
GEE: A Gradient-based Explainable Variational
Autoencoder for Network Anomaly Detection

Quoc Phong Nguyen
National University of Singapore

qphong@comp.nus.edu.sg

Kian Hsiang Low
National University of Singapore

lowkh@comp.nus.edu.sg

Kar Wai Lim
National University of Singapore

karwai.lim@nus.edu.sg

Mun Choon Chan
National University of Singapore

chanmc@comp.nus.edu.sg

Dinil Mon Divakaran
Trustwave

dinil.divakaran@trustwave.com

Abstract—This paper looks into the problem of detecting
network anomalies by analyzing NetFlow records. While many
previous works have used statistical models and machine learning
techniques in a supervised way, such solutions have the limitations
that they require large amount of labeled data for training and
are unlikely to detect zero-day attacks. Existing anomaly detection
solutions also do not provide an easy way to explain or identify
attacks in the anomalous traffic. To address these limitations,
we develop and present GEE, a framework for detecting and
explaining anomalies in network traffic. GEE comprises of two
components: (i) Variational Autoencoder (VAE) — an unsuper-
vised deep-learning technique for detecting anomalies, and (ii) a
gradient-based fingerprinting technique for explaining anomalies.
Evaluation of GEE on the recent UGR dataset demonstrates that
our approach is effective in detecting different anomalies as well
as identifying fingerprints that are good representations of these
various attacks.

Index Terms—Anomaly Detection, NetFlow Records, Gradient-
based Fingerprinting

I. INTRODUCTION

Anomalies in network can arise due to attacks and threats
in the cyberspace, such as different kinds of DDoS attacks
(e.g., TCP SYN flooding, DNS amplification attacks, etc.),
brute force attempts, botnet communications, spam campaign,
network/port scans, etc. Network anomalies may also manifest
due to non-malicious causes, such as faults in network, mis-
configurations, BGP policy updates, changes in user behaviors,
etc. Detection of anomalies, possibly in real time, is of utmost
importance in the context of network security, in particular as
we are currently witnessing a continuous change in the threat
landscape, leading to increase in the intensity, sophistication
and types of attacks [1]. This trend is expected to continue
as the IoT market keeps expanding. Indeed, cyber criminals
now target to harness more resources by exploiting IoT devices
that are, both, likely to be much more vulnerable than typical
computers and huge in number (e.g., Mirai attack [2]).

In this paper, we look into the problem of detecting anoma-
lies in large-scale networks, like that of an Internet Service
Provider (ISP). While the problem of network anomaly detec-
tion has been of keen interest to the research community for
many years now, it still remains a challenge for a number of
reasons. First, the characteristics of network data depend on a

number of factors, such as end-user behavior, customer busi-
nesses (e.g., banking, retail), applications, location, time of the
day, and are expected to evolve with time. Such diversity and
dynamism limits the utility of rule-based detection systems.

Next, as capturing, storing and processing raw traffic from
such high capacity networks is not practical, Internet routers
today have the capability to extract and export meta data such
as NetFlow records [3]. With NetFlow, the amount of infor-
mation captured is brought down by orders of magnitude (in
comparison to raw packet capture), not only because a NetFlow
record represents meta data of a set of related packets, but also
because NetFlow records are often generated from sampled
packets. Yet, NetFlow records collected from a modest edge
router with 24x10Gbps links for a 5-minute interval can easily
reach a few GBs. However, with NetFlow, useful information
such as suspicious keywords in payloads, TCP state transitions,
TLS connection handshake, etc. are lost; indeed with sampled
NetFlow, even sizes of each packet, time between consecutive
packets, etc. are unavailable. Therefore, anomaly detection
solutions have to deal with lossy information.

Finally, the SOC (security operation center) analysts have a
limited budget, within which they have to analyze the alerts
raised by an anomaly detector, for purposes such as alert
escalation, threat and attack mitigation, intelligence gathering,
forensic analysis, etc. Therefore, anomaly detectors should go
beyond merely indicating the presence of anomalies; the time
of anomaly, its type, and the corresponding set of suspicious
flows are in particular very useful for further analysis. In
general, the more the information that can be passed (along
with the alerts) to the analysts, the easier is the task of analysis
and quicker the decision process.

One way to address the above challenges is to apply sta-
tistical models and machine learning algorithms. Considering
anomaly detection as a binary classification problem, a super-
vised machine learning model can be built using normal and
anomalous data, for classifying anomalies. However, existing
approaches have the following limitations. First, many of them
exploit only a small number of features (e.g. traffic volume,
flow rates, or entropy) [4], [5], [6]. Such approaches require
the users to apply domain knowledge to select the right set

of features which may not always be feasible and optimal.
Second, supervised approaches require large sets of data with
ground truth for training. Note that as the network character-
istics and attacks evolve, models have to be retrained and the
corresponding labeled datasets have to be made available. This
requires costly and laborious manual efforts, and yet, given
the size of traffic flowing through backbone network, it is
highly impractical to assume all data records to be correctly
labeled [7]. Besides, supervised approaches are unlikely to
detect unknown and zero-day attack traffic.

To address these limitations, in this paper, we develop
and present GEE, a gradient-based explainable variational
autoencoder, for detecting as well as explaining anomalies in
large-scale networks. GEE comprises of two important com-
ponents: (i) a variational autoencoder (VAE), an unsupervised,
deep-learning technique for detecting anomalies in network
traffic; and (ii) a gradient-based fingerprinting technique for
explaining threats and attacks in anomalous traffic. GEE ad-
dresses the limitations of existing approaches in the following
way. First, modeling with VAE allows the use of a large
number of features from the dataset thus relieving the need to
employ domain knowledge to select the “right” set of features.
Second, GEE works with unlabeled NetFlow traces which is
the norm in ISP networks for data collection. Finally, GEE
provides explanation as to why an anomaly is detected.

To summarize, the contributions of this paper are as follow:
• We present a VAE based framework for network anomaly

detection that is scalable in, both, the size of data and the
feature dimension.

• We develop a gradient-based framework to explain the de-
tected anomalies, and identify the main features that cause
the anomalies. This is of great impact in practice as deep
learning techniques are notorious for non-interpretability.

• Our framework GEE makes it possible to identify network
attacks using gradient-based fingerprints generated by the
VAE algorithm. To the best of our knowledge, this is the
first attempt to explain network anomalies using gradients
generated from a VAE model.

Evaluation using the UGR dataset [8] shows that GEE is
effective in identifying the network attacks present, such as
Spam, Botnet, (low-rate) DoS and port scans. Using GEE,
we can identify the features that define these attacks and the
fingerprints derived (when ground truth is available) can be
utilized to further improve the detection accuracy.

We provide an overview of the deep learning model in Sec-
tions III; and in Section IV, we present our anomaly detection
framework GEE. Finally, we evaluate GEE in Section V.

II. RELATED WORK

Detection of network anomalies (such as threats, intrusions,
attacks, etc.) is a widely and deeply studied research prob-
lem. Past works have developed solutions based on varying
approches, for example, rule-based systems [9], information
theoretic techniques [10], [11], signal analysis [12], statistical
models and hypothesis testing [13], [14], as well as data mining

and machine learning algorithms [15], [16]. As computational
resources becoming cheaper, there has been an increasing
interest in applying machine learning techniques for detecting
anomalies in network. In the following, we present an overview
of machine learning techniques applied on NetFlow data (or
other forms of aggregate data usually collected from routers in
ISP networks), for the purpose of detecting anomalies.

PCA (Principal Component Analysis) has been used to sep-
arate traffic space into two different subspaces (‘normal’ and
‘anomalous’) for anomaly detection. Aggregate byte counts of
links in an ISP network was initially used as a feature [17];
and in Lakhina et al. [4], the solution was extended to work
on more granular data. An inherent disadvantage of PCA is
that the components in the reduced subspace do not provide
an interpretation of features in the original space. Besides, as
later studies have shown [18], [19], there are other challenges,
an important one being that PCA-based detection solution is
highly sensitive to the dimension of normal subspace and the
detection threshold, both of which are not easily determined.

Another approach to detect anomalies is to first model the
normal traffic, and then use a statistical decision theoretic
framework to detect deviation from normal data. For example,
Simmross-Wattenberg et al. [13] used α-stable distributions
to model 30-minute time bins of aggregate traffic rate, and
generalized likelihood ratio test for classifying whether the
time windows are anomalous. Since a number of parameters
have to be learned, large amounts of labeled data have to be
continuously made available for the model to adapt with time.

In Bilge et al. [16], a Random Forests classifier was trained
to detect C&C servers in a supervised way, using features ex-
tracted from labeled NetFlow records. To reduce false positive
rate, however, the system relies on reputation systems such as
malicious domain classification system, Google Safe Browsing,
etc. This affects detection accuracy since most recent botnets
and evasive botnets may not have a low reputation score.

More recently, deep neural network models (also generally
referred to as deep learning models) have been embraced by
the research community to tackle anomaly detection problem
in networking setting. Existing supervised deep learning ap-
proaches include work by Tang et al. [20] that utilizes a classi-
cal deep neural network for flow-based anomalies classification
in a Software Defined Networking (SDN) environment, and use
of the recurrent neural network (RNN) models for developing
intrusion detection solution [21].

There are recent works that use unsupervised deep learning
models to transform the data into lower rank features before ap-
plying supervised machine learning. Several prior approaches
first employ autoencoders [22] and their variants to extract the
compressed latent representation as features, and subsequently
use these features for anomaly detection by training standard
classifiers such as Random Forests [23].

Anomaly detection methods that are solely based on unsu-
pervised deep learning models have also been experimented.
These models do not require labeled information and instead
exploit the fact that anomalous behaviors tend to differ greatly

from the standard or normal behavior of the network. Fiore
et al. [24] made use of discriminative restricted Boltzmann
machine (RBM) for anomaly detection on network data; while
Mirsky et al. [25] proposed an ensembles of light-weight au-
toencoders for real time network intrusion detection, although
their focus is on scalability of the system. Further, An and
Cho [26] demonstrated that the VAE performs much better than
AE and PCA on handwritten digit recognition and network
intrusion detection. However, the VAE model was trained using
data labeled as normal, i.e., the anomalies are removed from
training, which is difficult to do in practice. The above [24],
[25], [26] are also known as semi-supervised learning.

Different from the above, we develop an anomaly detector
using an unsupervised deep learning technique without using
labeled information. While existing works (e.g., [26]) stop at
the task of anomaly detection, in our work, we also provide
a gradient-based technique for explaining why the anomalies
are detected, together with their relevant features.

III. UNSUPERVISED DEEP LEARNING MODELS

Given large amount of data being constantly collected by the
network routers, existing anomaly detection frameworks tend
to employ simple methods such as threshold-based approaches
or simply PCA for scalability reason. Within the past decade,
however, we see a rise of application of deep learning models
due to their ability to handle big datasets as well as to train real-
time in a streaming manner. This is while retaining their state-
of-the-art performance in various tasks like real time object
recognition [27] and fraud detection [28].

Additionally, deep learning models like the variational au-
toencoder (VAE) are shown to be robust to noisy data [29],
and thus especially suitable for modeling network flows which
are very noisy in nature. Although deep learning models are
often criticized for their lack of interpretability, recent advances
have brought forward better understanding of these models, in
particular, attributing the causes to the results [30].

We focus on the VAE, a probabilistic generalization of the
AE, for anomaly detection on network data. Note that the
VAE has been shown to be more flexible and robust [26]
compared to the AE. Further, we demonstrate how we can use
gradient information from the VAE for interpretation purpose.
For instance, it can be used to analyze how a certain set of
features is more likely to explain a certain anomaly. In the
following, we first describe the AE model since the VAE has
the same deep architecture as the AE.

A. Autoencoder (AE)

An AE is made of three main layers which correspond
to (i) the input layer to take in the features, (ii) the latent
representation layer of the features, and (iii) the output layer
which is the reconstruction of the features. The AE consists
of two parts called encoder and decoder respectively. The
encoder maps the input into its latent representation while
the decoder attempts to reconstruct the features back from
the latent representation. The encoder may be deep in the
sense that information from the input is passed through several

input	layer output	layer

latent	
representation

× #features

× 512 × 512

× 1024

× 512× 512

× #features

encoder decoder

× 1024

× 100

Fig. 1: The autoencoder (AE and VAE) architecture.

mappings (and hidden layers) similar to the deep architecture
in a supervised deep learning model; likewise for the decoder.
In this paper, we set the size of the latent representation
layer to be 100. In addition, the encoder and the decoder
each have three hidden layers with size 512, 512, and 1,024
respectively, as illustrated in Fig. 1. In the figure, nodes that
are shaded represent the observed data (used as both inputs
and outputs), while the unshaded nodes are unobserved latent
variables corresponding to the hidden layers. The exact size or
dimension of the layers is shown above the nodes.

The links between the layers show how the values of the next
layer can be computed. Commonly, the value of one hidden
layer ~hi can be computed as

~hi = g(Wi
~hi−1 +~bi) (1)

where ~hi−1 is a vector of values for the previous layer, Wi is
a matrix of weights that signifies the relationship from the
previous layer, and ~bi is a vector of bias terms. Both Wi

and ~bi are parameters to be learned through model training.
Here, g() is known as the activation function that transforms
the computation in a non-linear way and allows complex
relationship to be learned. Popularly used activation functions
include the sigmoid function g(x) = (1 + e−x)−1 and the
rectified linear unit (ReLU) g(x) = max(0, x), which will be
used in this paper. The learning of the parameters are generally
achieved by minimizing the reconstruction errors (e.g., mean
square errors) via backpropagation with random initialization,
and can be optimized with a variety of optimizers such as
stochastic gradient descent. We refer the readers to Bengio [31]
and references therein for details on optimization.

In essence, we can view the AE as a deterministic model that
maps a set of inputs (features in our case) into their reconstruc-
tion. This is in contrast to the generative model variants of deep
neural network, such as the VAE and generative adversarial
network (GAN), which is capable of generating new data based
on the distribution of the training data.

B. Variational Autoencoder (VAE)

Unlike AE that deterministically encodes the inputs into
their latent representation and subsequently produce a recon-
struction, the VAE [32] is a generative model that treats the la-
tent representation layer as random variables conditional on the
inputs. Although the encoder and decoder in the VAE follows

the same computation model as the AE as in Equation (1), the
encoding process is instead used to compute the parameters for
the conditional distributions of the latent representation. The
parameters can then be used to generate or sample the latent
representation for decoding. The conditional distributions are
generally assumed to be Gaussian for real-valued nodes. For
example, denote ~zi as the value of the latent representation
layer, then it can be written as

~zi ∼ N (~µi ,diag(~σ
2
i)) (2)

where diag denotes a function that transforms a vector into a
diagonal matrix; and ~µi and ~σ2

i are the mean and variance for
the conditional Gaussian distribution obtained from the output
of the encoder:

~µi = Wµ
i
~hi−1 +~b

µ
i (3)

log ~σ2
i = Wσ

i
~hi−1 +~b

σ
i . (4)

The parameters Wµ
i , Wσ

i , ~bµi , and ~bσi are interpreted in the
same way as in the autoencoder above. Treatment on the hidden
layers is identical to that of autoencoder.

The probabilistic nature of the VAE also means that we
cannot simply employ the usual learning algorithm on standard
objective function (e.g. mean square error) to train the model.
Instead, a class of approximate statistical inference method are
used, which is called the Variational Bayes (thus gives rise to
the name VAE). As the discussion on the inference methods are
rather technically involved, we refer the interested readers to
Kingma and Welling [32] for details. Put simply, an alternative
objective function known as the variational lower bound is
optimized, and stochastic sampling is used for approximation.

In terms of architecture, VAE is similar to AE and is
illustrated in Fig. 1. The ReLU activation function is used by
the encoder and the decoder in all of the intermediate layers,
and the linear activation g(x) = x will be used for the output.

IV. GEE: ANOMALY DETECTION FRAMEWORK

Our anomaly detection framework GEE consists of the
following main steps. First, important information from the
NetFlow data, such as the average packet size, entropy of
destination ports, etc., are extracted to obtain a set of features.
Then, the features are fed into the VAE for learning the
normal behaviour of the network. Subsequently, anomalies
are identified based on their reconstruction errors. Finally, we
describe how we can employ the gradient information available
from the VAE for explanation and for fingerprinting attacks.

A. Feature Extraction

A NetFlow record is a set of packets that has the same
five-tuple of source and destination IP addresses, source and
destination ports, and protocol. In addition to the above,
some of the important fields that are commonly available in
NetFlow records are start time of the flow (based on the first
sampled packet), duration, number of packets, number of bytes,
and TCP flag. We group the NetFlow records into 3-minute
sliding windows based on the source IP addresses to form

aggregated features. This means that each data point in this
paper corresponds to the network statistics of a single source
IP address within a 3-minute period. Note that such extraction
allows us to identify the offending IP address and also the
time window an anomaly belongs to, which are important for
further analysis and decision making. The period of 3 minutes
is chosen to balance between the practicality and quality of the
aggregated statistics, where the statistics will be insignificant if
the period is too short; while using a long time window means
we cannot perform real time analysis.

Overall, we extract 53 aggregated features, which include
• mean and standard deviation of flow durations, number

of packets, number of bytes, packet rate; and byte rate;
• entropy of protocol type, destination IP addresses, source

ports, destination ports, and TCP flags; and
• proportion of ports used for common applications (e.g.

WinRPC, Telnet, DNS, SSH, HTTP, FTP, and POP3).
To ensure that meaningful statistics are captured, data point
that contains too few flows (less than 10 in this case) are
removed from the dataset. This reduces noise in the training
data. Finally, the statistics are either scaled to between 0 and 1
or normalized into Z-score [33] as input features for the VAE.

B. Unsupervised Learning of VAE

Training algorithm of the VAE is implemented using Ten-
sorFlow [34], which provides powerful tools of automatic
differentiation and comes with built-in optimization routines.
As pointed out in Section III, the training of the VAE is fairly
complex and beyond the scope of this paper, so we provide
only a brief outline here. Before starting the training procedure,
the parameters in the VAE are randomly initialized. This sub-
sequently allows us to perform a forward pass on the encoder
by computing the distribution of the latent representation layer
via Equation (2). With this, several samples can be generated
from the Gaussian distribution which are used to compute the
variational lower bound, which consists of a KL divergence
term and an expectation term:

L = −DKL[q(~z | ~x) || p(~z)] + Eq[log p(~x |~z)] (5)

where ~z is the latent representation of the input features ~x.
Here, the distribution p(·) corresponds to the Gaussian prior
and conditional distribution of the VAE model; while q(·) is
a variational approximation [35] of p(·), generally chosen to
be Gaussian as well. Refer to Kingma and Welling [32] for
details. Fortunately, this objective function can be maximized
with stochastic optimization techniques since the gradients are
readily available via automatic differentiation [36].

Here, we employ Adam [37] as the optimization algorithm,
which enables training in minibatches. Generally, real-time
training can be achieved by choosing a small minibatch size
and discarding the data after one epoch. We like to highlight
that label information is not used at all during training.

C. Anomaly Detection

Once the parameters are optimized after training, the VAE
model is used for anomaly detection, where an IP address

and its time window is recognized as abnormal when the
reconstruction error of its input features is high. Here, the
reconstruction error is the mean square difference between the
observed features and the expectation of their reconstruction
as given by the VAE. A high reconstruction error is generally
observed when the network behavior differs greatly from the
normal behavior that was learned by the VAE. The threshold
is usually selected such that we treat a small percentage (say
5%) of the data as anomalies. Otherwise, we can make use
of the labeled information to select a threshold to maximize
the detection rate while having small false positive rate. An
illustration of how this can be done is suggested in the
next section, with the aid of Fig. 2. Note the anomalies are
associated with unusual network behaviours from a particular
source IP address, and may not necessarily be malicious.

D. Gradient-based Explanation for Anomalies

While most existing anomaly detection works in the liter-
ature consider only the evaluation on detection accuracy, we
go beyond and provide an explanation on why a data point is
flagged as abnormal. This is significant since it challenges the
popular belief that a deep learning model functions as a black
box that cannot be interpreted; a VAE model can in fact be
used to explain why an IP address is treated as an anomaly.
This is done by analyzing the gradients ‘contributed’ by each
feature of the data point, which is obtainable from the VAE
through automatic differentiation in TensorFlow.

The key question to ask that leads to our approach is:
How does the VAE’s objective function vary if a feature in
the anomaly data point increases or decreases by a small
amount? Intuitively, given the trained VAE and an anomalous
data point, if the function (reconstruction error) changes quite
a lot when a particular feature of the anomalous data point
is varied by a small amount, then this feature at its current
value is significantly abnormal, since it would like to perturb
the VAE model (through optimization) to fit itself better.

Gradients, or more technically the derivative of the varia-
tional lower bound, ∂L/∂fij , are computed for each feature
fij from each data point i. Two applications of the gradient
can be immediately derived. Firstly, even without having the
ground truth labels, the flagged anomalies can be clustered
based on their gradients into groups that share similar behavior,
making it easier for analysts to investigate. Secondly, if we
have the labeled information on certain types of attacks, then
we can derive gradient-based fingerprints that associate with
the attacks. These fingerprints can be used to identify specific
attacks from another day. Of course, the anomalies that are
identified through the fingerprints are more accurate since la-
beled information was indirectly used in a way similar to semi-
supervised learning. The anomalies are detected through the L2
distance computed from the normalized gradient vectors. The
rationale of using such formulae is presented next.

V. DATASET AND EVALUATION

For evaluation, we use the recently published UGR16
dataset [8], which contains anonymized NetFlow traces cap-

TABLE I: Volume of the NetFlow records (in thousands).

Date (2016) Total DoS B.net Sc11 Sc44 Spam B.list

Training Set
Mar 19 (Sat) 110M - - - - 795 352
Jul 30 (Sat) 110M 779 152 98 373 - 293

Test Set
Mar 18 (Fri) 40M - - - - 13 194

Mar 20 (Sun) 110M - - - - 795 352
July 31 (Sun) 105M 784 152 72 369 - 225

tured from a real network of a Tier 3 ISP. The ISP provides
cloud services and is used by many client companies of
different sizes and markets. The UGR trace is a fairly recent
and large-scale data trace that contains real background traffic
from a wide range of Internet users, rather than specific traffic
patterns from synthetically generated data (e.g., DARPA’98 and
DARPA’99 [38], UNB ISCX 2012 [39], UNSW-NB15 [40],
CTU13 [41]). Another publicly available Internet traffic data
is from the MAWI Working Group [42], but the labeled data
consists of only 15-minute of traffic per day. On the other hand,
UGR contains traffic for the whole day over a 4-month period.
Furthermore, UGR attack traffic data is a mixture of generated
attacks, labeled real attacks, and botnet attacks from controlled
environment. Specifically, the labeled attacks consist of:

• Low-rate DoS: TCP SYN packets are sent to victims with
packet of size 1280 bits and of rate 100 packets/s to port
80. The rate of the attack is sufficiently low such that the
normal operation of the network is not affected.

• Port scanning: a continuous SYN scanning to common
ports of victims. There are two kinds of scanning, one-
to-one scan attack (Scan11) and four-to-four (Scan44).

• Botnet: a simulated botnet traffic obtained from the ex-
ecution of the Neris malware. This data comes from the
CTU13 trace [41].

• Spam: peaks of SMTP traffic forming a spam campaign.
• Blacklist: flows with IP addresses published in the public

blacklists. As emphasized in UGR [8], not all traffic flows
involving blacklisted IP addresses are related to attacks.
However, we include it for completeness.

Other attack labels that are available in the dataset are ignored
due to their low number of occurrence, as they appear in
less than 10 flows in total. Also, we like to caution that the
background traffic should not be treated as fully free of attacks,
since it is likely that some attacks have avoided detection.

We select a total of five days of UGR data for our exper-
iments. Two Saturdays are used as training data while three
other days on Friday and Sundays are chosen for testing. The
statistics for the data are presented in Table I; NetFlow records
without any labels are the background data. Note that the data
on March 18 is collected from around 10am, thus smaller.

After applying feature extraction as discussed in Section IV,
we obtain a training dataset of 5,990,295 data points. The
data are trained via stochastic optimization with 50 epochs and
minibatches of size 300. The weight decay is set to 0.01. A
brief outline of the training procedure was given in Section IV.

0 20 40 60
Reconstruction error

0.0

0.1

0.2

0.3

0.4

0.5 background
spam

(a) Spam.

0 20 40 60
Reconstruction error

0.0

0.1

0.2

0.3

0.4 background
nerisbotnet

(b) Botnet.

0 20 40 60
Reconstruction error

0.0

0.1

0.2

0.3

0.4 background
dos

(c) DoS.

0 25 50
Reconstruction error

0.0

0.1

0.2

0.3

0.4 background
scan11

(d) Scan11.

0 25 50
Reconstruction error

0.0

0.1

0.2

0.3

0.4 background
scan44

(e) Scan44.

0 20 40 60
Reconstruction error

0.0

0.1

0.2

0.3

0.4

0.5 background
blacklist

(f) Blacklist.

Fig. 2: Distribution for reconstruction error on training data.

For the test set, we processed a total of 1,957,711 data points on
March 18, 2,954,983 data points on March 20, and 2,878,422
data points on July 31. For the purpose of evaluation, we say
that a data point belongs to an attack type if more than half
of the flows are labeled with such attack within the 3-minute
aggregation, otherwise it is treated as benign data.

We present the distribution of the reconstruction errors for
the training data on Fig. 2. The ground truth labels are used
to separate the anomalies from the background flows, which
let us examine whether the anomalies behave differently from
the normal behaviors. Overall, there is some overlap with the
background for spam, botnet, DoS, and scanning activities,
but we can find a cut off point to roughly separate them. For
blacklists, however, their behaviors are indistinguishable from
the background traffic.

A. Baseline

We compare our proposed anomaly detection framework
GEE that uses VAE against that of AE and also a Gaussian
Based Thresholding (GBT) approach. For a fair comparison,
the baseline AE shares the same architecture as the VAE,
and as illustrated in Fig. 1. The AE is implemented using
Keras, a high level open source neural network library. We
use the same TensorFlow backend for training the AE. This
is by minimizing the reconstruction error (mean square error)

0.0 0.5 1.0
False positive rate

0.00

0.25

0.50

0.75

1.00

Tr
ue

 p
os

iti
ve

 ra
te

AE
VAE
GBT

(a) Spam.

0.0 0.5 1.0
False positive rate

0.00

0.25

0.50

0.75

1.00

Tr
ue

 p
os

iti
ve

 ra
te

AE
VAE
GBT

(b) Botnet.

0.0 0.5 1.0
False positive rate

0.00

0.25

0.50

0.75

1.00

Tr
ue

 p
os

iti
ve

 ra
te

AE
VAE
GBT

(c) DoS.

0.0 0.5 1.0
False positive rate

0.00

0.25

0.50

0.75

1.00

Tr
ue

 p
os

iti
ve

 ra
te

AE
VAE
GBT

(d) Scan11.

0.0 0.5 1.0
False positive rate

0.00

0.25

0.50

0.75

1.00

Tr
ue

 p
os

iti
ve

 ra
te

AE
VAE
GBT

(e) Scan44.

0.0 0.5 1.0
False positive rate

0.00

0.25

0.50

0.75

1.00

Tr
ue

 p
os

iti
ve

 ra
te

AE
VAE
GBT

(f) Blacklist.

Fig. 3: ROC for VAE, AE, and GBT on training data..

using the stochastic optimizer Adam [37], with minibatch size
chosen to be 256. Similar to the VAE, data points that have
large reconstruction error are flagged as anomalies.

For the GBT, we fit independent but non-identical Gaus-
sian distribution models to the features to learn the standard
behaviors of the data. Then, we compute the Z-score for all
features in the testing dataset and use the product of the
average, standard deviation, and the maximum of the Z-scores
as final score for anomaly detection. The data point with score
that exceeds a certain threshold is considered as anomaly. We
emphasize that both the AE and GBT are trained on the same
extracted features as in VAE, this is to ensure the comparison
is performed over the models rather than feature engineering.

B. ROC Performance on Anomaly Detection

We evaluate the performance of these three methods (VAE,
AE and GBT) using Receiver Operating Characteristic (ROC)
curves, where the true positive rates are plotted against the
false positive rates by varying the sensitivity or threshold for
anomaly detection. A good performance is where the true
positive is high while the false positive is low.

We plot the ROC results on the training dataset in Fig. 3 and
on the testing dataset in Fig. 5. The results on the training data
are presented because unlike supervised learning, the labeled
data is not used for training, hence the results indicate how
good the algorithms are in finding anomalies from statistics

0.2 0.0 0.2 0.4
anomaly-spam

Entropy of dest. IP
Entropy of dport

SMTP dport
HTTP dport

Average duration
Average no. of pkt

Std no. of pkt
Average pkt rate

Average no. of bytes
Average byte rate

Std byte rate
Entropy of flag

IPv6 protocol
IPIP protocol

WinRPC sport
WinRPC dport

FTP dport
0.2 0.0 0.2

scan11
0.2 0.0 0.2

scan44

Fig. 4: Normalized gradients of spam, scan11, and scan44 on selected features.

0.0 0.5 1.0
False positive rate

0.00

0.25

0.50

0.75

1.00

Tr
ue

 p
os

iti
ve

 ra
te

AE
VAE
GBT

(a) Spam on March 20.

0.0 0.5 1.0
False positive rate

0.00

0.25

0.50

0.75

1.00

Tr
ue

 p
os

iti
ve

 ra
te

AE
VAE
GBT

(b) Botnet on July 31.

0.0 0.5 1.0
False positive rate

0.00

0.25

0.50

0.75

1.00

Tr
ue

 p
os

iti
ve

 ra
te

AE
VAE
GBT

(c) DoS on July 31.

0.0 0.5 1.0
False positive rate

0.00

0.25

0.50

0.75

1.00

Tr
ue

 p
os

iti
ve

 ra
te

AE
VAE
GBT

(d) Scan44 on July 31.

Fig. 5: ROC for VAE, AE, and GBT on test dataset.

of the same day. On the other hand, results for the testing
data evaluate on how the anomaly detection generalizes to a
new day based on statistics from another day in the training
data. For reference, we include the results for blacklisted
IP addresses which clearly cannot be identified through the
statistics from the NetFlow records, see Fig. 3f.

From the results, we make the following observations.
First, threshold based approaches such as GBT work well for
attacks that increase the volume of certain categories of traffic
significantly, such as spam and port scanning. However, such
approaches do not work as well for botnet and low rate DoS.
On the other hand, AE does not work well for spam and
low rate DoS. For these two attacks, AE may be unable to
differentiate spam from regular email traffic because of the
high volume, and unable to detect DoS due to the low rate.
Overall, VAE is the most robust and has good performance
on all attack types. Table II summarizes the individual and
average area under the ROC curve (AUC) for various attacks
(except blacklist) and detection models. Clearly, VAE has the

TABLE II: Area under the curve (AUC) of the ROC.

Model DoS BotNet Scan11 Scan44 Spam Average

Train
GBT 0.892 0.735 0.989 0.989 0.961 0.913

AE 0.917 0.931 0.965 0.948 0.741 0.900
VAE 0.986 0.940 0.966 0.961 0.927 0.956
Test

GBT 0.875 0.722 0.980 0.985 0.970 0.906
AE 0.898 0.915 0.961 0.945 0.791 0.902

VAE 0.983 0.936 0.949 0.958 0.908 0.947
F.print 0.980 0.914 0.976 0.977 0.965 0.962

best overall performance in terms of AUC. Note that the AUC
results on the test set are aggregated over the different days,
i.e., spam attacks are from March 18 and 20, while DoS, botnet,
and port scanning attacks are originated from July 31.

C. Identifying and Using Gradient Fingerprints

In this section, we compute and identify the gradients for
all the features for various attacks. Fig. 4 shows the gradients
of the features for spam, scan11, and scan44. Recall that 53
features are used as input to VAE and significant features with
sufficient variation in gradients are shown in the figure. The
black bars reflect one standard error for the gradients, which
are useful for assessing the significance of the gradients, i.e.,
whether it is due to noise or not. We also present the features
that are not significant for contrast. Note that similar gradient-
based fingerprints are available for the other labeled attacks,
not shown here due to space.

Based on the results, we can make the following observa-
tions. First, only a small subset of the features have large
gradients. Second, these features with the greatest absolute
gradients provide an explanation for why these flows of an IP
are detected as anomalies. For example, in the case of spam
attacks (which includes sending spam emails), five features
have more positive gradient (higher than the learned normal)
while four features have much negative gradient (lower than
learned normal). Next, these combination of gradient and
features can be used as a fingerprint to identify or cluster

0 1
False positive rate

0.0

0.5

1.0

Tr
ue

 p
os

iti
ve

 ra
te

L2

L2
n

(a) Spam on March 20.

0 1
False positive rate

0.0

0.5

1.0

Tr
ue

 p
os

iti
ve

 ra
te

L2

L2
n

(b) Botnet on July 31.

0 1
False positive rate

0.0

0.5

1.0

Tr
ue

 p
os

iti
ve

 ra
te

L2

L2
n

(c) DoS on July 31.

0 1
False positive rate

0.0

0.5

1.0

Tr
ue

 p
os

iti
ve

 ra
te

L2

L2
n

(d) Scan44 on July 31.

Fig. 6: ROC for anomaly detection using fingerprints.

similar attacks. For example, it can be observed from Fig. 4
that Scan11 and Scan44 have similar gradient fingerprints.

To further validate our claim that these gradient fingerprints
are useful in identifying similar attacks, we plot the ROC for
various attacks detected in the following way. First, let L2

denote the Euclidean distance between the average gradient
fingerprint obtained from data with labeled attacks and the
gradients of the VAE’s objective function w.r.t. each test data
point. Similarly, define L2

n as the same distance metric but
computed on normalized gradient vectors. The ROC is then
produced by varying the threshold on L2 or L2

n distance. If the
gradient fingerprint is a good measure of an attack, we expect
the ROC to have high true positive and low false positive.

The results are shown in Fig. 6. It is encouraging to see
that with the use of L2

n, the gradient fingerprints learned are
indeed good representations of these attacks. In fact, it is an
improvement upon using the reconstruction error for anomaly
detection, see the last row on Table II for the its AUC. We also
note that the result is slightly worse for botnet, see Fig. 6b. This
could be because there are many patterns behind the botnet
anomalies. Hence, simply averaging all normalized gradients
for botnet might not be the best approach.

Finally, we may also conclude that we have discovered a
new attack if an unseen gradient fingerprint is identified.

D. Clustering of Anomalies

Another possible use of the VAE generated gradients is that
they can be used to cluster or group the different attacks. The
idea is that if the clustering is effective, attacks should be
limited to a relatively small number of clusters.

We performed k-mean clustering with random initial seed on
the training dataset with k = 100. Fig. 7 illustrates the clusters
associated with the attacks discussed above. We find that 92.4%
of the DoS attacks appear only in two clusters (c82 and c84)
with the other 7.6% appearing in four other clusters. For spam

c1526.9%

c11

47.4%

11 others

25.7%

(a) Spam.

c8236.0%c84 56.4%

4 others

7.6%

(b) DoS.

c3927.8%

c84

50.0%

3 others

22.2%

(c) Scan11.

c39
11.6%

c5611.6%

c84

58.0%

6 others

18.8%

(d) Scan44.

Fig. 7: Distribution of clusters for each attack type.

attacks, 74.3% of them appear in two clusters (c11 and c15),
while 25.7% appears in another 11 clusters. This suggests that
the attacks generally exhibit small number of main behavioral
patterns and thus the analysts can focus on a small subset of
clusters to study a particular type of attacks.

E. Processing Overhead of VAE

Training of the VAE is performed on a single graphical
processing unit (GPU) GTX 1080Ti with Intel Xeon CPU E5-
2683 (16 cores, 2.1GHz), and 256Gb of RAM, which enables
real time online training on streaming data. Since the features
are aggregated into a 3-minute sliding window, the running
statistics from the NetFlow records are kept for three minutes
before discarded. On average, feature extraction took about 25
seconds for every 3-minute window of the UGR data, which
corresponds to about 200k NetFlow records. Note that our
implementation did not optimize for such operation, and speed
improvement can easily be achieved.

Training using the TensorFlow framework is highly paral-
lelizable and thus runs very quickly. For every minibatch of
300 data points of aggregated features, only 10ms is needed
for training; while testing the data points for abnormality
takes about 20ms. Hence, almost all the processing is due to
the feature extraction. With the current setup, even without
speeding up the feature extraction further, our algorithm can
easily perform anomaly detection in real-time.

VI. CONCLUSION

We proposed GEE, a VAE-based framework that is robust in
detecting a variety of network based anomalies. We observed
that the VAE performs better overall compared to the AE
and a Gaussian based thresholding (GBT) method. Further,
we demonstrated how to use the gradient information from the
VAE to provide an explanation for the flagged anomalies. Also,
the gradient-based fingerprints, when used directly for anomaly
detection, was shown to achieve an overall better performance.

A potential future research is to use the conditional VAE
(CVAE) [43] for anomaly detection. The CVAE was developed
by the deep learning community as an extension of the VAE
to allow for additional auxiliary labels that are available. With
CVAE, one can consider training an anomaly detection system
from multiple data sources that have different behaviors.

ACKNOWLEDGMENT

This research is supported by the National Research Foun-
dation, Prime Minister’s Office, Singapore under its Corporate
Laboratory@University Scheme, National University of Singa-
pore, and Singapore Telecommunications Ltd.

REFERENCES

[1] Symantec, “Internet Security Threat Report,” 2018, https://www.
symantec.com/content/dam/symantec/docs/reports/istr-23-2018-en.pdf;
accessed July 2018.

[2] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein et al.,
“Understanding the Mirai botnet,” in Proc. 26th USENIX Security
Symposium, 2017, pp. 1093–1110.

[3] B. Claise, B. Trammell, and P. Aitken, “Specification of the IP
flow information export (IPFIX) protocol for the exchange of flow
information,” Internet Requests for Comments, RFC Editor, STD 77,
2013. [Online]. Available: http://www.rfc-editor.org/rfc/rfc7011.txt

[4] A. Lakhina, M. Crovella, and C. Diot, “Characterization of network-wide
anomalies in traffic flows,” in Proc. ACM SIGCOMM Conf. on Internet
Measurement (IMC), 2004, pp. 201–206.

[5] F. Silveira, C. Diot, N. Taft, and R. Govindan, “ASTUTE: Detecting a
different class of traffic anomalies,” in Proc. ACM SIGCOMM, 2010, pp.
267–278.

[6] J. Wang and I. C. Paschalidis, “Statistical traffic anomaly detection
in time-varying communication networks,” IEEE Trans. on Control of
Network Systems, vol. 2, no. 2, pp. 100–111, 2015.

[7] R. Sommer and V. Paxson, “Outside the closed world: On using machine
learning for network intrusion detection,” in Proc. IEEE Symposium on
Security and Privacy, 2010, pp. 305–316.

[8] G. Maciá-Fernández, J. Camacho, R. Magán-Carrión, P. Garcı́a-Teodoro,
and R. Therón, “UGR’16: A new dataset for the evaluation of
cyclostationarity-based network IDSs,” Computers & Security, vol. 73,
pp. 411–424, 2018.

[9] N. Duffield, P. Haffner, B. Krishnamurthy, and H. Ringberg, “Rule-based
anomaly detection on IP flows,” in Proc. IEEE INFOCOM, 2009, pp.
424–432.

[10] Y. Gu, A. McCallum, and D. Towsley, “Detecting anomalies in network
traffic using maximum entropy estimation,” in Proc. ACM IMC, 2005,
pp. 345–350.

[11] G. Nychis, V. Sekar, D. G. Andersen, H. Kim, and H. Zhang, “An
empirical evaluation of entropy-based traffic anomaly detection,” in Proc.
ACM IMC, 2008, pp. 151–156.

[12] P. Barford, J. Kline, D. Plonka, and A. Ron, “A signal analysis of
network traffic anomalies,” in Proc. ACM SIGCOMM Workshop on
Internet Measurement (IMW), 2002, pp. 71–82.

[13] F. Simmross-Wattenberg, J. I. Asensio-Perez, P. Casaseca-de-la Higuera
et al., “Anomaly detection in network traffic based on statistical inference
and alpha-stable modeling,” IEEE Trans. on Dependable and Secure
Computing, vol. 8, no. 4, pp. 494–509, 2011.

[14] I. Nevat, D. M. Divakaran, S. G. Nagarajan, P. Zhang, L. Su, L. L. Ko,
and V. L. L. Thing, “Anomaly detection and attribution in networks with
temporally correlated traffic,” IEEE/ACM Trans. on Networking, vol. 26,
no. 1, pp. 131–144, 2018.

[15] I. Paredes-Oliva, I. Castell-Uroz, P. Barlet-Ros, X. Dimitropoulos, and
J. Solé-Pareta, “Practical anomaly detection based on classifying frequent
traffic patterns,” in Proc. IEEE INFOCOM Workshops, 2012, pp. 49–54.

[16] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel,
“Disclosure: Detecting botnet command and control servers through
large-scale NetFlow analysis,” in Proc. ACSAC, 2012, pp. 129–138.

[17] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic
anomalies,” SIGCOMM CCR., vol. 34, no. 4, pp. 219–230, 2004.

[18] H. Ringberg, A. Soule, J. Rexford, and C. Diot, “Sensitivity of PCA for
traffic anomaly detection,” SIGMETRICS Perform. Eval. Rev., vol. 35,
no. 1, pp. 109–120, 2007.

[19] D. Brauckhoff, K. Salamatian, and M. May, “Applying PCA for traffic
anomaly detection: Problems and solutions,” in Proc. IEEE INFOCOM,
2009, pp. 2866–2870.

[20] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho,
“Deep learning approach for network intrusion detection in software
defined networking,” in Wireless Networks and Mobile Communications
(WINCOM). IEEE, 2016, pp. 258–263.

[21] P. Torres, C. Catania, S. Garcia, and C. G. Garino, “An analysis of
recurrent neural networks for botnet detection behavior,” in Biennial
Congress of Argentina (ARGENCON). IEEE, 2016, pp. 1–6.

[22] P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,”
in Proc. ICML Workshop on Unsupervised and Transfer Learning, 2012,
pp. 37–49.

[23] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach
to network intrusion detection,” IEEE Transactions on Emerging Topics
in Computational Intelligence, vol. 2, no. 1, pp. 41–50, 2018.

[24] U. Fiore, F. Palmieri, A. Castiglione, and A. De Santis, “Network
anomaly detection with the restricted Boltzmann machine,” Neurocom-
puting, vol. 122, pp. 13–23, 2013.

[25] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An
ensemble of autoencoders for online network intrusion detection,” arXiv
preprint arXiv:1802.09089, 2018.

[26] J. An and S. Cho, “Variational autoencoder based anomaly detection
using reconstruction probability,” Special Lecture on IE, vol. 2, pp. 1–
18, 2015.

[27] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Advances in
neural information processing systems, 2015, pp. 91–99.

[28] A. Roy, J. Sun, R. Mahoney, L. Alonzi, S. Adams, and P. Beling, “Deep
learning detecting fraud in credit card transactions,” in Systems and
Information Engineering Design Symposium, 2018, pp. 129–134.

[29] W.-N. Hsu, Y. Zhang, and J. Glass, “Unsupervised domain adaptation
for robust speech recognition via variational autoencoder-based data
augmentation,” in Automatic Speech Recognition and Understanding
Workshop. IEEE, 2017, pp. 16–23.

[30] M. Ancona, E. Ceolini, C. Öztireli, and M. Gross, “A unified view
of gradient-based attribution methods for deep neural networks,” in
International Conference on Learning Representations, 2018.

[31] Y. Bengio, “Practical recommendations for gradient-based training of
deep architectures,” in Neural Networks: Tricks of the Trade. Springer,
2012, pp. 437–478.

[32] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[33] A. Jain, K. Nandakumar, and A. Ross, “Score normalization in mul-
timodal biometric systems,” Pattern Recognition, vol. 38, no. 12, pp.
2270–2285, 2005.

[34] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis et al., “TensorFlow:
A system for large-scale machine learning,” in Proc. Conference on
Operating Systems Design and Implementation, 2016, pp. 265–283.

[35] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference:
A review for statisticians,” J. Amer. Statist. Assoc., vol. 112, no. 518, pp.
859–877, 2017.

[36] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind,
“Automatic differentiation in machine learning: A survey.” Journal of
Machine Learning Research, vol. 18, no. 153, pp. 1–153, 2017.

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Third International Conference on Learning Representations, 2015.

[38] DARPA Datasets, https://www.ll.mit.edu/ideval/docs/index.html.
[39] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward

developing a systematic approach to generate benchmark datasets for
intrusion detection,” Comp. & Sec., vol. 31, no. 3, pp. 357–374, 2012.

[40] N. Moustafa and J. Slay, “UNSW-NB15: A comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),”
in Military Communications and Info. Sys. Conf. IEEE, 2015, pp. 1–6.

[41] S. Garcia, M. Grill, J. Stiborek, and A. Zunino, “An empirical comparison
of botnet detection methods,” Comp. & Sec., vol. 45, pp. 100–123, 2014.

[42] MAWI Working Group Traffic Archive, http://mawi.wide.ad.jp/mawi.
[43] K. Sohn, H. Lee, and X. Yan, “Learning structured output representation

using deep conditional generative models,” in Advances in Neural
Information Processing Systems, 2015, pp. 3483–3491.

