
joins because more links are re-probed for node failures
and the number of such links is proportional to the node
degree.

The join costs for GDSTR are uniformly low at ap-
proximately 3 messages per node; the repair costs after
a node failure are highest in the region with node degree
between 2 and 6 and falls gradually with increasing node
density. The latter is because the likelihood of failure for
an intermediate node is much higher at lower node den-
sities (with a maximum of approximately 15 messages)
and for high node densities, node failures are more likely
to occur at the leaf nodes. Note that these figures are av-
eraged over only the nodes that are affected by a node
join or departure.

The bandwidth costs for updating a planar graph with
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Figure 13: Packets sent or forwarded per node when a
new node joins or when an existing node fails.

CLDP incrementally are significantly lower than that for
en masse stabilization at startup. In fact they can be in-
terpreted also as the cost to stabilize for CLDP when the
network grows one node at a time.

Discussion. We chose to evaluate startup and mainte-
nance in terms of message count rather than convergence
time because the system parameters for both CLDP and
GDSTR can be tuned to achieve faster convergence. For
example, the probing rate for CLDP can be increased
and for GDSTR, nodes can broadcast update messages
as and when there are changes in its hull trees instead of
waiting to piggyback the information on keepalive mes-
sages. The total amount of information to be transmitted
to bring the routing information to a consistent state is
however the same in all cases. In fact, we can work out
the fundamental limit on convergence time by dividing
the volume of messages to be transmitted by the maxi-
mal achievable bandwidth of the radios.

6.3 Scalability

In this section, we summarize what happens to cost as we
scale up the network size to 5,000 nodes for the networks
with cross-shaped obstacles.

Storage Costs. The average storage required per node
is somewhat independent of network size and is about
300 bytes over the entire range of network topologies
that we investigated; the maximal storage requirement
increases steadily with network size, but it does not ex-
ceed 1,300 bytes even when the network size is scaled up
to 5,000 nodes.

Bandwidth Costs. For large networks, the initial
startup costs where all nodes start from a fresh state is not
important, since large networks will have to be turned on
incrementally. In Figure 14, we plot the average number
of messages that are sent per node for CLDP and GDSTR
for increasing network size for networks with mean node
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Figure 14: Packets sent or forwarded per node when a
new node joins or when an existing node fails for net-
works with cross-shaped obstacles and mean node degree
7. See Figure 9 for corresponding routing performance.

degree 7 and a constant obstacle density.

The average number of messages sent per node for
CLDP seems independent of the network size. For
GDSTR, we see that messages sent per node for each
incremental node join and network repair increase very
gradually with network size. As before, node joins for
GDSTR are relatively cheap, while repairs after network
departures are slightly more costly. Individual node joins
and network repairs only affect a fraction of the nodes in
the network (typically less than 20% and decreasing with
increasing network size).

7 Conclusion

The key insight of our work is that for geographic rout-
ing, it is no less efficient to use two hull trees instead of a
planar graph as the backup routing topology when greedy
forwarding fails, and it is significantly easier to build
and maintain hull trees than a planar graph. Our simu-
lations have demonstrated that GDSTR requires an order
of magnitude less maintenance bandwidth than CLDP,
while achieving lower path and hop stretch than existing
geographic face routing algorithms.

GDSTR is immediately applicable to a large class of
stationary wireless networks, e.g. roofnets [1, 30] and
sensornets [9,27]. While we have not explicitly evalu-
ated the performance of GDSTR for mobile networks,
our simulations show that GDSTR requires only a small
number of packets to set up and repair its hull trees. This
suggests that it is quite plausible that GDSTR will work
well in a mobile setting with some tuning and optimiza-
tion. It remains as future work to implement and evaluate
GDSTR in a practical mobile environment.

While GDSTR is currently implemented over two-
dimensional Cartesian coordinates, it is generalizable to



coordinates in higher dimensional spaces, since convex
hulls are generalizable to higher dimensions. An open
question is whether GDSTR can achieve better routing
stretch in higher dimensional space.
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