BurstRadar: Practical Real-time Microburst
Monitoring for Datacenter Networks

Paper #27

ABSTRACT

Microbursts can degrade application performance in datacen-
ters by causing increased latency, jitter and packet loss. The
detection of microbursts and identification of the contribut-
ing flows is the first step towards mitigating this problem.
Unfortunately, microbursts are unpredictable and typically
last for 10’s or 100’s of us. The high line rates (> 10 Gbps)
in modern datacenter networks further exacerbate the prob-
lem. In this paper, we show that modern programmable
switching ASICs have made it practical to detect and char-
acterize microbursts at multi-gigabit line rates. Our system,
called BurstRadar, operates in the dataplane and monitors
microbursts by capturing the telemetry information for only
the packets involved in microbursts. We have implemented
a prototype of BurstRadar on a Barefoot Tofino switch using
the P4 programming language. Our evaluation on a multi-
gigabit testbed using microburst traffic distributions from
Facebook’s production network shows that BurstRadar in-
curs 10 times less data collection and processing overhead
than existing solutions. Furthermore, BurstRadar can han-
dle simultaneous microburst traffic on multiple egress ports
while consuming very few resources in the switching ASIC.

1 INTRODUCTION

Over the last decade, the performance of datacenter net-
works has improved significantly [28]. However, availability
and service-level guarantees still continue to be challenging
problems as datacenter bandwidths increase and applica-
tions become more sophisticated [30]. To achieve more 9’s in
availability and service-level guarantees, we need greater vis-
ibility into the network. Modern datacenter networks operate
at high-speeds (> 10 Gbps) and have ultra-low end-to-end
latency (~10’s of us) [10]. As a result, even small amounts
of queuing, called microbursts, that occur for short periods
of time can have a significant impact on application perfor-
mance and thereby revenue [1].

Microbursts are events of intermittent congestion that last
for 10’s or 100’s of ps. Microbursts can cause intermittent
increase in latency, network jitter and packet loss in data
center networks [27]. Common causes include TCP Incast [1]
scenarios, bursty UDP traffic from an offending flow, TCP
segment offloading or application-level batching [18]. The
performance degradation arising from microbursts is becom-
ing more common today because link speeds are moving

beyond 10 Gbps while switch buffers have remained shallow.
Traditionally, the impact of microbursts has been greatest
for high frequency trading (HFT) applications with reported
profit differentials of $100 million per year due to latency
advantage of just 1 ms [20]. However, today with low end-
to-end latency in datacenters and high SLA requirements by
applications, the impact of microbursts is no longer limited to
such niche applications. Popular webservices like LinkedIn
are reported to have experienced high application latency
due to microbursts [17]. To address this problem, we first
need to be able to accurately detect the occurrence of these
microbursts and identify the contributing flows.

The extremely low timescales make it impossible for tra-
ditional sampling-based techniques such as Netflow [7] and
sFlow [25] to even detect the occurrence of microbursts.
Some existing commercial solutions [6, 16, 23] are able to de-
tect microbursts, but provide no information about the cause.
Recent advances in programmable dataplanes [4] and data-
plane telemetry have led to proposals for In-Band Telemetry
(INT) [12, 19] that embed telemetry information into each
packet and enable debugging for several network issues in-
cluding microbursts. However, since microbursts are unpre-
dictable [31], it is wasteful to use INT to monitor them as
it would require the telemetry information for every single
packet in the network to be captured and processed, while
only a small number of packets contribute to microbursts.

In this paper, we demonstrate that programmable data-
planes can be used to detect microbursts more efficiently
by capturing the telemetry information of only the pack-
ets involved in microbursts. Our system, called BurstRadar,
builds on the out-of-band approach for exporting teleme-
try information [13]. Our key insight is that microbursts are
localized to a port’s egress queue. This makes all the informa-
tion required for detecting and characterizing a microburst
available on a single switch. We introduce a Snapshot algo-
rithm (§3.1) to capture the snapshot of packets involved in a
microburst and use egress packet cloning (§3.2) to generate
courier packets on demand.

While our approach is relatively straightforward given
existing programmable dataplane architectures, we made
three observations from our implementation. First, we need
a strategy to temporarily store telemetry information before
it can be transferred to the courier packets. Second, there is
a sizable delay in the generation of courier packets and it
depends on packet size among other factors. And third, it is

possible that if there are multiple simultaneous microbursts
on different egress ports, telemetry information for some
packets involved might be lost. BurstRadar provisions the
temporal storage by implementing a ring buffer using the
transactional stateful memory available in the dataplane
(§3.3). We then handle the issues of courier packet delays
and multiple simultaneous microbursts by sizing the ring
buffer appropriately (§3.3).

We have implemented BurstRadar on a Barefoot Tofino [24]
switch and evaluated it on a multi-gigabit hardware testbed
using utilization burst distributions from Facebook’s pro-
duction network [31]. Our results show that even with mi-
crobursts occurring as frequently as every 200 us, BurstRadar
processes 10 times less telemetry information compared to
INT [12, 19], while providing all information to fully charac-
terize microbursts and identify contributing flows. BurstRadar
captures telemetry information for all packets contributing
to microbursts, even with bursts occurring simultaneously
on multiple egress ports. Further, it achieves real-time de-
tection of microbursts within tens of ys from the start of a
burst.

2 RELATED WORK

Commercial solutions such as Cisco’s Nexus 5600 and 6000
series switches as well as Arista’s 7150S series switches can
detect the occurrence of microbursts but provide no details
about the cause [6, 23]. Learning the cause requires traffic
mirroring and data correlation across different monitoring
data streams [6]. In contrast, BurstRadar provides a full snap-
shot of telemetry information about the packets involved
in a microburst. With this information, we can identify the
contributing flow(s) without the significant costs associated
with data correlation and traffic mirroring.

In-band Telemetry (INT) [12, 19] is a network debugging
tool that is built on programmable dataplanes. INT adds net-
work telemetry information into an additional packet header
(INT header) to identify and characterize microbursts. How-
ever, since microbursts are unpredictable [31], INT would
need to be enabled for all flows in order to detect and charac-
terize microbursts reliably. INT would then need to process
telemetry information for every single packet in the net-
work, even though only a small number of these packets
contribute to the microbursts. Expensive data correlation
would then be required to reconstruct a microburst event.
Furthermore, enabling INT on all flows would consume 10%
additional bandwidth® in the entire network due to the ex-
tra INT header. BurstRadar, on the other hand, processes
telemetry information only for the packets involved in mi-
crobursts, does not require expensive data correlation and

IFor a 5-hop diameter network, INT requires extra 54 bytes per packet [15]
which is 10% extra for a median packet size of 500 bytes [2].

is non-intrusive to production traffic since it operates out-
of-band. Marple [22] is another network monitoring system
that proposes augmenting dataplane programmability with
a custom key-value store hardware primitive. It presents a
microburst detection case study in which microbursts are as-
sumed to occur at regular intervals. The proposed approach
will not work in practical networks because microbursts do
not occur at regular intervals [31]. In any case, the hardware
primitives required by Marple are not available on today’s
programmable switching ASICs. BurstRadar does not make
any assumption about the arrival pattern of microbursts
and can be implemented on programmable switching ASICs
available today.

There have been systems proposed for monitoring a differ-
ent class of microbursts, called link utilization microbursts [29,
31]. Link utilization microbursts are intervals where the uti-
lization of a link exceeds a certain threshold, and unlike
queuing microbursts, might not result in queuing. These sys-
tems [29, 31] can only detect link utilization microbursts at
the time scale of tens of microseconds. BurstRadar instead
monitors queuing microbursts at a sub-microsecond reso-
lution. It remains a future work to extend BurstRadar to
monitor link utilization microbursts.

Mirroring or packet cloning has been previously used
to generate courier packets to export telemetry informa-
tion [13]. However, unlike [13], BurstRadar generates courier
packets only on demand.

3 BURSTRADAR

Our key idea is to first detect a microburst in the dataplane
and capture a snapshot of telemetry information of all the
involved packets. This information allows queue composi-
tion analysis to identify the culprit flow(s) and burst profil-
ing to know burst characteristics such as duration, queue
build-up/drain rates, etc. Detecting a microburst is relatively
easy with queuing telemetry information provided by mod-
ern programmable switching ASICs [24]. However, taking a
snapshot of all the packets involved in the microburst and
further exporting this information in an out-of-band manner
is non-trivial for several reasons. First, the switching ASIC’s
“Buffer and Queuing Engine” (BQE) does not provide any
support to peek into the contents of any queue, and so the
snapshot needs to be captured from outside the BQE. Second,
any logic in the programmable pipelines outside the BQE can
only execute on a per-packet basis. And finally, exporting
the snapshot information requires on-demand generation
of new courier packets in the dataplane and transferring of
snapshot information to these courier packets.

Figure 1 shows the general architecture of a programmable
switching ASIC. BurstRadar runs in the egress pipeline of
each switch in the network. It consists of three functional

¢ clone_e2e

Buffer &
P Queuing

Engine / —

Egress Port Queues

Ingress
Processing

Egress Egress Egress
Parser Pipeline Deparser

Figure 1: General architecture of a programmable
switching ASIC [9]
Queue Snapshot

[1] [4]3]2] _[6[5[4[3]
t=0 t=1 t=2
[6]5]4] 6[5] 7]6]
t=3 t=4 t=5

Figure 2: Evolution of an example queuing microburst
at different instants in time

components: (i) Snapshot Algorithm, (ii) Courier Packet
Generation, and (iii) Ring Buffer. The Snapshot algorithm
first determines the packets that are involved in a queuing
microburst and marks? them. For each marked packet, a
courier packet is generated to transport the marked packet’s
telemetry information via the switch’s mirror port. The ring
buffer provides temporary storage to facilitate the transfer
of telemetry information from the marked packets to the
courier packets. The telemetry information for each marked
packet consists of the packet 5-tuple, the ingress and egress
timestamps, and the queue depths at the time of enqueue
and dequeue (enqQdepth and deqQdepth). Courier packets
are processed at the monitoring servers connected to the
mirror port infrastructure. In the following subsections, we
describe these three components in more detail.

3.1 Snapshot Algorithm

While BurstRadar can monitor all the queuing microburst
events, small queuing events that cause negligible increase
in application latency are generally not of interest to the op-
erator. Therefore, BurstRadar allows the operator to specify
a latency-increase threshold (specified as a percentage). For
example, if the network’s no-queuing RTT is 50 ys, then the
operator may specify a threshold of 30% which translates to
a minimum latency increase of 15 us. BurstRadar would then
ignore any microbursts that incur less than 15 ys of delay.
We define a queue snapshot to be the set of packets present
in the queue when the queue-induced delay is above the
operator-specified threshold. Figure 2 shows the evolution
of a toy queuing microburst at different instants in time. At

2The marking is done via a metadata header and does not modify the packet
in any way.

Algorithm 1: Queue Snapshot Algorithm

Input: threshold
Initialization: bytesRemaining = 0;

1 foreach pkt in egressPipeline do
if deqQdepth > threshold then
bytesRemaining = deqQdepth — size(pkt);
‘ mark(pkt);
else
if bytesRemaining > 0 then
bytesRemaining = bytesRemaining — size(pkt);
‘ mark(pkt);

® N A W R W N

end

time instant t=1, the queue length exceeds the threshold
(dotted line). Thus the snapshot of the queue at this instant
consists of packets {2,3,4}. Similarly at t=2, the queue snap-
shot consists of packets {3,4,5,6}. At t=3, the queue starts
to drain, but we still have a queue snapshot consisting of
packets {4,5,6}. At t=4 and beyond, the queue length falls
below the threshold and we stop taking snapshots. In other
words, a single queuing microburst event consists of multi-
ple overlapping queue snapshots. Also notice that at t=5, an
additional packet #7 enters the queue but is not a part of any
of the queue snapshots.

Since egress port queues are a part of the BQE (refer Fig-
ure 1), queue snapshots are easiest to capture inside the BQE.
However, the BQE in today’s programmable switching ASICs
doesn’t provide any such functionality and instead provide
only the queuing telemetry information (engQdepth and
deqQdepth) for each packet leaving the BQE. Our Snapshot
algorithm uses this telemetry information and runs outside
the BQE in the egress pipeline.

Since the egress pipeline follows a per-packet execution
model, the Snapshot algorithm (Algorithm 1) needs to decide
(mark) whether a packet entering the egress pipeline belongs
to any queue snapshot or not. To decide if a packet should
be marked, we consider the queue length when a packet
is dequeued (deqQdepth). There are two possible cases: (i)
The deqQdepth is greater than the threshold, or (ii) The
deqQdepth is less than or equal to the threshold. In the for-
mer, it is clear that the packet belongs to at least one of
the queue snapshots. For example in Figure 2, packet #2’s
deqQdepth is greater than the threshold and thus packet
#2 would be marked. In the latter case, our Snapshot algo-
rithm decides if a packet is to be marked by tracking the
number of bytes remaining in the queue (bytesRemaining)
each time a packet reports the deqQdepth to be greater than
the threshold (line 3). When the reported degQdepth is less
than or equal to the threshold, only the packets equiva-
lent of bytesRemaining would be marked (lines 6-8). In
the example, packets #5 and #6 would be marked due to

bytesRemaining set by packet #4; but packet #7 would not
be marked.

3.2 Courier Packet Generation

BurstRadar generates a courier packet for each marked packet
on demand. To do this, BurstRadar uses the clone egress to
egress or clone_e2e primitive provided by programmable
switching ASICs [9]. The clone_e2e primitive makes a copy
of the exiting regular packet and places it in the egress queue
of the mirror port (see Figure 1). The courier packet is also
appropriately truncated to remove the original payload.

3.3 Ring Buffer

A ring buffer is designed using the transactional stateful
memory available in the egress pipeline and exposed by the
P4 programming language [3] as register arrays. The ring
buffer acts as temporary storage for the telemetry informa-
tion of marked packets until it can be copied into the courier
packets.

Ring Buffer Sizing. We found that the first read from the
ring buffer by a courier packet happens only after a cloning
delay. During a microburst, the interval between the first
and second writes to the ring buffer is mainly determined by
the serialization delay of the first packet. If the serialization
delay of the first packet is smaller than the cloning delay,
the second packet in the microburst will write to the ring
buffer before the first courier packet performs the first read.
Therefore, the ring buffer needs to be large enough to store
the information for the marked packets passing through the
pipeline before the first read by the courier packets.

Figure 3 compares the cloning delay to the serialization
delay (at 10 Gbps link speed) for packets of different sizes. For
64 byte packets, the cloning delay (270 ns) is more than five
times the serialization delay (51.20 ns). This means that in the
worst case of having all 64 byte packets in a microburst, more
than five writes would be made to the ring buffer before the
first read happens. For our ASIC implementation, we found
that factors® other than the packet size also affect the cloning
delay. Accordingly, we found (by measurement) the required
minimum ring buffer sizes for link speeds of 10 Gbps and
25 Gbps to be 26 entries (754 bytes*) and 32 entries (928 bytes),
respectively. These are very small requirements given the
SRAM memory sizes (upto 100 MB) in today’s ASICs [21].

Concurrent Microbursts. Since the egress pipeline is
shared among the ports, it serves the egress port queues in
a round-robin manner. Therefore, if multiple egress ports
simultaneously experience microbursts, in one scheduling
round of the egress pipeline, there would be multiple writes
to the ring buffer while only a single read due to a single

3Investigating all factors is a matter of a separate measurement study.
41 entry = 29 bytes

10000

'Cloning Delay —+—
Serialization Delay (10 Gbps) —*—

1000

Time (ns)

-
o
o

10 L L L L L L L
0 200 400 600 800 1000 1200 1400 1600

Packet Size (bytes)

Figure 3: Cloning and serialization delay for packets
of different sizes

mirror port. This seems to suggest that a very large ring
buffer might be required to handle multiple concurrent mi-
crobursts. However, as we show in §4.2, in practice a ring
buffer with 1k entries is sufficient to handle 10 simultaneous
microbursts without any overwrites.

3.4 Implementation

BurstRadar can be implemented with small modifications to
fixed function switching ASICs or programmed on modern
programmable switching ASICs [5, 14, 24]. We implemented
BurstRadar on a Barefoot Tofino switch [24] in about 550
lines of P4 [3] code. The operator-specified latency-increase
threshold is stored in a register in the dataplane and can be
dynamically configured by the control plane. The Snapshot
algorithm and the ring buffer are implemented using a se-
quence of exact match-action tables. Arithmetic operations
are facilitated by stateful ALUs.

Switching ASICs (fixed or programmable) provision mem-
ory for buffered packets using fixed size memory buckets or
segments [23]. Therefore, the reported deqQdepth is in terms
of number of segments. Snapshot algorithm converts the
deqQdepth from segments to bytes to compute bytesRemaining
(line 3 in Algorithm 1). This conversion results in excess’
bytesRemaining than the actual remaining bytes, causing
BurstRadar to mark extra packets towards the tail-end (lines
6-8 in Algorithm 1) of a microburst.

4 EVALUATION

The evaluation of our BurstRadar prototype is centered around
answering three questions. First, how efficient is BurstRadar,
given that it selectively snapshots microburst queues? Sec-
ond, how well does BurstRadar handle multiple simultaneous
microbursts? And finally, what is the cost of BurstRadar in
terms of hardware resources required in the switching ASIC?

5If the segment size is 160 bytes, a single 161 byte packet in the queue reports
the deqQdepth as two segments (converted to 320 bytes).

1Gbps Sender

Receiver

10Gbps Link
100%|-

t

Figure 4: Testbed setup

100

=)
S

INT ——
BurstRadar ——
Oracle —e—

INT ——
BurstRadar —»—
Oracle —e—

Fraction of Packets Processed (%)
Fraction of Packets Processed (%)
>

0 60 80 100
Latency Increase Tolerance Threshold (% RTT)

(b) Web Traffic

0 0 80 100
Latency Increase Tolerance Threshold (% RTT)

(a) Cache Traffic

Figure 5: Fraction of total number of packets pro-
cessed for different latency-increase thresholds

Testbed. The evaluation experiments were conducted in
our hardware testbed which consists of a Barefoot Tofino [24]
switch and commodity servers equipped with Intel XXV710
(25/10 Gbps) and Intel X710 (10 Gbps) NIC cards. To pre-
cisely generate network traffic at ys resolution and cause
microbursts as per the input network traces, we wrote our
own traffic generator application (450 lines of C++) using the
PcapPlusPlus library [26] with DPDK [11] as the datapath.
The testbed is organized in a topology as shown in Figure 4.
Based on the data in [31], the sender continuously sends
1 Gbps background traffic keeping the utilization of the test
link under 10% for 90% of the time. The burster emulates
different sources of microburst, sending bursts at 25 Gbps
such that the queuing at the switch’s egress buffer (and the
subsequent 100% link utilization) follows the distributions
for duration and inter-arrival times as per the input trace.

Network Traces. Data on the frequency and duration
of queuing microbursts is currently not available publicly.
Therefore, we took reference from the data on link utiliza-
tion bursts in a Facebook datacenter [31]. It provides the
distribution of duration, inter-arrival times and packet size
for utilization bursts when the link utilization spikes above
50%. We can safely assume that this is the worst case upper
bound on the duration and inter-arrival times for queuing
microbursts, which entail 100% link utilization on the egress
link. We used the traffic data from two latency-sensitive appli-
cations — web, and in-memory cache — to generate 10-second
long traces.

Methodology. We compare BurstRadar to INT [12, 19]
and to an offline Oracle algorithm. The Oracle algorithm has

20 L 10% RTT B8 |
[40% RTT 277
70% RTT
100% RTT 04]

10 F 1

Number of extra packets
compared to Oracle (%)

N
Worst Real-World Best
Packet Size Distribution

Figure 6: Number of extra packets marked compared
to the Oracle solution for different packet size distri-
butions (Cache Traffic)

access to the telemetry information of all the packets and is
thus able to capture queue snapshots as if they were captured
by the BQE (c.f. §3.1). It represents the optimal solution.

4.1 Efficiency

We quantify the overhead of continuous microbursts mon-
itoring in terms of the fraction of total number of packets
that are required to be processed by the monitoring system.
We compare the overhead incurred by BurstRadar, INT and
the Oracle algorithm for the cache and web traffic in Fig-
ure 5. We observe in Figure 5(a) that even for a low latency-
increase threshold of 5% RTT, BurstRadar is 10 times more
efficient than INT. Since the RTT is approximately 25 ps in
our testbed, this threshold translates to 1.25 us of queuing
delay, or 1562.5 bytes worth of queuing at 10 Gbps. We ver-
ified with our experiments that this threshold only filters
out packets that are not involved in microbursts. In practice,
latency sensitive applications might not require such a low
threshold and therefore the overhead for BurstRadar would
be even lower. Note that at a latency-increase threshold of
0% RTT, BurstRadar would be equivalent to INT as teleme-
try information for every single packet is processed. The
efficiency result for web traffic is similar to cache traffic as
shown in Figure 5(b).

Overhead of Extra Packets. While BurstRadar is more
efficient than INT in terms of the number of packets pro-
cessed, it does process a few extra packets due to the seg-
ments to bytes conversion of deqQdepth (see §3.4). The num-
ber of extra packets identified by BurstRadar depends on the
packet size distribution and the segment size of the ASIC’s
packet buffer. The worst case occurs when every packet is ex-
actly one byte larger than the segment size, thereby causing
each packet to occupy two segments. The best case occurs
when the size of all packets is an integer multiple of the
segment size.

>

" 10Ports —=—

" 10Ports —=—
6 Porls —x—

®
~
o
g
EY
@

Fraction of uBurst Packets Missed (%)

Fraction of uBurst Packets Missed (%)

0
0 100 200 300 400 500 600 700 800 900 1000
Ring Buffer Size

(b) Web Traffic

o — . .
0 100 200 300 400 500 600 700 800 900 1000
Ring Buffer Size

(a) Cache Traffic

Figure 7: Fraction of microburst packets missed with
concurrent microbursts for different ring buffer size

In Figure 6, we plot the number of extra packets identi-
fied by BurstRadar compared to the Oracle algorithm for
the cache workload with different packet size distributions —
worst, real-world and best. For real-world, we use the cache
workload’s original packet size distribution [31]. We note
that while the worst case shows about 21% extra packets
compared to the Oracle, the number of extra packets is
typically only about 6% as shown by the real-world case.
In the best case, there are no extra packets. Figure 6 also
shows that a larger latency-increase threshold leads to a
higher proportion of extra packets. This is because for a
given packet-size distribution, larger the latency-increase
threshold, larger the number of packets in the remaining
queue below the threshold, with each packet contributing
extra bytes to bytesRemaining. The real-world overhead
for web traffic is lower than the cache traffic due to larger
packet sizes [31] and is omitted because of space constraints.

4.2 Handling Concurrent Microbursts

As discussed in §3.3, multiple concurrent microbursts can
result in a higher rate of writes to the ring buffer than the
rate of reads. If the ring buffer size is not sufficiently large,
this may result in ring buffer overwrites leading to the loss
of telemetry information for some of the marked packets.
Currently, no data is available on how often we should ex-
pect concurrent microbursts at different egress ports for a
switch. Therefore, we simulate® microburst traffic on mul-
tiple ports of a switch using 10-second long traces of cache
and web traffic from [31]. In Figure 7, we plot the fraction of
microburst packets missed by BurstRadar for different ring
buffer sizes (10 to 1k entries) when microbursts occur on 2, 6
and 10 ports concurrently. With just 300 entries, BurstRadar
is expected to handle 10 simultaneous microbursts (cache
traffic) with a packet miss rate lower than 1%. About 1000
entries are required to reduce the miss rate to absolute 0%.
This suggests that BurstRadar is resilient and can handle
simultaneous microbursts with a modestly-sized ring buffer.

This experiment is currently not supported by our testbed due to lack of
equipment to generate multiple concurrent microburst traffic.

Table 1: Hardware resource consumption of
BurstRadar (ring buffer size of 1k entries) compared
to the baseline switch.p4

Resource switch.p4 BurstRadar Combined
Match Crossbar ~ 50.13% 3.39% 53.52%
Hash Bits 32.35% 4.83% 37.18%
SRAM 29.79% 4.06% 33.85%
TCAM 28.47% 0.69% 29.16%
VLIW Actions 34.64% 4.69% 39.33%
Stateful ALUs 15.63% 12.5% 28.13%

4.3 Resource Utilization

In Table 1, we compare the hardware resources required by
our BurstRadar prototype (with a ring buffer of 1k entries) to
that required by the baseline switch.p4 [8]. The switch.p4 is
a baseline P4 program that implements various networking
features (L2/L3 forwarding, VLAN, QoS, ACL, etc.) for a typi-
cal datacenter ToR switch. We note that BurstRadar’s overall
resource consumption is low for various hardware resources.
BurstRadar consumes a relatively larger proportion (12.5%)
of stateful ALUs as they are used for the computations in our
Snapshot algorithm and for managing the ring buffer point-
ers. The SRAM is used for the exact match-action tables and
for implementing the ring buffer. Despite the ring buffer size
of 1k entries, BurstRadar’s SRAM requirements remain low.
Also, the combined usage of all resources by switch.p4 and
BurstRadar is well below 100%. This means that BurstRadar
can easily fit on top of switch.p4.

5 CONCLUSION

Detecting microbursts in a datacenter network and identi-
fying the contributing flows is difficult because microbursts
are unpredictable and last for 10’s or 100’s of ys. BurstRadar
leverages programmable switching ASICs to implement con-
tinuous and efficient monitoring of microbursts by capturing
the telemetry information of only the packets involved in
microbursts. Our testbed evaluation using production net-
work traces demonstrates that BurstRadar can detect mi-
crobursts with 10 times less overhead compared to existing
approaches and is resilient to simultaneous microbursts. This
paper describes our BurstRadar prototype and the design
decisions and considerations in dataplane packet cloning
and ring buffer sizing. Our work demonstrates that modern
programmable ASICs have made it practical to detect and
characterize microbursts at multi-gigabit line rates in high-
speed datacenter networks. BurstRadar is a work in progress
and we are extending BurstRadar to detect link utilization
microbursts.

REFERENCES

[1] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Pad-

=D

hye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. 2010. Data Center TCP (DCTCP). In Proceedings of SIG-
COMM.

Theophilus Benson, Aditya Akella, and David A Maltz. 2010. Network
traffic characteristics of data centers in the wild. In Proceedings of IMC.
Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, et al. 2014. P4: Programming protocol-independent packet
processors. SIGCOMM CCR 44, 3 (2014), 87-95.

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McK-
eown, Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013. For-
warding Metamorphosis: Fast Programmable Match-Action Processing
in Hardware for SDN. In Proceedings of SSIGCOMM.

Cavium. 2018. XPliant Ethernet Switch Product Family. (2018). https:
//goo.gl/xzfLLo

Cisco. 2017. Monitor Microbursts on Cisco Nexus 5600 Platform and
Cisco Nexus 6000 Series Switches. (2017). https://goo.gl/5Xxhpm
Benoit Claise. 2004. Cisco Systems Netflow Services Export version 9.
RFC 3954 (2004). https://tools.ietf.org/html/rfc3954

P4 Language Consortium. 2018. Baseline switch.p4. (2018). https:
//github.com/p4lang/switch

P4 Language Consortium. 2018. Portable Switch Architecture. (2018).
https://p4.org/p4-spec/docs/PSA.html

Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou,
Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu,
Adrian Caulfield, Eric Chung, et al. 2018. Azure Accelerated Net-
working: SmartNICs in the Public Cloud. In Proceedings of NSDL

The Linux Foundation. 2018. DPDK. (2018). http://dpdk.org/

P4.org Applications Working Group. 2018. In-band Network Telemetry
(INT) Dataplane Specification v1.0. (2018). https://goo.gl/HtPE9K
Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Maz-
ieres, and Nick McKeown. 2014. I Know What Your Packet Did Last
Hop: Using Packet Histories to Troubleshoot Networks.. In Proceedings
of NSDI.

Intel. 2018. FlexPipe. (2018). https://goo.gl/PzPudG

Vimalkumar Jeyakumar, Mohammad Alizadeh, Yilong Geng,
Changhoon Kim, and David Mazieres. 2014. Millions of little minions:
Using packets for low latency network programming and visibility. In

[16]
[17]
(18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]
[26]

[27]

[28]

[29]

[30]

[31]

Proceedings of SIGCOMM.

Juniper Networks. 2016. Network Analytics Overview. (2016). https:
//g00.gl/TbNwSC

Zaid Ali Kahn. 2016. Project Falco: Decoupling Switching Hardware
and Software. (2016). https://goo.gl/U7PUQZ

Rishi Kapoor, Alex C Snoeren, Geoffrey M Voelker, and George Porter.
2013. Bullet trains: a study of NIC burst behavior at microsecond
timescales. In Proceedings of CoNext.

Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait
Dixit, and Lawrence] Wobker. 2015. In-band network telemetry via
programmable dataplanes. In Proceedings of SSIGCOMM (Poster).
Richard Martin. 2007. Wall Street’s Quest To Process Data At The
Speed Of Light. Information Week. (2007).

Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan
Yu. 2017. SilkRoad: Making Stateful Layer-4 Load Balancing Fast and
Cheap Using Switching ASICs. In Proceedings of SSIGCOMM.

Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh
Goyal, Venkat Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar,
and Changhoon Kim. 2017. Language-directed hardware design for

network performance monitoring. In Proceedings of SIGCOMM.
Arista Networks. 2015. Latency Analyzer (LANZ) Architectures and

Configuration. (2015). https://goo.gl/LrRNi4

Barefoot Networks. 2018. Tofino. (2018). https://goo.gl/cdEK1E
Peter Phaal. 2004. sFlow. (2004). http://sflow.org/sflow

Seladb. 2018. PcapPlusPlus. (2018). https://github.com/seladb/
PcapPlusPlus

Danfeng Shan, Fengyuan Ren, Peng Cheng, and Ran Shu. 2016. Micro-
burst in Data Centers: Observations, Implications, and Applications.
arXiv preprint arXiv:1604.07621 (2016).

Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armis-
tead, Roy Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie
Germano, et al. 2015. Jupiter rising: A decade of clos topologies and
centralized control in Google’s datacenter network. In Proceedings of
SIGCOMM.

Frank Uyeda, Luca Foschini, Fred Baker, Subhash Suri, and George
Varghese. 2011. Efficiently Measuring Bandwidth at All Time Scales.
In Proceedings of NSDL

Amin Vahdat. 2017. ONS Keynote: Cloud Native Networking. (2017).
https://youtu.be/1xBZ5DGZZmQ

Qiao Zhang, Vincent Liu, and Hongyi Zeng. 2017. High-Resolution
Measurement of Data Center Microbursts. In Proceedings of IMC.

https://goo.gl/xzfLLo
https://goo.gl/xzfLLo
https://goo.gl/5Xxhpm
https://tools.ietf.org/html/rfc3954
https://github.com/p4lang/switch
https://github.com/p4lang/switch
https://p4.org/p4-spec/docs/PSA.html
http://dpdk.org/
https://goo.gl/HtPE9K
https://goo.gl/PzPudG
https://goo.gl/TbNwSC
https://goo.gl/TbNwSC
https://goo.gl/U7PUQZ
https://goo.gl/LrRNi4
https://goo.gl/cdEK1E
http://sflow.org/sflow
https://github.com/seladb/PcapPlusPlus
https://github.com/seladb/PcapPlusPlus
https://youtu.be/1xBZ5DGZZmQ

	Abstract
	1 Introduction
	2 Related Work
	3 BurstRadar
	3.1 Snapshot Algorithm
	3.2 Courier Packet Generation
	3.3 Ring Buffer
	3.4 Implementation

	4 Evaluation
	4.1 Efficiency
	4.2 Handling Concurrent Microbursts
	4.3 Resource Utilization

	5 Conclusion
	References

