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Abstract—Application offloads on modern high-speed pro-
grammable switches have been proposed in a variety of systems
(e.g., key-value store systems and network middleboxes) so as to
efficiently scale up the traditional server-oriented deployments.
However, they largely achieve sub-optimal offloading efficiency
due to the lack of (1) capability to perform control actions at
sufficient rates, and (2) adaptability to workload changes.

In this paper, we scrutinize the common stumbling blocks
of existing frameworks with performance evaluations on real
workloads. We present DySO (Dynamic State Offloading), a
framework which enables expeditious on-demand control actions
and self-tuning of management rules. Our software simulations
show up to 100% performance improvement compared to existing
systems for various real world traces. On top of that, we
implement and evaluate DySO on a commodity programmable
switch, showing two orders of magnitude faster responsiveness
to sudden workload changes compared to the existing systems.

Index Terms—Programmable networks, P4, Framework, Ap-
plication acceleration, In-network caching

I. INTRODUCTION

The emergence of commodity programmable switches have
induced a series of innovations by enabling hardware ac-
celeration for a broad range of mission-critical data-center
applications such as high-performance key-value stores [1],
[2], distributed storage systems [3], [4] and cloud gateways [5].
These high-performance systems leverage the multi-terabit per
second packet processing capability of programmable switch-
ing ASICs by offloading certain application functionalities
onto the data plane. This results in cost savings and greater
scalability of these high-performance systems, as significantly
fewer commodity servers are needed to achieve a similar
application throughput [6], [7].

The availability of hardware resources (i.e., tens of MB
of available on-chip memory) on the programmable switch-
ing ASICs dictates the total application states that can be
offloaded. Thus, the specific states to be offloaded must be
carefully selected to fit into the limited hardware resources.
Fortunately, the highly-skewed traffic distributions [8] in most
network traffic allow good performance to be achieved by
selecting the “hottest” items to be placed in the data plane.
Thus, the data plane can do the heavy lifting by absorbing the
majority of the application traffic, while the remainder is left
to the commodity servers.

NetCache [1] is one example of a design that selectively
stores popular items on hardware based on high traffic skew-
ness and temporal locality [9]. Many recent works [2]–[4],

[7] also adapt a similar design for hardware offload efficiency.
While such simple and effective offloading mechanisms have
demonstrated significant improvement over the base case of no
application offload to the data-path, what is not as well under-
stood is the limitations and performance bottlenecks of these
approaches when they are implemented on programmable
switches.

To optimize the use of the limited hardware resources, the
states maintained in the data plane have to be kept “updated”
in order to respond to changing traffic dynamics. This keeps
the programmable switch as “busy” as possible to maximize
its use. However, the ever-changing content popularity [9]
in the traffic mandates that the underlying system be able
to react in a timely manner so as to keep the hardware
utility high, i,e., the the data plane has to be refreshed in
time to serve newly “hot” items. Reacting promptly to traffic
changes necessitates a tight control loop between the switch
data plane and the application controller. However, existing
designs fall short in this aspect and can take up to several
seconds [1], [3] to recover from the sudden changes in traffic,
resulting in bursty loads delivered to the backing servers and
even degrading the overall performance (e.g., 20% of total
throughput [1]). Such performance degradation is unacceptable
for many production systems, such as data centers, which
require consistency, resiliency, and high performance [5].

We find that these performance degradation can be attributed
to the following factors: (i) The large gap between the writ-
ing/reading rate of the control channel (104 to 105 operations
per second [10]) versus the processing rate of the switching
ASIC on the data-path (109 operations per second [11]). Such
a mismatch results in sub-optimal performance when there is a
need to detect and react to workload changes in the data-plane
with very short latency from the control-plane. (ii) Existing
works of application offload on programmable switches do
not specifically consider adaptability of management policy to
varying workloads in their designs.

To that end, we first investigate how these factors contribute
to the hardware offload efficiency under dynamic workload
environments. Then, based on the insights obtained, we present
a framework, DySO, that is designed to address these is-
sues so as to achieve efficient hardware offloading for high-
performance applications.

To summarize, our contributions are as follows:
• We present measurement results on the performance

bottlenecks of existing application-offload systems on
commodity programmable switches. To the best of ourISBN 978-3-903176-48-5© 2022 IFIP



knowledge, this is the first work to analyze the impact of
the control loop latency that results from the significant
gap between the control-plane and data-plane communi-
cation rate and data-plane processing speed (§II).

• We propose DySO, an application-offload framework that
addresses the root causes identified. DySO leverages the
fast data-path for managing offloaded items and collecting
statistics in order to bypass the current bottleneck channel
between control-plane and data-plane. DySO also imple-
ments an efficient adaptive policy that takes advantage of
the higher control rate available (§III).

• We implement DySO on an Intel Tofino ASIC-based [11]
programmable switch, and carry out evaluations by ap-
plying DySO to existing systems (§IV, §V).

Our evaluations on a software simulator show that DySO
outperforms existing works, achieving up to 100% improve-
ment in hardware offload efficiency (miss-ratio, see §IV) over
a variety of real world traces. In addition, our evaluations on
the commodity programmable switch using synthetic work-
loads show that DySO responds to sudden popularity changes
up to hundreds times faster, and up to 3.5 times lower miss-
ratio than existing works.

II. BACKGROUND AND MOTIVATION

Figure 1 shows the typical interaction between the con-
trol and data plane consisting of the following components
(1) control-plane sending update to the data-plane, (2) data-
plane sending monitoring information to the control-plane and
(3) a state management module that determines the update
actions based on the monitored states.

In the context of application offload to the data-plane, for
a given input query packet (e.g., key-value store request [1]),
a lookup is performed for its associated states stored on the
programmable switching ASIC’s on-chip memory to retrieve
the corresponding data and/or actions. If there is a lookup miss,
the packet would be forwarded to the commodity servers for
further processing. The input stream is continuously monitored
using the available hardware primitives (e.g., registers or
meters) on programmable switches and state replacements are
performed from time to time to adapt with real-time popularity
changes. The replacement decisions are made in the control
plane through a state replacement module that operates based
on user-defined policies, e.g., inserting the hot (i.e., popular)
items into the hardware and evicting the cold (i.e., rarely used)
items, which then interacts with the data plane through the
switch’s control driver to do state replacement (i.e., via the
PCIe channel).

In this section, we present our findings on how these
components become the performance bottlenecks.

A. Latency and Update Rate in Control Loop

1) Latency in data-plane state update: Typically, in hard-
ware application offloads (e.g., L4 load balancer or in-network
key-value stores), the match-action tables (MAT) [12] on
switching ASICs are used to perform lookup. While the MAT
is a common choice for implementing such operations, recent
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Fig. 1: Typical workflow of application offload on pro-
grammable switching ASICs.
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Fig. 2: Entry replacement rate of match-action tables (MAT)
for different table load factors (LF) on Intel Tofino [11].
To maximize the speed, we use the Intel Tofino’s Barefoot
Runtime Control API in C++ and enabled batch updates.

works have noticed that performing entry replacement on the
MAT from the control plane on state-of-the-art commodity
switches can be slow [5], [10], e.g., up to ∼80K entries per
second (Fig. 2). This translates to at least tens of microsec-
onds for per-entry replacement, far slower than the packet
forwarding rate in the data-plane which is in the order of
nanoseconds per packet. One of the root causes for the slow
update is the low-end switch CPU used to perform Cuckoo
hashing [13] so as to achieve high utilization of the on-chip
memory in the ASIC. To be specific, a Cuckoo hash insertion
can require multiple hash calculations and cascading memory
movements in the event of collisions [10]. This constraint
makes it challenging for the switches to support applications
that require low-latency and high update rate in order to
adapt to rapidly changing network traffic dynamics, e.g., ever-
changing content popularity of key-value storage [8], or >1M
new connections-per-second for a L4 load balancer [10].

2) Latency in monitoring: Apart from the bottleneck in
update, monitoring latency is an issue as well. Existing hard-
ware offload systems [1]–[4], [7] predominantly employ the
frequency counters in the data plane (e.g., per each offloaded
item) which are periodically polled by the control plane.
However, it is known that such method imposes a significant
response delay [14], [15]. For instance, the most recent work
on low-level kernel driver optimization (Mantis [16]) success-
fully reduces the monitoring overhead, but still takes several
milliseconds to poll 64K counters1. Long latency in obtaining
monitoring information may lead the state replacement module

1Based on the discussion with authors, Mantis [16] can read a smaller set of
register array with a low latency, e.g., maximally around 500 32-bit registers
within 30us.
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Fig. 3: Miss-ratio of offline-optimal for diverse entry replace-
ment rates between 1.25M to 20K entries per second (baseline
Belady is 1). We assume 80Mpps traffic rate. A lower value
is better.

to operate with stale data, resulting in poor hardware offload
efficiency due to inaccurate decisions.

B. Understanding Impact of Slow State Update

While prior works [1], [17] conjecture that a slow state
update on switching ASICs degrades the hardware offload
efficiency, none of them has attempted to quantify its impact
for dynamic workloads in the real world. Indeed, we believe
it is difficult to explicitly differentiate the impacts of the slow
state update and a design of replacement policy separately. For
instance, the optimal policy for a specific update rate can be
sub-optimal when the rate changes. Hence, simply fixing the
policy and varying the update speed does not accurately reveal
the impact of the slow state update.

This inspires us to conduct the analysis with offline-optimal
policy, which is commonly utilized for studying a fundamental
trade-off in classic caching problems [18], [19]. Offline-
optimal is a theoretically achievable optimal policy given
all information of future queries in advance, and provides a
practical benchmark of online policy. Such an optimal policy
would allow us to highlight the impact of slow state update
without dependency on the specific state replacement policy.

1) Evaluation of Offline-Optimal Policy: Here, we present
the evaluation results, and defer the description of the offline-
optimal policy to appendix A. Our evaluation relies on two
real world traces collections: (1) the CAIDA ISP-scale traffic
monitor [20] with three different key fields such as an address
pair (IP and port) of source and destination, and 5-tuple, and
(2) cache request traces from Twitter’s Production [21]. 64K
entries are used in the data-plane and the traffic rate is 80Mpps.
We evaluate the hardware offload efficiency by measuring a
fraction of missed queries from the hardware, i.e., miss-ratio.
In the evaluation, we vary the state update (replacement) rate
from 20K to 1.25M entries per second with batch size 256, and
compare their performance to the baseline whereby there is no
constraint on the update rate. This baseline can be computed
using the Belady’s algorithm [22], a provably offline-optimal
policy without constraints of update rate. The result is shown
in Fig. 3.

We observe that the miss-ratio increases up to 3.3× (e.g.,
CAIDA) when the update rate is 20K entries per second, and
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Fig. 4: Miss-ratio of offline-optimal and online policies for
diverse entry replacement rates (baseline Belady is 1). We
assume 80Mpps traffic rate.

more than double in most of the traces when the update rate
is limited to 80K compared to the baseline. The significant
increase in miss-ratio when there is slow state update implies
that the hardware offload efficiency on the programmable
switches in practice can be much worse than expected unless
the limitation on the update rate can be addressed.

2) Comparison with Online Policies: In Fig. 4, we compare
the performance of offline-optimal and online policies. In the
evaluation, we use two extensions of typical online policy
rules, e.g., recency-biased [23] and frequency-biased [24]. We
replace the least recently (frequently) queried items stored
in hardware to the most recently (frequently) queried non-
offloaded items. For the frequency-biased, we periodically
apply the aging (e.g., diving all counters by half [25]) to
penalize inactive items, and choose the best aging period in a
heuristic way.

The result shows that as the update rate decreases, the
performance of all policies drops, showing the significant
impact of slower update rate on all these policies. However,
an online policy can achieve performance close to the offline-
optimal policy using a lower update rate by executing at a high
update rate. For example, in the CAIDA trace, a frequency-
biased policy with an update rate of 1.25M entries per second
outperforms the offline-optimal operating at an update rate of
20K.
Takeaways: The above analysis provides experimental mea-
surements to quantify the strong impact of update rate on
hardware offload efficiency: the relative gap of offline-optimal
between the unconstrained state update and the limited rate on
the actual hardware can be as much as 283%.

C. Policy to Support Dynamic Workload

The state replacement policy is primarily responsible for the
hardware offload efficiency by making decisions to maintain
the offloaded items on hardware up-to-date. Obviously, the
optimal policy on a specific query pattern can be sub-optimal
on different workloads. Unfortunately, prior systems only
consider static policies, i.e., using prefixed rules regardless
of input query patterns or output performance of offloading.
For example, the existing systems are prone to segment the
input streaming to a fixed interval (e.g., 1s), and identify
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the hot items in each interval if their query frequency is
over a prefixed threshold [1]–[3], [7] or top-k [4], [17]. The
lack of adaptability can result in sub-optimal decisions when
dealing with varying workloads and traffic patterns. Indeed,
we observe that a miss-ratio of the existing systems can be
reduced up to 20% with policy tuning (shown later in Fig. 8).
Despite a large number of efforts to design a workload-
adaptive policy in the classic caching scheme, we note that
these works assume the capability to insert on every requested
item [26]–[29]. Hence, these schemes are not applicable to
existing programmable switches with state update constraints.

III. DYSO: DESIGN AND IMPLEMENTATION

We have shown that the existing system designs largely
incur a non-negligible delay in the control loop which can
highly degrade the hardware offload efficiency. In addition,
they fall short of coping with the variations in traffic patterns
due to a lack of policy adaptation. To that end, we present
our framework, DySO, which consists of tightly-coupled data
plane and control plane components to enable high-speed con-
trol loops and with traffic pattern adaptability. DySO exploits
the high-speed data path to perform control actions via control
packets, i.e., without involving the slow control channel.

Next, we describe the DySO’s mechanisms in the data plane
(§III-A) and control plane (§III-B), respectively. In Fig. 5,
we illustrate the overview of DySO’s workflow and how the
framework components are laid out in the data plane.

A. DySO: Data Plane

DySO’s data plane comprises two main components:
(1) state lookup module to perform the offloaded functions,
and (2) statistics module for monitoring. In both components,
different processing logic is used for data (e.g., query) and
control packets.

Whenever a data packet arrives, the state lookup module
performs lookup using its key to carry out the associated
actions, while the statistics module concurrently records the
lookup history. When a control packet ferrying new entries
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Fig. 6: r-MAT design of length-k hash chaining and N rows.

specified by the control plane (see later in §III-B) arrives, the
associated entries in the state lookup module are updated. Con-
currently, the statistics module appends the recorded lookup
histories to the very same control packet and then frees
the slots to store new lookups. Finally, the control packet
containing the lookup histories will be forwarded back to the
control plane through the data path.
We look into the implementation details of each module.

1) State Lookup Module: While existing Cuckoo-hash-
based match-action table (MAT) offers line-rate lookup capa-
bility, its strong dependency on the control plane to perform
entry update incurs a high latency over the slow control chan-
nel (§II). Avoiding this bottleneck necessitates an alternative
data structure which can efficiently support lookup operations
at line-rate, and not constrained by the slow control channel.

For that reason, we implement a register-based MAT sub-
stitute, r-MAT, a hash table with a chain of k entries,
as illustrated in Fig. 6. A key idea in our design is that
both application lookup and control action are performed
by (data/control) packets in the data-plane. Thus, updates
from the state management module are sent to the switch
packet processing pipeline instead of going through the (PCI-
e based) control channel. By operating entirely in the data-
plane, r-MAT can satisfy all our demands; the design of
chaining entries is suitable to the feed-forward pipelines of
programmable switching ASIC [30], with line-rate LOOKUP
as well as entry UPDATE operations. Furthermore, as the
entries of different rows are disjoint with independent hash
calculations, we can easily scale-up the management of states
with parallel operations.

In Alg. 1, we briefly describe the LOOKUP and UPDATE
operations. For the data packet, it accesses the corresponding
row of index by hashing (line 2), performs key-match along
the chain of entries (line 4-6), and retrieves the associated data
if matched. On the other hand, the control packet carrying
the update information (e.g., new states to update and its row
index) updates the entries along the row (line 11-14).

2) Statistics Module: To keep track of lookup histories in
real-time, we leverage a multi-row history buffer which has a
structure similar to r-MAT. For a data packet, we record the
lookup key in one of the rows, in a first-in-first-out and best-
effort basis (RECORD). The histories in each row of buffer
is frequently exported via a control packet (EXPORT), in a
round-robin manner. By leveraging the continuous export, we
provision a small buffer size, e.g., total 2K entries, with a
negligible memory overhead.

While we can use a key compression (e.g., hashing) for a
long lookup key, this may cause hash collisions. Nevertheless,



Algorithm 1: r-MAT Operations
Input: M [·] – N rows of length-k hash chaining.

1 Function LOOKUP(key=X):
2 Row ←M [hash(X) % N ] // row to match
3 for j ← 0 to k − 1 do

/* iterate entries along the chain */
4 if Row[j].key == X then
5 return match and Row[j].data
6 end
7 end
8 return absent
9

10 Function UPDATE(idx = i, new = E):
11 Row ←M [i] // row to update
12 for j ← 0 to k − 1 do

/* iterate entries along the chain */
13 Row[j] = E[j]
14 end

we find that such a compression scheme has a negligible effect
on the performance because (i) the collision rate is very low
with a long hashkey (e.g., 64 bits), and ii) even if a collision
occurs, the collided item is unpopular in most cases.

Lastly, we would like to highlight that such a packet-
driven data state collection is two orders of magnitude faster
than using the switch’s control channelby using only 5Mpps
of control packets. This rate incurs less than 0.5% of the
total processing capacity in the switching ASIC but already
provides at least 4× faster speed than the low-level control
driver optimization proposed in Mantis [16].

B. DySO: Control Plane

In the control plane, the main component of DySO is the
state management module, which continuously captures the
query patterns from the collected lookup histories, and keeps
the states stored in the data-plane up-to-date to cope with
the changes in content popularity. Depending on the control
latency desired, the control packets are generated at a given
rate. Whenever a control packet is generated, the module’s
policy makes replacement decisions if necessary, puts the
update information (e.g., index of entry and new states) on the
packet and sends the packet to the packet processing pipeline
over the data path.
We describe the policy and the details of its design below.

1) Policy rule: DySO maintains its policy up-to-date from
the collected lookup histories, and frequently updates the
hardware states with the recent hottest items. To understand
which items are currently ”hot”, we leverage a variation of the
data structure for frequency counters used in SwitchKV [17].
Fig. 7 shows a brief depiction of the data structure.

Specifically, we use a doubly-linked list of buckets where
each bucket is tagged by a unique range of frequency with
a power of two, e.g., 2n implies a range [2n, 2n+1). Each
bucket contains the items whose counter values correspond to
its frequency range. The buckets are sorted by their recency.
For example, in Fig. 7, the items {x1, x2, x3} are in the
frequency range [2n, 2n+1), where x1 is the most recently
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Fig. 7: Data structure of policy’s frequency counters.

queried one among them. To track the top-ranked items, we
first find more frequently used (rightmost) items and then
prioritize more recently used (topmost) ones in a bucket,
which is straightforward from the sorted items. Compared to
SwitchKV, our range-based frequency tags offer O(1) running
time for aging (i.e., dividing all counters by half [31]) as well
as for each count update.

2) Policy tuning: To account for the recent popularity, we
periodically perform aging. Clearly, it is crucial to find an
appropriate aging period. A period that is too frequent would
overestimate the transient hot items, while too long an aging
window would fail to promptly evict the stale items. Moreover,
it is challenging to find an analytically optimal value [28]
due to the unpredictable variables in practice, e.g., workloads,
traffic rate, or monitoring resolution.

To that end, we leverage two efficient reactive methods
such as runtime miniature simulations with sampling [32] and
hill-climbing [33]. More specifically, we first create two tiny
replica policies of DySO by sampling a subset (e.g., 1%)
of rows in r-MAT. Periodically (e.g., 1s), we initialize the
replicas with different parameters such as half or double of the
current aging period, run internally with the collected lookup
histories, and reconfigure the DySO’s policy with the better
parameter. As a result, DySO is able to adapt to changes and
does not need to choose a static set of policy parameters, i.e.,
aging period, in advance.

3) Ensuring reliable control: When the control packets are
accidentally lost, e.g., due to buffer overflow, the states on
hardware can be mismatched with those in the control plane.
To ensure the reliable updates, we mark a unique number
(e.g., index of update entry) for each control packet which
is expected to return back (serving as ACK) from the data
plane. Until its return, any updates on the associated entry
are blocked. If there is no return of the mark for a certain
time (e.g., a few RTT of timeout), the control plane resends a
control packet with the same instructions.

C. Implementation

We implement DySO’s data plane components in P4 [34]
in ∼400 LoC, and compile the base framework for the Intel
Tofino ASIC using the Intel P4 Studio v9.4.0. DySO’s state
management module is implemented in C++ in ∼2000 LoC
with PCAP++ [35] and Intel DPDK [36] for optimized I/O
performance to process control packets. The implementations
can be found in [37].



IV. EVALUATION

In this section, we evaluate how DySO can enhance the
hardware offload efficiency for existing application offload
systems using real world traffic traces and synthetic traces.
Target Systems: As a baseline reference, we consider two
application-offload systems: a key-value store (e.g., Net-
Cache [1]) and a network-address-translation (NAT) box (e.g.,
TEA [7]) for the purpose of evaluation. Given the similarity
of the control loop for these systems (see §II), we believe
that they present as adequate representatives for systems with
application offloads as they share identical designs at the data
plane-level.
Metric: We use the fraction of missed queries from the hard-
ware, i.e., miss-ratio, as our evaluation metric. The miss-ratio
has been used to measure the offload efficiency in classical
systems, e.g., caching [28], [38], [39]. Clearly, the lower the
miss-ratio, the higher the hardware offload efficiency.

A. Real World Traffic Traces on Simulator

Trace(s): For the key-value store system, we make use of the
Twitter production caching traces (TMC) [21]. Particularly, we
select the five recommended cluster’s traces for performance
measurement given their diverse characteristics (refer to [40]).
As for the NAT box, an ISP backbone trace collected in
January 2019 (CAIDA) is used. We derive three traces from
CAIDA by using an address pair (IP and port) of source and
destination, and five-tuple as a lookup key, respectively. All
traces show different degrees of continuous popularity changes
over the time. We truncate the traces with the first 1.35 billion
packets.
Methodology: As replaying the traces at high rates (e.g.,
80Mpps) require tens of beefy commodity servers, we thus
consider software simulation for the real world traces and
defer hardware-based evaluations to §IV-B using synthetic
traces. Additionally, software simulations enable us to contrast
the systems against their best-possible configurations (e.g.,
making the static policy to be adaptive) and offline optimals.
We implement the simulator using C++ in ∼2600 LoC. The
simulator is derived from the reference implementations [7],
[41] of a key-value store system, and NAT box. The systems
are allocated with 64K entries to offload application states.
We run the evaluations on a workstation equipped with a 6-
core Intel(R) Core(TM) i7-8086K CPU@4.0GHz and 128GB
of memory.

For each system, we define four configurations for evalua-
tion: (i) Baseline – we take the vanilla implementation of the
system, (ii) BestConfig – while the slow data plane update
rate remains same as the vanilla implementation, the configura-
tion parameters with the best performance is used, (iii) DySO
– we replace components in the vanilla implementations with
our proposed modifications in §III, and (iv) Offline-Optimal –
Baseline with the future known to maximize hardware offload
efficiency (see appendix A).

We use the first 1 billion packets of the traces to “warm up”,
i.e., initialize the simulator, 0.25 billion for measurement, and
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Fig. 8: Comparison of miss-ratio for the key-value store and
NAT. The results are normalized against the Baseline.

the remaining for post warm-up of simulation (for Offline-
Optimal only). For all variants, we assume zero monitoring
overhead2. On the other hand, we use the maximum entry
replacement rate as 80K per second with a batch size of 256
(similar to Fig. 2), except for DySO, where we set the control
packet rate at 5Mpps. Later, we evaluate the impact of the
DySO control packet rate on hardware offload efficiency in §V.

Evaluation Results: Fig. 8 shows the results of miss-ratio
for both systems for the different traces. Clearly, DySO
consistently outperforms Baseline and BestConfig offering
a performance improvement of up to 100%, i.e., halving
the number of missed packets. In some occasions, DySO
outperforms the Offline-Optimal with its ability to update at a
higher rate. This shows that even knowing the future (Offline-
Optimal) is insufficient to compensate for slow update rate
and justify the need for a tighter control loop with faster entry
replacement as DySO enables. The result highlights the co-
importance of a tight control loop and dynamic policies for a
high-performance system.

B. Synthetic Trace(s) on Tofino Switch

In order to investigate the performance of DySO under
different dynamic workloads, we generate synthetic traces
whereby we can control the amount of dynamic changes.

Trace(s): We generate a synthetic trace following a Zipf [42]
distribution with a skewness of 0.99 (similar to prior work [3],
[4]). During evaluation, we shift the popularity rank of items
in the trace to derive multiple traces of the same distribution
to simulate dynamic changes in workload characteristics.

Methodology: We perform the evaluations using an Intel
Tofino [11] ASIC-based programmable switch. At the same
time, we leverage the switch’s main CPU (an 8-core Intel
Xeon D-1548 CPU@2.0GHz) and the on-board dual-port 10G
Intel X552 NICs connected to the switching ASIC for DySO’s
control traffic. For brevity, we only perform evaluations using

2Note that this assumption overestimates the system’s performance by
ignoring the monitoring overhead, i.e., polling data plane states.
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Fig. 9: Miss-ratio for different levels of dynamic workloads.

the key-value store with the synthetic traces given the identical
trends observed in §IV-A.

We apply DySO on the baseline offload system for key-
value store (i.e., NetCache) and evaluate it against the ref-
erence implementation. Both are allocated identical resources
(64K entries) for the purpose of key-value storage. For the
baseline, we use a batch replacement of size 256 and sample
4K data-plane counters for every batch replacement to max-
imize the performance. The table load factor is kept at 90%
to prevent insertion failures while having a high update rate.
The statistics module is reset every second as outlined in the
paper [1]. On the other hand, for the DySO, we set the control
packet rate at 1Mpps.

The synthetic trace is loaded on to the Intel Tofino switch,
and leverage the hardware packet generator feature to generate
80Mpps data traffic following the defined distribution of the
synthetic trace. We periodically move the N-least popular
keys of the synthetic traces to the top-ranks while decreasing
the popularity ranks of other keys accordingly to simulate
workload changes in the experiments. The experiments are
run for 100 seconds.

Evaluation Results: Firstly, we show the hardware offload
efficiency over time of the baseline versus baseline with DySO
under dynamic workload conditions by varying the number of
the least popular items moved to top-ranked popularity every
second. We show the results in Fig. 9. Notably, we observe
that the baseline’s miss-ratio increases significantly up to 55%
as the workload becomes more dynamic. On the contrary, by
applying DySO, it shows less than 0.5% increase of miss-
ratio even at the harshest workload. This shows that DySO
can enable application offload systems to be highly robust to
the drastic popularity changes.

Next, we look at how the application offload systems can
quickly cope with the change of content popularity at different
time scales. To impose a workload change, we move the
1K least popular items to top-ranks every 5 seconds, and
show the time-series of miss-ratio for different sizes of time
window (e.g., 1s, 0.1s, and 0.01s) in Fig. 10. We observe that
the baseline (NetCache) takes more than 1s to react to the
popularity changes. The slow reaction time of baseline can
be attributed to the data plane’s failure to identify newly hot
items in a timely manner, as well as the long time it takes
for the state management module to insert the new popular
items to the data-plane. On the contrary, DySO provides highly
resilient performance to the workload changes by recovering
within 0.01s.
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Fig. 10: Making 1K unpopular items be popular for every 5s.
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Fig. 11: Impact of r-MAT hash chain length.

V. DYSO RESOURCE TRADE-OFFS

Here, we vary the parameters of DySO and evaluate their
effect on the hardware offload efficiency. We perform param-
eter tuning for the real world traces using similar parameters
(unless otherwise specified) as in §IV-A through simulations
given the high-degree of flexibility.
Impact of r-MAT hash chain length: We vary the length of
r-MAT hash chain, k ranging from 1 up to 16 with normal-
ization to k = 1. This is vital for system designers in finding
the right balance between hardware resource utilization and
performance. Across the board, we observe better performance
as k increases, i.e., up to 17% of improvement over the DySO’s
baseline k = 4. A smaller k induces more hash collisions
which explains the poor performance, while further increasing
k up to 16 shows diminishing returns of performance due to
the low collision probability and thus sub-optimal hardware
resource utilization (e.g., pipeline stages and registers). As the
result shows, the default value of k = 4 provides a reasonable
trade-off between performance and resource usage.
Impact of control packet rate: As DySO control traffic
shares the packet processing capacity with data traffic, it is
crucial to benchmark DySO’s behavior under different control
packet rates. We alter the control traffic rates from 1Mpps
up to 80Mpps. Recall that in §IV-B, we achieved significant
performance gains even with a mere 1Mpps control packet
rate. Unsurprisingly, Fig. 12 depicts that higher control packet
rates yield better performance (up to 39% at 80Mpps compared
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Fig. 12: Impact of control packet rate.

to the 1Mpps). These figures serve as a guideline for system
designers in selecting the suitable control packet rate lest
contending with data traffic.

VI. CONCLUSION

In this work, we systematically analyze the performance
bottlenecks of existing application offloading systems on pro-
grammable switches, such as a slow control loop and sub-
optimal management design of offloaded items. We present
DySO, a tightly-coupled data plane and control plane frame-
work to enable high-speed control actions and self-tuning
policy design to cope with dynamic workloads. Our software
simulations shows that DySO outperforms the existing works
up to 100% for diverse real world traces. In addition, eval-
uations on a commodity programmable switch shows that
applying DySO to the existing application-offload systems
shows up to 3.5 times improvement of performance over time
for synthetically generated radical workload changes.
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APPENDIX

A. Modeling and Solving Offline-Optimal Policy

For a given trace (i.e., offline), our goal is to find an optimal
scheduling of offloading items on hardware for minimizing a
fraction of missed queries from the hardware, constrained to
the number of entries available on hardware and the entry-
replacement rate. To account for the plausible scheduling
on actual hardware, we formulate the problem based on the
batch entry-replacement mechanism of exact match-action
table (MAT), the most commonly utilized object on PISA [30]
programmable hardware (e.g., Tofino) for application offloads.

For the purpose of modeling, we make the following as-
sumptions:
A1. For simplicity, we build a model where a trace neatly fits

into discrete slots, e.g., a single query for one clock cycle.
To do that, we use a fixed traffic rate, batch replacement
rate, and batch size.

A2. For each of batch, the insertion candidates in replacement
decisions involve only a set of items requested after
the last batch update (i.e., during the preceding batch
interval). In other words, we do not fetch what we need
in advance without any demand (i.e., no prefetching) in
order to prevent unrealistic answers [19], [43].
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Fig. 13: A batch update of exact MAT and operation times.
Note that the states on hardware are updated when the instruc-
tions are flushed ( 3⃝ and 5⃝).

A3. We assume the policy makes decisions instantaneously,
which may not hold for complex policy design in practice.

A4. We assume the evict/insert operations are processed
immediately at the middle/end of each batch interval,
respectively. In fact, this is based on the study of MAT’s
update mechanism and measurement of operation times
(see Fig. 13).

Next, we describe the details of problem formulation.
1) Status variables: A key to define scheduling variables

is the observation that an item’s status (i.e., whether stored on
hardware or not) does not change during each batch interval
(i.e., between two consecutive batch updates). Therefore, we
assign the status variables xi

t for the item i ∈ I on the batch
interval starting at t ∈ T (i), where I is a set of all items, and
T (i) is a set of all possible times of update for the item i. The
status variables are binary, i.e., xi

t = 1 if the item i is stored
on hardware during its interval, and 0 otherwise. Note that
the status change infers the policy’s decision, e.g., insertion
to hardware when the status changes from 0 to 1. A set of
decisions composes a whole scheduling of the item.

2) Scheduling constraints: To make a valid scheduling of
decisions, we enforce the following constraints:
C1. Hardware capacity: At any time t, the number of items

stored on hardware should not be over the capacity C:∑
j∈St

xj
t ≤ C

where St is a set of all items at time t.
C2. Batch replacement: At any time t for a policy’s decision,

the number of items to be inserted at a single batch should
be no larger than the batch size B:∑

i∈At

1{η(xi
t)=0 ∧ xi

t=1} ≤ B

where 1{·} is an indicator function having a value 1 if
the logic is true and otherwise 0, At is a set of insertion
candidates at time t, and η(xi

t) is the item i’s status in
the preceding batch interval of time t.

C3. Insertion constraint: Based on A4, we are prohibited
to insert the items not requested in the preceding batch
interval. Formally, if xi

t /∈ At, then η(xi
t) = 0 enforces

xi
t = 0.



3) Decision costs and objective function: With a full
knowledge of trace with offline assumption, we can calculate
the cost of each decision in a unit of batch interval, e.g., the
number of misses that each decision imposes in its succeeding
interval. We denote the costs of four possible decisions at each
batch interval starting at time t of item i as following: (i)
wi,evict

t , a cost of eviction from hardware, (ii) wi,insert
t , a

cost of insertion into hardware, (iii) wi,back
t , a cost of keeping

the item at backing stores (i.e., non-offloaded), and (iv) a cost
of storing items on hardware whose cost is clearly zero with
no miss. In particular, the insertion cost comes from misses
that occurred due to delayed update before the policy decision
is implemented (Fig. 13a).

To that end, given the above constraints, the objective
function of optimal scheduling problem is the total cost of
decisions, formally written as the following:

minimize
∑
i∈I

∑
t∈T (i)

wi,back
t 1{η(xi

t)=0 ∧ xi
t=0}

+ wi,insert
t 1{η(xi

t)=0 ∧ xi
t=1}

+ wi,evict
t 1{η(xi

t)=1 ∧ xi
t=0}.

This completes the formulation of finding an offline-optimal
policy for a given (batch) entry replacement rate.
Truncating the problem complexity and finding solution:
Due to space constraints, here we present a brief workflow of
finding the answer of offline-optimal. We first reduce the above
optimization problem to Multi-Commodity Min-Cost Problem
(MCMCF) [44], an approximate solution of which can be
obtained in polynomial time. Unfortunately, it is challenging
to run the MCMCF formulation on a solver (e.g., Gurobi
C++ [45]) because it requires very large memory space, e.g.,
a few terabytes to simulate billions of queries [18]. To resolve
the issue, we first truncate the unnecessary variables in the
problem for complexity reduction [19], and apply a spatial
sampling [46] which efficiently scales down (e.g., 2−8) the
problem with only a small accuracy trade-off by averaging
the results with 100 samples.
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