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Modeling Flash Crowd Performance
in Peer-to-peer File Distribution

Cristina Carbunaru, Yong Meng Teo, Ben Leong, and Tracey Ho

Abstract—Given the growing popularity of peer-to-peer file distribution in commercial applications, it is important to understand
the challenges of using p2p file-sharing protocols for file distribution, and how extreme conditions such as flash crowds affect
the efficiency of file distribution. In this light, there is a need to understand the impact of the utilization of available bandwidth
on the performance of peer-assisted file distribution systems. With a simple measurement study on PlanetLab, we identified
distinct phases in peer bandwidth utilization over the download duration. Based on the evolution of the utilization of available
peer bandwidth over time, we formulated an analytical model for flash crowds in homogeneous and heterogeneous bandwidth
swarms. The model estimates the instantaneous download rate and the average file download time with 10% error for swarms
up to 160 peers. Our model can be used to predict the scalability of the system when the number of peers increases, and to
provision for flash crowds by estimating the server bandwidth to achieve a minimum quality of service. Lastly, we demonstrate
how our model is applied to new p2p protocols to understand their design and performance problems.

Index Terms—peer-to-peer analytical modeling, performance model
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1 INTRODUCTION

WITH the increase in the size of downloaded
files over the Internet, peer-to-peer (p2p) file-

sharing protocols such as BitTorrent (BT) have been
widely adopted to improve the performance of tradi-
tional client-server file distribution systems [2], [10],
[34]. Peer-assisted systems improve the scalability
and performance of content distribution by utilizing
the upload bandwidth of the downloading clients
to improve the overall available bandwidth of the
system. However, distributed and uncoordinated p2p
algorithms like BitTorrent are not efficient in utilizing
the available bandwidth of the system [26]. While new
protocols [25], [30] have been proposed to address
this issue, the popularity of BT and the availability of
many implementations make it an attractive choice for
file distribution in practice [2], [34]. In this light, there
is a need to model and understand the performance
of peer-assisted file distribution systems.
Previous work on modeling p2p systems focused

mainly on systems at steady-state [12], [28], [33]. In file-
sharing systems, modeling steady-state is reasonable
because peers stay in the system and continue to share
the file after download completion. In contrast, peers
in file distribution systems download the file as fast as
possible and then leave. Furthermore, when a popular
file is made available, there is typically a surge in
peer arrival rate which results in a flash crowd [36], as
shown in Fig. 1. Subsequently, as the file popularity
drops, peer arrival rate decreases and the system
goes into steady-state. For a content distributor, the
challenge is to ensure that the system has sufficient
resources to cope with this sudden surge of users.
In this paper, we investigate flash crowd perfor-

mance in peer-assisted file distribution systems. First,

measurement experiments of BT on PlanetLab [4]
show that the utilization of available peer bandwidth (ρ)
is not constant over the download interval. Second,
we propose an analytical model to capture the impact
of the bandwidth utilization on the instantaneous
download rate experienced by peers. Lastly, we show
how users, service providers and developers of peer-
assisted file distribution systems can apply our model
to predict the expected download performance of the
system for existing and new protocols, and to esti-
mate the server bandwidth for achieving a minimum
quality of service.
An important measurement observation is that

peers are not able to fully utilize their entire available
upload capacity during a flash crowd. By observing
the variation of ρ as a function of the total number
of blocks downloaded, both the file block availability
and download performance over time are captured.
For current p2p protocols, we show that ρ can be
characterized by a trapezoidal-shape curve with three
phases: start-up, maximum utilization and end-game.
Based on these measurement observations, we pro-

pose a new approach for modeling and predicting
the instantaneous flash crowd performance of p2p
file distribution systems. Our approach is designed
for both homogeneous and heterogeneous bandwidth
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Fig. 1: Evolution of the peers arrival rate in swarms.
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swarms. A key strength of our approach is that we can
model the evolution of ρ in a file distribution system
as an analytical function of the total number of blocks
downloaded by all peers in the system. To simulate
the flash crowd scenario, we model the swarm as a
closed system. By transforming this model into the
time domain, we estimated the system performance
with high accuracy. A closed form solution is obtained
to predict the file download rate (throughput) varia-
tion over time and the expected average download
time experienced by the peers.
We apply our model to BT [5], a well-known and

frequently used p2p protocol for file distribution.
Validation using PlanetLab shows that the measured
utilization of available peer bandwidth closely follows
our model. While existing models [28], [35] only es-
timate the average download rate of the system, our
model is designed to estimate the evolution of peer
download rate over time. We validate our model with
experiments on PlanetLab and show that, on average,
it estimates the instantaneous download rate and
the file download time with less than 10% error for
swarms up to 160 peers. Our heterogeneous model is
more accurate when compared to a simplistic model.
Next we apply our model to study the performance

of p2p file distribution with flash crowd. First, our
analytical approach provides a reasonably tight upper
bound on the achieved download performance as the
number of peers scales up. Second, we show how
the server capacity required to support a specified
quality of service is derived. This can help p2p ser-
vice providers handle flash crowds without providing
excessive bandwidth. Third, protocol designers can
apply our approach to understand the performance
of different p2p protocols. As an example, we ap-
plied our model to FairTorrent [30] with a different
incentive scheme, and to BT swarms with peers that
seed after download completion. We observed that
FairTorrent suffers from starvation, especially when
the system is under-provisioned or when the number
of peers is large.

2 RELATED WORK
Unlike previous work that proposed new centrally
coordinated mechanisms [25] and new pricing mecha-
nisms to incentivize uncoordinated p2p schemes [23],
we study the effectiveness of using the popular BT
algorithm for file distribution. While the performance
of BT has been studied extensively as a file-sharing
protocol [9], [28], [31], to the best of our knowledge,
we are the first to study the performance of BT as a file
distribution protocol. In file distribution, the system
provides a server (BT seed) as a constant source of data
content for clients that download a file and clients
generally leave the system on download completion.
There is a large body of work on the model-

ing of p2p systems. The most common approaches
are queueing theory [11], [31], [33], [35] and fluid

models [12], [17], [19], [20], [22], [28]. The main draw-
back of queueing models is that sufficiently detailed
models are often mathematically intractable, while
simple models fail to provide much insight. On the
other hand, fluid models are useful because they cap-
ture the evolution of p2p systems over time. However,
current work includes the assumption of constant
arrival rate and models are solved for systems at
steady-state [20], [28]. In terms of validation, simu-
lation is widely used in previous models [9], [11],
[19], [20], [31]. Typically, only parts of the models are
validated using traces from real systems, while simu-
lation is used to complete the validation [12], [28], [35].
Considering the unpredictability of flash crowds, we
validated our model with PlanetLab measurements.
In reality, the worst case performance of p2p sys-

tems is often the result of flash crowd [13], [14], [35],
[36]. While Yang and Veciana studied the ramp-up
service capacity [35], a closed form solution for the
expected download time is not provided, and the
insight is that expected peer delay during the initial
transient phase scales logarithmically with swarm
size. In contrast, our closed-form model captures the
lifetime performance of flash crowd.
The measure of effectiveness of file-sharing, η,

is a key input parameter in the analytical models
proposed by Yang and Veciana [35] and Qiu and
Srikant [28]. The rationales are that the downloading
peer’s contribution to the service capacity is a fraction
η of that of a peer that has fully downloaded the file,
and the total capacity of the peers is fully utilized
at steady-state. However, our measurement of the
effective peer upload bandwidth utilization, ρ, shows
that this assumption does not necessarily hold in
practice, in particular during flash crowd. In reality,
p2p protocols have different ρ when distributing the
same file under similar network conditions [18].
Applications of previous models include estimates

of minimum download time [15], analysis of free-
riding [19], [28], [35] and swarm lifetime [12], [21], and
scalability of video on-demand system during flash
crowd [6]. In this paper, we focus on performance
scalability of file distribution and server provisioning
during flash crowds. On server provisioning, meth-
ods such as bandwidth allocation among peers [3],
[7], content bundling [21], and dynamic allocation
of peers among swarms [7], have been proposed
to improve the download time and availability in
p2p systems. The impact of server capacity on the
performance of homogeneous peer-assisted systems
has been studied using fluid models [8], [32], but we
also cover heterogeneous model. Other studies [29]
attempt to estimate the server provisioning for flash
crowds, but only the last phase of exponential decay
of the arrival rate [12] is modeled. A key difference is
that we analyze the impact of multiple classes of peers
on the required server capacity to achieve a specific
download time during flash crowd.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000  1200  1400  1600  1800

ρ

Time (s)

(a) ρ(t) for one class.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

ρ

Normalized K

(b) ρ(K) for one class.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

ρ

Normalized K

(c) ρ(K) for two classes.
Fig. 2: ρ for BT homogeneous and heterogeneous 100-node swarms.

3 UTILIZATION OF AVAILABLE PEER BAND-
WIDTH
To investigate the performance of BitTorrent [5] as a
file distribution protocol, we conducted measurement
experiments on PlanetLab [4]. A key observation is
that there is a consistent pattern in the utilization
of the available bandwidth over the course of a
download. In this section, we present the background
information on existing p2p systems, explain our ex-
perimentation methodology and describe our obser-
vations on the utilization of available peer bandwidth.
In BT, peers in a swarm cooperate to download

large files, initially only available on a few nodes that
are called seeds. Peers simultaneously download and
upload different parts of the file from other peers,
as well as directly from the seeds. A file is divided
into chunks, called blocks, and multiple blocks form
a piece. A new peer connects to a tracker to obtain
a list of active peers and their list of blocks. A peer
downloads blocks from other peers and from the
seeds. After the download is completed, BT peers can
decide to stay in the swarm and become seeds, or
leave the system. A mechanism called choke/unchoke
regulates the exchange of blocks among peers, where
each node attempts to upload blocks to the peers
that offered it the best download rates during the last
download interval. A number of unchokes are chosen
based on the best download rates, while one unchoke,
called an optimistic unchoke, is randomly chosen from
the remaining requests the peer received.
In our measurement study on PlanetLab, each ex-

periment involves a tracker, a client that acts as the
server or initial seed (which remains in the system
throughout the experiment) and clients that act as
peers. To mimic a file distribution scenario where the
clients are only interested in downloading a file and
not in helping others with their downloads, peers join
the system at approximately the same time. We show
in Appendix A (SupplementaryMaterial) that this sce-
nario allows us to obtain a good approximation of the
performance of the peers arriving during a practical
flash crowd scenario, where more peers continue to
join the swarm at a much lower rate after the initial
flash crowd. The intuition for this is that while the
peers joining after a flash crowd leach some of the
bandwidth of the initial peers, they also contribute
some bandwidth to the swarm.
Since the upload capacity of nodes on PlanetLab

is unknown, we cap the upload bandwidth of peers

and the seed using the default capping mechanism
provided in BT to facilitate our analysis of the results.
Because PlanetLab nodes are limited to uploading
about 8 GB of data daily, we set the file size to 100
MB, and worked with swarms with up to 160 nodes
and a maximum upload bandwidth of 256 kBps.

3.1 Definition and Observations
Previous analysis of the effectiveness of BT showed
that available bandwidth can be approximated as one
at steady-state [28]. An interesting question is what is
the utilization of peer bandwidth during flash crowd.
We define the utilization of available peer bandwidth
as follows.

Definition 1. Utilization of available peer bandwidth, ρ,
is defined as the ratio of the effective upload bandwidth
to the total initial upload capacity of peers in the system.

Based on more than 300 experiments with differ-
ent configurations on PlanetLab, we observed that
the evolution of bandwidth utilization during flash
crowd can consistently be divided into three main
phases: start-up, maximum utilization and end-game. For
illustration, we plot in Fig. 2a the utilization for a
homogeneous system where the server has an upload
capacity of 256 kBps and all peers have an upload
capacity of 128 kBps. In this example, the start-up
phase is from 0 s to 100 s; the maximum utilization
phase is from 100 s to 770 s, and a end-game phase is
from 770 s to 2100 s. The maximum utilization phase
resembles the steady-state with a constant value of η
over time as reported in [28]. However, the maximum
utilization phase of the flash crowd is followed by a
steep decrease in ρ that precedes the steady-state.
To better understand the utilization of the available

system bandwidth as download progresses, we rep-
resent the data in a slightly different form by plotting
ρ as a function of K , the total number of blocks
downloaded in the system. This is shown in Fig. 2b.
Since the number of file blocks downloaded by the
peers depends on the time elapsed from the start of
the download and on the number of peers, we pos-
tulate, and subsequently verify experimentally, that
K captures the salient features of the evolution of the
system. If N is the total number of peers in the system
andM is the number of blocks in the downloaded file,
all the peers would have downloaded the file when
K reaches MN . Therefore the total number of blocks,
K , can be normalized by dividing it by MN .
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3.2 The End-game Phase
A key difference between homogeneous and hetero-
geneous systems lies in the end-game phase. Nodes
in a homogeneous swarm tend to finish their down-
loads and leave the system at approximately the same
time. In a heterogeneous swarm, the end-game phase
contains steps that correspond with the classes of peers
and steps occurr with the departure of the fastest peer
in that class. In Fig. 2c, we plot ρ against K(t) for
swarms with heterogeneous peers equally divided in
two classes. The upload bandwidths of slow peers,
fast peers and server are 64 kBps, 128 kBps and
256 kBps, respectively. As shown, the steps occurrence
in the end-game phase are at 0.7 and 0.9, respectively.
This observation is consistent for systems with a
larger number classes.
These steps concur with the observation that peers

tend to cluster with peers of similar upload band-
widths, as highlighted by Legout et al. [16]. In the
ideal case, when clustering is perfect, peers in a
class finish their downloads close in time. However,
in practice, the upload capacities of the peers are
influenced by network conditions and connectivity,
hence the steps in the end-game phase are less dis-
tinct. When the number of classes increases, step size
reduces, and the profile of ρ resembles a homogeneous
system.
4 MODELING A FLASH CROWD
In this section, we describe our approach in modeling
the impact of the utilization of available peer band-
width (ρ) during a flash crowd for p2p file distribution
systems. For clarity, we first focus on modeling a ho-
mogeneous bandwidth system. We extend this model
to heterogeneous swarms with peers divided among
different classes in Section 4.3.
The utilization of available peer bandwidth is the

key factor used in our model. Based on measure-
ment experiments, the three phases for a file down-
load start-up, maximum utilization and end-game can
be approximated with a trapezoidal-shape curve and
modeled as shown in Fig. 3. If the upload capacities
of all peers can be fully utilized at all times (ρ = 1),
optimal performance can be achieved. This does not
happen in practice, as described in Section 3.1. By
modeling ρ and the parameters characterizing these
phases, α, β, ρmax and ρmin, average download time
and download rate variation over time can be derived.
Our model has a closed form solution and can be used
for different p2p protocols.

4.1 General Model
This section describes a general modeling approach
for predicting download rate variation over time and
download times. It has been shown that the access
patterns of popular and newly available content typ-
ically experience what is called a flash crowd [14],
[27]. We model a flash crowd as a closed system

consisting of a large number of peers, N , arriving
at approximately the same time. In Appendix A, we
show that this impulse-like arrival pattern is a good
approximation of the performance observed in a typ-
ical flash crowd scenario where more peers continue
to join the swarm, but albeit at a much lower rate of
arrival than the initial flash crowd. All peers attempt
to download the same file, which is divided into
M blocks of size B. The file is first made available
by a peer, called a seed (server), with an upload
bandwidth Cs. Peers that download the file have
maximum upload bandwidth ci, for i = 1, · · · , N and
leave as soon as the file is downloaded. The notations
are summarized in Table 1.
To determine the download rate and time, we first

estimate K(t), the total number of blocks downloaded
in the system by time t. The evolution ofK is modeled
over discrete time intervals,Δt, whereΔt is arbitrarily
small. K(t) depends on the utilization of available
peer bandwidth at time t, denoted by ρ(t). The total
number of downloaded blocks increases due to server
and peers’ contribution. We assume that the server’s
upload capacity is fully utilized, while peers might
not use their maximum upload capacity all the time.
Hence only a fraction ρ of the upload capacity is used
at t. The evolution of the total number of blocks over
time is estimated as follows:

K(t+Δt) = K(t) +
Cs

B
Δt+

ρ(K)
∑N

i=1 ci
B

Δt (1)

where
∑N

i=1 ci is the total upload capacity of the peers
in the system. For the rest of the paper, we denote
∑N

i=1 ci with C.

4.2 Homogeneous Model
The evolution of ρ for a homogeneous system is
modeled as three distinct phases as shown in Fig. 3.
During start-up, the peers join the system and the
server is the only one offering file blocks. It takes some
time before the peers accumulate enough blocks to
start exchanging them. As the peers download their
first blocks from the server, the utilization increases,
reaching the full capacity of the system. When the
peers download a fraction α of the total number of
blocks needed by all peers to complete the download,
the utilization reaches a maximum value ρmax. This
maximum utilization phase continues until the moment

TABLE 1: Model notation.
Notation Description

N number of peers in the system
M number of blocks in the file
B size of a block
S number of blocks in a BT piece
Q number of simultaneous unchokes allowed in BT
Cs maximum upload bandwidth of the server
ci maximum upload bandwidth of peer i
ρ(t) utilization of available peer bandwidth at time t
α fraction of blocks when maximum utilization is reached
β fraction of blocks when utilization starts to decrease

ρmax maximum utilization of available peer bandwidth
ρmin minimum utilization of available peer bandwidth
K(t) total number of blocks downloaded in the system by time t
rd(t) download rate at time t
Td average download time
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Fig. 3: Model of ρ for homogeneous swarm.

when the first peer completely downloads the file,
and this marks the start of the end-game phase. At this
point, a total of βMN blocks would be downloaded
by the nodes and the utilization decreases to reach
ρmin at the end of the download. ρmin is 0 when
there is no altruistic sharing, and it is greater than
0 otherwise.
Each phase of ρ(K) is modeled using a linear func-

tion. As shown in Fig. 3, ρ(K) is fully described by
the four parameters: α, β, ρmax and ρmin as follows:

ρ(K) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρmax
K(t)
αMN

, K(t) ≤ αMN

ρmax, αMN < K(t) ≤ βMN

(ρmax−βρmin)−
K(t)
MN

(ρmax−ρmin)

1−β
,

βMN < K(t) ≤ MN

(2)

Substituting ρ(K) in Equation (1) and solving this
using differential equations, we obtain a closed form
solution for K(t). Furthermore, download rate over
time (rd(t)) and average download time (Td) are de-
rived from K(t):

rd(t) =

⎧⎪⎨
⎪⎩

Cs

N
e

C
B

ρmax
αMN

t, t ≤ tα
Cs+ρmaxC

N
, tα < t ≤ tβ

Cs+ρmaxC

N
e
−

C
B

ρmax−ρmin
(1−β)MN

(t−tβ)
, tβ < t

(3)

Td = tβ −
B

C

(1− β)MN

ρmax − ρmin

ln
Cs + ρminC

Cs + ρmaxC
, (4)

where

tα =
B

C

αMN

ρmax

ln(
C

Cs

ρmax + 1) (5)

tβ = (β − α)
BMN

Cs + ρmaxC
+ tα (6)

Details of the model derivation is in Appendix B.1.
We note that our model is independent of the

chosen p2p protocol, but in modeling ρ, we need to
consider the protocol characteristics. Appendix B.1.2
describes how we model the parameters that define
the utilization of available bandwidth: α, β, ρmax,
ρmin. Parameter ρmax is estimated using measure-
ment, ρmin = 0 for BT, and other parameters are
estimated as follows:

α =
QS

2M
(7)

β = α+ (Cs + ρmaxC)
M − SQ

M(Cs + (1 + f)ρmaxC)
(8)

4.3 Heterogeneous Model
Real p2p systems are typically heterogeneous. In this
section, we extend our model to heterogeneous sys-
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Fig. 4: Model of ρ for heterogeneous swarm.

tems, with several classes of peers, where the peers
within each class have the same upload bandwidth.
We believe that this is a reasonable assumption be-
cause ISPs commonly sells a limited number of sub-
scriber plans.
As discussed in Section 3.2, the major difference

between homogeneous and heterogeneous systems is
in the end-game phase. The model of utilization of
available peer bandwidth for a heterogeneous system
is shown in Fig. 4. Based on ρ, we estimate the
download time for each class of peers by accurately
estimating the times taken by each step. To do so, we
also consider the clustering phenomenon observed for
BT nodes. For deterministic unchokes, we assume that
the fastest peers unchoke only peers from the same
class. In optimistic unchokes, peers are picked ran-
domly and unchokes are uniformly divided among
the classes of peers. ρ(K) is modeled as:

ρ(K) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ0
K(t)
αMN

, K(t) ≤ αMN

ρ0, αMN < K(t) ≤ K(T0)

ρi, K(Tdi−1) < K(t) ≤ K(Tdi),

i = 1, · · · , r

(9)

where ρi =

⎧⎪⎪⎨
⎪⎪⎩

ρ0, i = 0

ρ0(1−

i−1∑
j=0

pjcj

C
), i = 1, · · · , r

(10)

Similar to the homogeneous model, the download
time expected for each class i of peers is:

Tdi = (K(Tdi)− εi)
B

Cs + ρiC
, i = 0, · · · , r (11)

Details can be found in Appendix B.2.

5 VALIDATION
The model is validated against measurements con-
ducted on PlanetLab [4]. Using the Python BT im-
plementation [1], we modified the client program to
quit after completing the download. The file size of
100 MB is divided into blocks of 16 kB with 16 blocks
forming a piece. To validate the homogeneous model,
we ran 170 experiments with the number of peers
varying between 20 and 160 nodes. We set the upload
peer bandwidth to 128 kBps and the server bandwidth
varied between 128 kBps and 4 MBps. For the het-
erogeneous model, we also ran 120 experiments, each
with 40 to 150 nodes divided among two classes (64
and 128 kBps), three classes (64, 128, and 192 kBps),
and five classes (16, 32, 64, 128, and 192 kBps). We
also varied the percentage of peers in each class.
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Peers in a swarm are simultaneously started on
all PlanetLab machines to mimic flash crowd. Peer
actions are recorded in a log file with the event time
and details of file blocks downloaded. These events
are processed at discrete time intervals of five seconds.
The interval is sufficiently large to observe variations
in the system, and small enough to estimate the
instantaneous download rate.
From measurement observation, ρmax is protocol-

dependent. However, for a specific protocol, it is ap-
proximately constant for different swarm sizes. Anal-
ysis of BT utilization profile shows that 75% of the
values of ρmax fall between 0.89 and 0.95. Hence, we
use a value of 0.93 for all our experiments. Further
details on model validation and comparison with a
simplistic model are in Appendix C.

5.1 Download Rate and Download Time
To validate the homogeneous and heterogeneous
models, we compare the measured values with the
estimated values in Equations (3), (4) and (11), respec-
tively.
For the homogeneous download rate in Equa-

tion (3), we plotted for each experiment the measured
values and the values obtained from our model. In
all our experiments, we found that the model closely
follows the measured download rate fluctuation over
time. In Fig. 5, we show one instance of a BT experi-
ment with 100 nodes. On average for all experiments,
the modeled download rate over time differs from the
measured values by 7.3%, and, in more than 80%, the
estimates differ by less than 10%. In summary, the av-
erage download time difference between Equation (4)
and measurement is 6.7% for the 170 BT experiments
conducted with 20 to 160 homogeneous peers. For
each pair of analytical and measured results, relative
errors are maximum 20% and decrease with a larger
number of peers. We conclude that our homogeneous
model estimates the average download time with
good accuracy.
We also validated Equation (11) in the heteroge-

neous model against the measured average download
time for each class of peers. Table 2 shows the relative
errors for swarms up to 160 peers and, as expected,
the errors tend to increase with more classes of peers.
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Fig. 5: Validation of rd(t) for 100-node BT homoge-
neous swarm (ci = 128 kBps, Cs = 256 kBps).

TABLE 2: Errors in estimating the download time for
the homogeneous and heterogeneous models.

No. of Error (%) for each class (kBps)
classes 16 32 64 128 192

1 - - - 6.7 -
2 - - 9.6 11.9 -
3 - - 15.8 5.6 18.1
5 26.4 33.6 12.1 26.4 30.5

We see that the errors for the slower and faster classes
are larger than for the medium-bandwidth classes.
Moreover, we consistently observed that our model
overestimates the download time for slow peers and
underestimates that for fast peers. We further discuss
this observation in Section 6.1. One cause of errors
is likely due to practical network conditions in our
experiments, which are not captured in our model.
For example, peers might experience network delays
that are not modeled. Moreover, our model of the
“step-like” nature of the end-game phase becomes
less accurate with more classes of peers and when
the bandwidth difference among classes is small.
We may not always need an estimate of the aver-

age download times for each class of peers. If we
only care about the average download time of the
system, instead of attempting to apply the heteroge-
neous model, another possible approach is to apply
the homogeneous model with the average upload
bandwidth of the peers as an input to the model. In
Table 3, we compare the errors in estimating the aver-
age download time of the whole swarm when using
these two approaches. As expected, the heterogeneous
model provides better estimates, but the gap reduces
with more peer classes. In particular, for the five-
class swarms, we found that the estimated average
download time of the system using the heterogeneous
model is 18% away from the average download time
obtained through measurements. This error is smaller
than that for the estimates for various classes shown
in Table 2, except the 64 kBps class. The corresponding
error for the estimate with the homogeneous model
is 22.3%. This suggests that for swarms with a large
number of peer classes, the homogeneous model is
good enough when only the system average down-
load time is needed.

5.2 Model Sensitivity to Parameter Variation
This section investigates the sensitivity of our model
to errors in the parameter estimates. To do so, we

TABLE 3: Errors in estimating the download time us-
ing homogeneous model for heterogeneous swarms.

No. of Error (%)
classes Heterogeneous Homogeneous

in swarm model model
2 7.1 13.4
3 8.1 16.7
5 18.0 22.3

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



7

TABLE 4: Sensitivity analysis of proposed model.

Parameter - x
Absolute Download Time
Variation Variation (%)

dx dTd

Td

0.01 < α < 0.03 0.01 2.1
0.71 < β < 0.93 0.10 21.4

0.83 < ρmax < 0.97 0.10 8.9

quantify the impact of changes in the parameters, α,
β, and ρmax, on the estimates of the download time.
We do this by differentiating the download time, Td,
with respect to the various parameters in Equation (4),
i.e. dTd

dα
, dTd

dβ
, and dTd

dρmax
. We then compute dTd for a

given variation of the parameters values that is chosen
within the range of reasonable parameter values.
Table 4 shows our results for BT. First, we observe

that the download time is the most sensitive to β and
ρmax, while α has little impact on the final result.
An absolute difference of 0.10 in estimating β and
ρmax results in an expected download time variation
of 21% and 9%, respectively. This suggests that β
can have a large impact on the final estimate of the
model. However, because the measured values for β
lie between 0.71 and 0.93 (or a range of 0.22), the error
in the download time estimates arising from an error
in β is likely to be within 20%. Similarly, the error
in the download time estimate arising from an error
in estimating ρmax is likely to be no more than 13%.
On the other hand, an absolute variation of 0.01 for α
impacts only the start-up phase of the download, and
thus has a negligible effect on the estimated download
time.

6 MODEL APPLICATIONS
In this section, we describe three applications of our
p2p model. First, p2p users can apply our model to
determine the expected download time during flash
crowds. Next, service providers can use our model
to determine the required server capacity to achieve
a specific quality of service in p2p systems. Finally,
p2p protocol designers can use the model for the
utilization of available peer bandwidth to evaluate the
design trade-offs analysis for new protocols.

6.1 Scalability
Using our model, we estimate and analyze how the
download time varies for p2p systems configurations
that are larger than what we can measure on Planet-
Lab. Next we present the scalability analysis for het-
erogeneous systems. The analysis for homogeneous
systems is in Appendix D.1.
Fig. 6 shows the variation of download time for

each class in a swarm with two peer classes and with
increasing number of peers. The swarm contains 50%
slow peers with 64 kBps upload bandwidth and 50%
fast peers with 128 kBps upload bandwidth and a
server capacity of 256 kBps. Lines in this figure repre-
sent the estimated values and the dots represent the
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Fig. 6: Scalability of BT swarms with two classes.

measured values on PlanetLab. Like the homogeneous
case, we observe that the download times expected
by each class scales well when the number of peers
in the swarm is increased. Fig. 6 also shows that the
influence of the server capacity is more pronounced
for the slow peers than for the fast peers. Hence the
download time of the slow peers stabilizes when the
swarm size is greater than 60, while that of the fast
peers stabilizes for swarms smaller than 40 peers.
The measured values follow the trend given by the
analytical results, even though there are small errors
in the estimates.
Furthermore, Fig. 6 shows that our model under-

estimates the download time for the fast peers and
slightly overestimates the download time for the slow
peers. This trend, where the actual measured val-
ues for the average download times of each class is
bounded by the estimates for the slowest and fastest
class, is consistent for swarms with different number
of classes.
There are two reasons for underestimating the

download time of the fastest peers. First, we tend
to overestimate the download rate of the fastest peer
because we assume that it downloads only from the
fastest peers. Second, the step function of our model
implicitly assumes that all the peers of a class leave
the swarm at the same time. In practice, some peers
leave later than others. Because our model predicts
that the faster peers leave the system earlier than what
we observe in practice, our model underestimates the
total upload capacity left in the system after the peers
start leaving the system. This results in overestimating
the download time of the slowest class of peers left
in the system.

6.2 Server Bandwidth Provisioning
An important concern for file distribution systems
is to offer sufficient server capacity so that clients
achieve at least a minimal required quality of ser-
vice. Unlike traditional client-server file distribution
systems, peers in the system will also contribute
capacity, so the amount of server capacity required is
not directly proportional to the number of supported
clients. A content distributor needs to pay for server
bandwidth, thus it is costly to over-provision. Ideally,
the server capacity allocated should be high enough to
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Fig. 7: Server capacity for 100-node BT homogeneous
swarm - varying the download time.

meet the quality of service requirements, and yet not
excessive. With our model, we can predict the server
capacity for both homogeneous and heterogeneous
systems.

6.2.1 Provisioning for Homogeneous Systems
In this section, we analyze the impact of the uti-
lization of available peer bandwidth on the server
capacity needed in a file distribution swarm. Using
our model, we derive the required upload server
capacity to achieve a required download time in a
homogeneous swarm. Details of the derivation are in
Appendix B.1.1.
To understand the impact of changing the require-

ments for download time on server capacity, we show
in Fig. 7 the estimates for a BT swarm with 100 nodes
and a peer capacity of 128 kBps. The lines correspond
to the predictions obtained from Equation (37), while
the points are actual PlanetLab measurements. We
observe that the required server capacity increases
exponentially when the download time is decreased.
When the required download time is less than 600
seconds, the server becomes the major provider in
the system. Beyond this point, the contribution of
the peers has little impact on performance. As a
consequence, slightly relaxing the download time by
10%, from 500 seconds to 600 seconds, may lead
to a 40% decrease in the required server capacity.
In contrast, if we do not require a download time
that is faster than 600 seconds, the contribution of
the peers has a much more significant impact on
the download time. Therefore, our model can help
content providers understand the trade-off between
download time requirements and provisioning costs.

6.2.2 Provisioning for Heterogeneous Systems
The unpredictability of flash crowds coupled with the
heterogeneous bandwidth of peers affects the required
server capacity. While a closed form solution for
the capacity of the server can be difficult to obtain
for a heterogeneous system, we can use our model
to estimate the download time for different server
capacities of the server and plot the server capacity
against download time. Assuming the existence of
logs from previously served files with the estimated
upload bandwidth of the peers and their distributions
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Fig. 8: Server capacity for BT heterogeneous swarms
- varying the download time.

in different classes, we can plot this curve and esti-
mate download times (quality of service) as the server
capacity varies.
In Fig. 8, we plot using lines the estimated server

bandwidth needed for a specific download time for
two swarms with 100 and 500 nodes. The nodes are
equally divided into two classes with 64 kBps and
128 kBps upload capacity. We assume the quality of
service requirements are expressed in terms of the
maximum download time for each class of peers. It
is unreasonable to expect all peers, regardless of their
intrinsic upload bandwidth to finish at the same time.
Hence, we can infer the server capacity needed for the
slow class to finish in a specific time. For example,
if the slow peers are expected to finish in less than
700 seconds, the server capacity needs to be at least
30 MBps for a system with 500 clients.
Furthermore, Fig. 8 shows the measured average

download times for swarms with 100 nodes. As
shown in Fig 6, our model slightly overestimates the
download time for slow peers and underestimates
that for fast peers. Therefore, we expect that the actual
values for the average download times of each class of
peers will be situated between the slow and fast lines
of each swarm in Fig. 8. Hence our model bounds the
performance expected for the whole system.
Fig. 8 also shows the impact of swarm size on the

server capacity. The slow peers stay in the system
longer than the fast peers, hence they benefit more
from the upload capacity of the server. In addition,
we observe that we need a considerable increase in
server capacity to achieve a small improvement in the
download time for the fast peers. This observation is
especially important for large swarms, because an in-
crease in server capacity hardly changes the download
times for the fast peers. For small swarms, increasing
the server capacity can improve download times, but
only up to a certain point, i.e. 40 MBps for an 100-peer
swarm.
Lastly, we can deduce from the model the server

capacity required to achieve similar download times
for all peers regardless of bandwidth. For example,
our model suggests that the required server capacity
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Fig. 9: ρ for 50-node FairTorrent swarm (Cs =
256 kBps).

is 90 MBps for the 500-node swarm and 40 MBps for
the 100-node swarm. This analysis can be repeated
with other system settings, such as different server
and peer upload bandwidths, and file sizes, among
others.

6.3 Modeling Other Protocols

In principle, our model described in Section 4.1 can be
applied to other p2p protocol by deriving the protocol
specific parameters. To illustrate this, we present our
model results for BT swarms with some nodes that
start seeding after finishing their download (BTSeed),
and for FairTorrent (FT) [30], a newly proposed pro-
tocol with a different incentive mechanism.
To model BTSeed, we relax the pessimistic assump-

tion of peers leaving after their download and we
show that the model captures swarm characteristics
accurately. The dynamics of the swarms is similar
to BT for the first two download phases of start-
up and maximum utilization. The main difference is
in the end-game phase because the remaining peers
cannot fully utilize the upload bandwidth of the new
seeds. Hence, the bottleneck in reaching maximum
utilization is not the uploading bandwidth, but the
downloading capacity of the remaining peers. For
BTSeed, the average swarm download time decreases
with the increase of the number peers that remain as
seeds. The utilization profile in all our experiments
matches the original profile shown in Fig. 3. Lastly,
an average error of 8.9% in estimating the average
download time is comparable to our original model.
To further demonstrate the flexibility of our model,

we model FairTorrent, which has a different incentive
scheme. FT effectively unchokes all peers, and peers
are serviced in a manner to minimize the deficit
between the amount of data uploaded and down-
loaded with respect to each peer. In our model, we
assume a maximum deficit of one block, i.e., that
a peer will only upload to another peer when the
difference between the number of bytes uploaded to
and downloaded from that peer is less than one block.
In this way, the protocol ensures the uploads and
downloads between each pair of peers are matched.
Considering this, the model parameters for FT are:
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Fig. 10: Starvation in 110-node FairTorrent swarm
(Cs = 256 kBps).

αFT =
ρmaxC

CsM ln( C
Cs

ρmax + 1)
(12)

βFT = α+
(M − 1)

M

Cs + ρmaxC

Cs +C
(13)

Model derivation for FT is in Appendix D.2.
Fig. 9 shows an experiment with 50 nodes, a server

capacity of 256 kBps and a peer capacity of 128 kBps.
We observed a trapezoidal shape for ρ similar to that
for BT. We ran 70 experiments, varying the number
of peers and the server bandwidth. We found that 44
experiments had an average error of 14% in the esti-
mated average download time, while the remaining
26 experiments had an average error of 45%.
Upon further investigation, we found that in the

experiments with the large errors, FairTorrent suffered
from starvation. An example trace for one of these
experiments with 110 nodes is shown in Fig. 10. In
this experiment, the server capacity was 256 kBps and
the peer capacity was 128 kBps. Starvation periodi-
cally causes significant drops in the utilization, which
resulted in actual download times that were signif-
icantly slower than those predicted by our model.
Starvation was caused by the strict condition in the
block exchange mechanism, causing some peers to
end up in a state where they do not upload to the
other peers even though they have sufficient upload
bandwidth. This suggested that the enforcement of
a strict fairness policy in FT could degrade perfor-
mance. Probing further, we found that if we removed
the upper limit on the maximum deficit, starvation
becomes less likely, but it could still happen and
was relatively common. This phenomenon was not
reported by the authors of FairTorrent [30].

7 CONCLUSION
Our measurement study of BitTorrent on PlanetLab
shows that the utilization of the available bandwidth
of peers has a fixed pattern characterized by three
phases over the course of a download. Based on
this insight from measurement, we proposed an an-
alytical model for studying the impact of bandwidth
utilization on the performance of p2p file distribution
systems with flash crowd. Leveraging the insight that
the utilization of available peer bandwidth for the
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system varies as the download progresses, we esti-
mate the download rate and average download time.
Validation using PlanetLab for different BT swarms
showed that the download rate variation over time
closely follows the predicted model profile. For ho-
mogeneous and heterogeneous swarms up to three
classes of peers, the error for average download time
is around 10%. The accuracy of our model can be fur-
ther improved by considering the server distribution
policies, network connectivity and conditions, among
others.
Applying our model, we observed a number of

insights in how p2p protocols perform during flash
crowd. We showed that the download time expected
by users in a flash crowd situation does not increase
significantly when the swarm size is larger than 50
peers. Secondly, server bandwidth provisioning dur-
ing flash crowds is a challenging problem because
it takes a significant increase in server bandwidth
to achieve small improvements in the quality of ser-
vice. However, for homogeneous swarms, our model
shows that by slightly relaxing the requirements on
download time by 10%, the required server capacity
can potentially be reduced by 40%. This represents
a significant saving. In a heterogeneous system, the
server capacity has a higher impact on the download
time of slow peers, and reducing the download time
of fast peers in large swarms requires a significant
increase in server capacity and cost. We leave the
analysis of the impact of the server capacity on the
utilization of available bandwidth as future work.
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