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Abstract— As third generation (3G) wireless networks with
high data rate get widely deployed, optimizing TCP performance
over these networks would have a broad and significant impact
on data application performance. One of the biggest challenges
in optimizing TCP performance over the 3G wireless networks
is adapting to the significant delay and rate variations over the
wireless channel. In this paper, we make two main contributions.
First, we present a Window Regulator algorithm that uses
the receiver window field in the acknowledgment packets to
convey the instantaneous wireless channel conditions to the TCP
source and an ack buffer to absorb the channel variations,
thereby maximizing long-lived TCP performance. It improves the
performance of TCP Sack by up to 100% over a simple drop-tail
algorithm for small buffer sizes at the congested router. Second,
we present a wireless channel and TCP-aware scheduling and
buffer sharing algorithm that reduces the latency of short TCP
flows by up to 90% while still exploiting user diversity, thus
allowing the wireless channel to be utilized efficiently.

I. INTRODUCTION

Third generation (3G) wide-area wireless networks, based
on the CDMA technology [5], are increasingly being deployed
throughout the world. While voice and, to some extent, short
messaging service have been the predominant applications on
the low bandwidth wireless networks to date, the support
for high speed data in 3G networks with bandwidths up to
2.4Mbps should enable the widespread growth of wireless data
applications. Since the vast majority of data applications use
the TCP/IP protocols, optimizing TCP performance over these
networks would have a broad and significant impact on the
user-perceived data application performance.

TCP performance over wireless networks have been studied
over the last several years. Early research [1], [2] showed that
wireless link losses have dramatic adverse impact on TCP
performance due to the difficulty in distinguishing congestion
losses from wireless link losses. These results have been one
of the main motivations behind the use of extensive local
retransmission mechanisms in 3G wireless networks [14], [15].
While these local retransmission mechanisms solve the impact
of wireless link losses on TCP performance, they also result
in unavoidable variations in packet transmission delay (due to
local retransmissions) as observed by TCP.

In addition to these delay variations, 3G wireless links use
channel-state based scheduling mechanisms [4] that result in
significant rate variations. The basic idea behind channel state
scheduling is to exploit user diversity. As wireless channel
quality of different users vary due to fading, the total cell

throughput can be optimized if scheduling priority is given
to the user with higher channel quality. For example, Qual-
comm’s proportional fair scheduler [3] exploits this idea while
providing for long-term fairness among different users. Thus,
while these scheduling mechanisms maximize overall link-
layer throughput, they also can result in significant variations
in instantaneous individual user throughput as observed by
TCP.

Only recently, researchers have begun investigating the im-
pact of these wireless link rate and delay variations on TCP [6],
[13]. These variations cause TCP performance degradation due
to the difficulty in estimation of the appropriate throughput
(i.e. congestion window size and round trip time) of the end-
to-end path at the TCP source. When the source over-estimates
the available throughput, it causes multiple and frequent packet
drops at the congested router buffer, resulting in poor TCP
throughput. In [6], we propose a network-based solution called
the Ack Regulator to address this problem.

Ack Regulator determines the available buffer space at the
congested router and the expected number of data packets ar-
riving at the router, and manages the release of acks to the TCP
source so as to prevent an undesired overflow of the buffer.
While Ack Regulator was shown to increase the throughput
of long-lived TCP flows, it has a few drawbacks due to the
limitation of not being able to modify headers of TCP packets.
First, Ack Regulator needs to estimate the number of data
packets in transit from the source - errors in this estimation,
for example due to variations on the wired network, could
lead to multiple-packet drops resulting in lowered throughput.
Second, since it intentionally causes single packet drops to
force TCP source to go into congestion avoidance phase, it
inherently cannot achieve maximum goodput. Finally, it also
does not address the performance of short-lived flows such as
HTTP.

In this paper, we make two important contributions. First,
we design a network-based solution called the Window Reg-
ulator that maximizes TCP performance for any given buffer
size at the congested router. Second, we present a scheduling
and buffer sharing algorithm that reduces the latency for short
flows while exploiting user diversity, thus allowing the wireless
channel to be utilized efficiently.

The proposed Window Regulator algorithm uses the receiver
window field in the acknowledgment packets to convey the
instantaneous wireless channel conditions to the TCP source
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and an ack buffer to absorb the channel variations, thereby
maximizing long-lived TCP performance. Window Regulator
ensures that the source TCP operates in the window-limited
region resulting in a congestion loss-free operation. While the
receiver window field of the ack packets have been used for
ensuring fairness and regulating flows in wired networks [16],
we show that these schemes do not perform as well over wire-
less links with variation. We show that the Window Regulator
results in highest goodput and maximum TCP performance for
even small values of the buffer size, reasonably large wired
latencies and small amount of packet losses. For example, it
improves the performance of TCP Sack by up to 100% over a
simple drop-tail policy for small buffer sizes at the congested
router. The use of a small buffer for long flows is important
when we consider the impact of having both short and long
flows sharing the buffer since the buffer needs to have space
to be able to absorb the burst of packets from the short flows.

While minimizing short flow latency is important for the
user perceived performance of applications like HTTP, any
short flow differentiation scheme has to take into account the
wireless channel condition in order to take advantage of user
diversity. We show that a scheduling algorithm that provides
differentiation but does not fully exploit user diversity can
have the adverse effect of increasing short flow latencies and
decreasing long flow throughput at the same time. We present a
wireless channel and TCP-aware buffer sharing and scheduling
algorithm that decreases the latency of short TCP flows by up
to 90% while still exploiting user diversity, thus allowing the
wireless channel to be utilized efficiently.

The rest of the paper is organized as follows. In Section II,
we review related work. In Section III, we present our architec-
ture. In Section IV, we start with a simple model to analyze
receiver window-based algorithms and their impact on TCP
performance over wireless links with variation. The model
serves as motivation for the design of our window regulator
algorithm. We compare its performance to several algorithms,
including the Ack Regulator, through extensive simulations
in Section V. In Section VI, we present our buffer-sharing
and scheduling algorithm for differentiation of short flows and
discuss its performance. We finally present our conclusions in
Section VII.

II. RELATED WORK

The vast majority of related work on TCP performance
over wireless networks have concentrated on reducing the
impact of TCP mis-reacting to wireless losses as congestion
losses [1], [2] that result in poor throughput. As mentioned
earlier, link layer retransmission in 3G wireless links [14],
[15] have effectively reduced the loss rate of wireless links to
well under 1%, thereby minimizing the impact of loss on TCP
performance.

Recently, there have been several studies that examine the
impact of wireless link variations on TCP performance [6],
[9], [11], [13]. Large delay variations resulting in delay spikes
can cause spurious timeouts in TCP where the TCP source
incorrectly assumes that a packet is lost while the packet
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Fig. 1. Wireless network architecture

is only delayed; this unnecessarily forces TCP into slow
start, adversely impacting TCP performance. In [13], the
authors propose enhancements to the TCP timer calculations
to better track the round trip time of the connection, thereby
avoiding spurious timeouts. The authors in [9], [11] present
several recommendations for TCP hosts such as enabling the
timestamp option and the use of large windows, for improving
performance over wireless networks. As discussed in the
introduction, in [6], the authors present the Ack Regulator
solution for avoiding multiple packet drops at the congested
router for long-lived flows.

The use of receiver-window field in the ack packets to
throttle TCP source is not new. In [16], the authors implement
a receiver window-based technique with ack pacing at the bot-
tleneck router to reduce burstiness and ensure fairness among
different flows. In [10], the authors use the receiver window
field to better manage TCP throughput over a connection
that spans both IP and ATM networks. However, since these
solutions do not explicitly cater to significant rate and delay
variations, they do not perform as well over wireless networks.

Differentiation for short flows over long flows in wired
networks have been studied [7], [8]. The basic idea is to
identify short flows heuristically through the use of a simple
threshold for bytes transmitted and another threshold for idle
period and then give priority to short flows. The authors
in [7], [8] use RED with different weights for short and
long flows to provide differentiation. However, tuning RED
for wireless links that exhibit significant variation will be
hard. Furthermore, wireless networks already employ per-
user buffering in order to implement reliable link layers with
local retransmissions; thus utility of an algorithm like RED
is reduced since we already have per-user state information
available.

Differentiation for short flows in wireless networks have
also been studied [17], [18]. In [18], Foreground-Background
(FB) scheduling is used to schedule flows within a user and
Proportional Fair (PF) scheduling is used to schedule packets
across users. No new algorithm is proposed for inter-user
scheduling in place of PF. In [17], the goal is to minimize
the average stretch (ratio of actual job completion time over
minimum job completion time) over all jobs. One drawback
is that it requires advance knowledge of all job sizes which
may not be available.
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Fig. 2. Simple model of the wireless network

III. ARCHITECTURE

A simplified view of the third generation wireless access
network architecture is shown in Figure 1. The base stations
are managed by a Radio Network Controller (RNC). The RNC
performs handoffs and terminates the Radio Link Protocol
(RLP), that is responsible for improving the reliability of the
wireless link through link-layer retransmissions. The Packet
Data Service Node (PDSN) terminates PPP, performs the
function of a Mobile IP Foreign Agent and interfaces to
the public Internet. In this architecture, the RNC receives IP
packets encapsulated in PPP from the PDSN. These IP packets
are fragmented into smaller radio frames using the RLP
protocol and transmitted to the base station. The base station
then schedules the transmission of the packet over the air. In
the case of a wireless frame loss, the RLP protocol performs
retransmission of the radio frames. In this architecture, the
RNC maintains a per-user packet buffer and drop packets
during congestion when the per-user buffer is full.

For the algorithms discussed in this paper, we assume that
the RNC can be extended to distinguish between different TCP
flows based on the IP addresses and port numbers inside the
packet headers. However, we still use the same per-user buffer
limit and ensure that all the flows belonging to a single user
share the per-user buffer judiciously. The RNC must carefully
choose how much buffer is to be allocated to a single user.
Placing a strict upper limit on the maximum buffer allocated to
a single user is necessary because of several reasons: a) during
handoffs, the per-user buffers have to be either quickly moved
from one RNC/base station to another or flushed; large buffers
can result in long handoff latencies and/or wasted bandwidth
on the access network; b) Scalability and cost considerations
also place a limit on the buffer size as the RNC must scale to
the order of hundred thousand users or more; c) stale data (for
example, user clicking “reload” on a browser or terminating a
FTP flow) will still be sent over the wireless link; large buffers
imply larger amount of stale data, wasting limited wireless
bandwidth.

IV. WINDOW REGULATOR

Consider a simple model of a single flow in a wireless
network shown in Figure 2. The base stations and the RNC
are collapsed into a single bottleneck link with the per-flow
buffer size at the bottleneck node set to B. For simplicity of
analysis, let us assume that there are no losses or re-ordering
on the wired or the wireless links and let the latency on the
wired network be insignificant compared to wireless delays.
We will relax these assumptions later when we evaluate the
performance of Window Regulator in Section V.

In order to maximize TCP throughput, we need to en-
sure that there is always at least one packet available in

the bottleneck node to be transmitted (no underflow) and
there is no packet loss due to buffer overflow (this leads to
retransmission, which is wasted bandwidth, and reduction in
congestion window size or timeout that could then lead to
underflow). In order to understand the performance of the
Window Regulator, we focus on the arrival events on the data
queue.

Consider the arrival of the ith packet. Let Yi represent
the number of packets in the “wireless pipe” when packet i
arrives. Yi is a function of the varying rates and delays on the
forward and reverse directions on the wireless link. Finally, let
Ni(≤ B) be the number of packets in the bottleneck link when
packet i arrives. Since we assume that wired network latency
is insignificant, all data packets are buffered in the bottleneck
link and all acknowledgments are acknowledged immediately
with no outstanding packets in the wired network. The sum
of data packets in the buffer and in the “wireless pipe” equals
the TCP window size, Wi.

Wi = Ni + Yi + 1 (1)

Equation 1 is always true since wired network latency is
assumed to be insignificant. In Section V, we study the impact
of relaxing this assumption on the throughput of the different
algorithms.

Now, for TCP to operate without buffer underflow, the
window size, Wi, must obey

∀i Yi + 1 < Wi (no underflow) (2)

Equation 2 states that the window size must be greater than
the instantaneous number of packets in the wireless pipe and
there must be at least one packet in the buffer for there to be
no underflow. In general, this is a necessary but not sufficient
condition. However, since we assume that Equation 1 is true,
Ni ≥ 1 when there is no underflow and thus Equation 2 is
also a sufficient condition for no underflow.

For there to be no overflow (packet drop), from Equation
1, B ≥ Wi − Yi. In other words,

∀i Yi + B ≥ Wi (no overflow) (3)

Similarly, Equation 3 is necessary and sufficient to prevent
overflow.

The difficulty in choosing an appropriate TCP window size
is in adapting to the variations in Yi while ensuring that
equations 2 and 3 are not violated.

Next, we consider three Window Regulator algorithms that
set the receiver window size, W r, in the ack packets in order to
manage the window size at the TCP source. For the purpose of
this discussion, we assume that each packet is acked. However,
the algorithms can be generalized to handle acks that represent
more than one packet as well.

A. Window Regulator-Static (WRS)

The first algorithm, called the Window Regulator-Static
(WRS), is a common algorithm used in wired routers for
guaranteeing bandwidth and ensuring fairness (for example,
Packeteer [16]). The receiver window size, W r, is set statically
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On Enque of each Ack
set W r = B
transmit the Ack to the source

Fig. 3. Window Regulator-Static

to the buffer allocated for that flow. That is, Note that, this
algorithm is very conservative as it easily satisfies equation 3
(no overflow) since Wi = B and ∀iYi ≥ 0 as the number
of packets in the wireless pipe cannot be negative. However,
depending on the size of the buffer in relation to the variation
of the wireless pipe, the queue can be idle, resulting in loss
of throughput. In other words, the utilization of the queue,
QWRS , of this algorithm is approximated by

QWRS =
1
k

Σk
i=11{B > Yi + 1} (4)

where k is the total number of packets arrived and 1{B >
Yi + 1} is the delta function:

1{B > Yi + 1} =
{

1, B > Yi + 1
0, otherwise

The approximation is exact if the arrival process is Poisson
(PASTA). For the case of bursty arrivals, which is the expected
case here, Equation 4 is an upper bound.

B. Window Regulator-Dynamic (WRD)

One simple way to extend the WRS algorithm is to track the
changes in Yi and convey this in each ack packet flowing back
to the sender. We call this the Window Regulator-Dynamic
(WRD) algorithm and it operates as shown in Figure 4, where
Y is the current estimate of the size of the wireless pipe.

On Deque of each Data packet
Y = Y + 1

On Enque of each Ack
Y = Y − 1
set W r = Y + B
transmit the Ack to the source

Fig. 4. Window Regulator-Dynamic

Assuming that wired latency is insignificant, if a data packet
i arrives due to this ack departure, then Wi = W r and Yi = Y .
Note that this algorithm might end up reducing the receiver
window size Wi compare to Wi−1 as Y is a varying quantity.
However, we never reduce the receiver window size between
consecutive acks by more than one packet (reception of an
ack reduces the packets in the wireless pipe by one since
we assume every packet is acknowledged). Thus, transmitting
an ack with a reduced window size does not shrink the
window but just freezes the window from advancing (no new
packets will be transmitted in response to an ack with reduced
window). In the implementation, if packets are not individually
acknowledged, Y can be easily measured as the difference
between the sequence number of the packet being transmitted
and the sequence number of the ack being received1.

1Care has to be taken to handle retransmissions and duplicates.

This algorithm is also conservative as it satisfies equation 3
(no overflow) but it uses a higher window size compared
to WRS. Since both these algorithms operate in the window
limited region of TCP (where throughput is given by W/RTT,
where W is the window size and RTT is the round trip
time), the throughput of WRD is as good or better than the
throughput of WRS since

If
W

RTT
≤ R then

W

RTT
≤ W + k

RTT + k/R
∀k ≥ 0

where R is the average rate of the connection. Window size
of WRS is B and window size of WRD is B + Y . Y is the
difference in window size between WRD and WRS and is
always non-negative.

However, this algorithm can also result in underflow when
the whole buffer is drained before the reception of an ack
(causing a sudden large increase in the number of packets in
the wireless pipe). The utilization of the queue, QWRD, of
this algorithm is approximated by

QWRD =
1
k

Σk
i=11{Yi + B > Yi+1} (5)

The equation can be rewritten as

QWRD =
1
k

Σk
i=11{B > Yi+1 − Yi} (6)

In other words, the number of packets in the buffer must be
larger than the number of packets transmitted between two
packet arrivals for there to be no underflow in this algorithm.
Comparing equation 6 to equation 4, we can again see that
the utilization of WRD is always greater than or equal to the
utilization of WRS since Yi ≥ 0, ∀i.

C. Window Regulator with ack Buffer (WRB)

One of the problems with the WRD algorithm is that when
Yi+1−Yi increases beyond B and the buffer drains completely,
the congested node may not have any acks to provide feedback
to the TCP source. One way to overcome this is to maintain an
ack buffer in the reverse direction. As mentioned earlier, when
the window size is reduced by one in the WRD algorithm, the
TCP source does not transmit any packet. Thus, this feedback
is not used by the TCP source (other than to reset its timers
for this packet). If instead, this ack is stored in an ack buffer,
we can use it to indicate any increase in size of the wireless
pipe as soon as it occurs and thereby allow the transmission
of a data packet from the source. We call this the Window
Regulator with ack Buffer (WRB) algorithm and it operates
as shown in Figure 5. Ba is the size of the ack buffer and is
set to 0 initially.

Note that in the WRB algorithm, Ba will always increase
until it converges to some value Ymax and Wi+1 ≥ Wi, ∀i.

Equation 2 is obviously true since ∀i, Ymax ≥ Yi and
Equation 3 is true because the wired delay is insignificant.

The queue utilization, QWRB , of this algorithm is approx-
imated by

QWRB =
1
k

Σk
i=11{Yi + B + Ba > Yi+1} (7)
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On Deque of each Data packet
Y = Y + 1
if there is an Ack stored in the ack buffer, then

W r = Y + B + Ba

transmit Ack to the source
endif

On Enque of each Ack, set
Y = Y − 1
W r = Y + B + Ba

if (new Ack AND (W r < last transmitted value of W r))
store Ack in the Ack Buffer
Ba = Ba + 1

else
transmit Ack to the source

endif

Fig. 5. Window Regulator with ack Buffering

If we do not limit the size of the ack buffer (since acks
consume very little memory and do not impact the latency
of new flows), then Ba will grow large enough to absorb the
maximum variation on the wireless link. Therefore, Pr(Yi +
B + Ba > Yi+1) approaches one. Thus, if the flow lasts long
enough, the WRB algorithm achieves the maximum utilization
of 1. The queue utilization QWRB is

QWRB =
1
k

Σk
i=11 = 1 (8)

In order to handle packet losses in the network, ack is also
released whenever the data queue is empty. The ack release
mechanism works in the following way. On deque of a data
packet or enque of an ack packet, if the data queue is detected
to be empty the first time, 2 acks are sent. On subsequent
enque or deque, if the data queue remains empty, the number
of ack released is double until all acks are released. This
process resets when the data queue becomes non-empty. A
similar reset mechanism is also found in the Ack Regulator
[6] to handle packet loss.

We next study the throughput and impact of various param-
eters on these algorithms through extensive simulation.

V. PERFORMANCE OF LONG-LIVED TCP FLOWS

In this section, we study the performance of the three
Window Regulator algorithms through extensive simulation
and compare its performance with those of Ack Regulator [6]
and a simple drop-tail policy.

All simulations are performed using ns-2 with modifications
that implement HDR scheduling and variable link delays. The
simulation topology used is shown in Figure 6. Si, i = 1..n
corresponds to the set of TCP source nodes sending packets
to a set of the mobile TCP sink nodes, Mi, i = 1..n. Each
set of Si,Mi nodes form a TCP pair. The RNC is connected
to the Mi nodes through a V (virtual) node for simulation
purposes. L, the bandwidth between Si and the router N1, is
set to 100Mb/s and D is set to 1ms except in cases where D
is explicitly varied. The forward wireless channel is simulated
with a model for 3G1X-EVDO (HDR) system (which exhibits
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Fig. 6. Simulation Topology

both variable rate and variable delay), and the reverse wireless
channel has rate RR = 64kbps and delay RD. The fading
model for the wireless link used is based on a Rayleigh fading
channel model and the base signal-to-noise ratio (SNR) is set
to +4dB. FD is modeled as having a uniform distribution
with mean 75ms and variance 30 and RD is modeled as
having a uniform distribution with mean 125ms and variance
15. These are conservative values and were used in [6]. Even
in the presence of variable delays, we ensure that packets
are delivered in order. Figure 6 also shows a set of nodes
used to generate cross traffic and are used in Section V-D,
where the impact of loss is investigated. The links between
the cross traffic sinks and the router N2 have bandwidth of
100Mbps and delay of 100ms. All other links have link speed
of 100Mbps and delay of 1ms.

Unless otherwise mentioned, we use TCP Sack with the
timestamp option for long-lived flows that last at least 1000
seconds in each simulation run. All simulations use packet size
of 1KB and the queue size is set to 20 packets. TCP maximum
window size is set to 500KB. Using such a large window size
ensures that TCP is never window limited by the TCP source
in all experiments.

We next evaluate the performance of the five algorithms,
i.e. three Window Regulator algorithms (WRS, WRD, WRB),
Ack Regulator (AR), and Drop Tail (DT).

A. Throughput vs Buffer Size (Single User)

In this section, the effect of RNC buffer size on throughput
is presented for the case of a single user with a long-lived TCP
flow. Figure 7(a) and (b) plot the throughput performance of
the TCP flow using the five algorithms for TCP Reno and TCP
Sack, respectively.

First, observe that the performance of the algorithms are
similar for TCP Reno and TCP Sack, with the throughput for
TCP Sack slightly higher overall for all the algorithms. Let us
now focus on the performance of TCP Sack (Figure 7(b)). As
shown in the figure, drop tail performs poorly as the variations
over the wireless link cause significant throughput degradation.
Interestingly, the WRS algorithm also has very low throughput
for a given buffer size and even underperforms DT in some
cases. The improvement of WRS over DT ranges from -28%
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Fig. 7. Throughput vs. Queue Length for a single user/flow (TCP Reno and
Sack)

(for small buffer sizes) to 10%. Recall, that the WRS algorithm
is a common algorithm used in wired routers for fairness and
regulating flows; setting the receiver window size statically
to the buffer size for small values result in significant under
utilization of the link as the full buffer of packets is not able
to absorb the variations over the wireless link.

The Ack Regulator performs better than WRS and DT but
since it can only use the technique of holding back acks to
signal the source to slow down during buffer buildup, it does
not achieve the maximum throughput gains. Improvement of
AR over DT ranges from 1% to 120%. The WRD algorithm
delivers close to maximum throughput for reasonable buffer
sizes (> 15) but for small buffer sizes, it can lead to under
utilization of the link as the node may not have any acks to
provide feedback during sudden increases in the number of
packets in the wireless channel. Improvement of WRD over
DT ranges from 2% to 138%, with the biggest improvement
occurring between buffer sizes of 5 to 15 packets.

As expected, the WRB algorithm outperforms all the other
algorithms and delivers the highest throughput ranging with
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Fig. 8. Aggregate Throughput vs. Queue Length for TCP Sack with multiple
users/flows

improvement over DT ranging up to 360% for very small buffer
sizes and close to 100% improvement when one bandwidth-
delay product worth of buffer (15) is used.

B. Throughput vs Buffer (Multiple Users)

Figure 8(a) and (b) show the effect of buffer size on
throughput for 4 and 8 users respectively. The results are
similar to the one user case in terms of relative performance
of the various algorithms, except for the case of AR and
WRD, where AR now outperforms WRD. In terms of absolute
performance, the improvement ratio comes down (but is still
substantial) when the number of users (flows) are increased
since the likelihood of the buffer being empty is reduced even
under the drop tail policy.

For four users, performance of DT and WRS is almost
indistinguishable. The improvement of WRD over DT is up
to 88% and the improvement of AR over DT is up to 103%.
Again, WRB performs the best and improves throughput over
DT by up to 259%.

The result for eight users is similar to that of four users
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except that the gap between AR and WRD widens. One of the
reasons is that as the number of users increases, the variation
in Y , the size of the wireless pipe increases. As a result, the
likelihood of an underflow increases, resulting in decrease in
throughput. Again, WRB performs the best with throughput
improvements over DT ranging up to 122%.

We have also investigated the trade-off between throughput
and Round Trip Time (RTT) over multiple users but due to
lack of space will only briefly present the results here. AR
has the worst throughput-RTT trade-off due to buffering of
acks. WRS and DT exhibit fairly similar behavior and achieve
slightly better trade-off than AR. WRB always operates with
high RTT but also always achieves high throughput. WRD
achieves the best trade-off among all the algorithms.

C. Throughput vs Wired Latency

In all previous measurements, the latency on the wired
network is assumed to be small (D=1ms). In this section,
we study the effect of a larger wired latency on through-
put by varying D. Recent measurement on the Internet
(http://amp.nlanr.net/AMP) shows that most round trip times
are less than 200ms and rarely go above 400ms. In this section,
D is vary from 1ms to 500ms, which is equivalent to varying
the wired round trip time from 2ms to 1000s.

Figure 9 shows how the throughput of the different algo-
rithms vary with increasing wired latency for 1 user/flow.
The performance of all algorithms are expected to drop as
the wired latency increases since TCP throughput is inversely
proportional to RTT. For round trip wireline latency less than
70ms, WRS is better than DT. Beyond that point, since WRS
is operating at the window limited region and the TCP window
remains fixed at 20 packets, throughput of WRS degrades
inversely with RTT and performs worse than DT which can
utilize a larger window. For latency below 40ms, AR performs
very well. For larger wired latencies, the estimation algorithm
in AR becomes less accurate and buffer loss begins to occur
more frequently. Beyond latency of 120ms, improvement of
AR over DT is less than 10% and beyond 200ms the through-
put is very close to DT. WRD is fairly robust with respect to

increase in wired latency up to 200ms. One impact of larger
latency on WRD and WRB is that more packets are being
buffered in the wired network, increasing the chance of buffer
underflow and lower throughput. With a round trip latency of
200ms, WRB is still about 25% better than DT. However,
the throughput degrades rapidly beyond latency of 200ms.
With latency larger than 400ms, WRB has lower throughput
than AR and DT. Again, this is due to the fact that WRB is
operating at the window limited region. The performance of
WRD is similar to WRB.

To summarize, the performance of AR degrades rapidly at
round trip latency larger than 40ms but its performance is
never worse than DT. On the other hand, both WRD and
WRB perform well with round trip latency below 200ms but
their performance degrade rapidly at larger latencies since they
are operating in the window limited region. Beyond 400ms
round trip time on the wired network, they perform worse than
DT. Since the window sizes of all the three algorithms (AR,
WRD and WRB) are a function of the buffer size available
in the RNC, increasing the RLP buffer size will allow these
algorithms to maintain their high throughput for even larger
wired latencies.

D. Impact of Loss

In all the simulations so far, we have assumed zero loss in
the rest of the network. In this section, we study the impact
of loss in two different ways. First we simulate the effect of
random loss and second we simulate the effect of congestion
loss. In these experiments, we consider the case of a single
mobile user, M1, performing a download from source, S1.
Each simulation runs for 10000s.

The amount of random loss is varied in the link between the
virtual node V and the mobile device M1 by using the random
loss error module available in ns-2. The packet loss rate is
varied from 10−5 to 10−2. Figure 10(a) shows how throughput
varies with increasing amount of packet loss. AR, WRB and
WRD continue to perform well for very small amount of loss
but the throughput starts to decrease at loss rate of 10−3. With
loss rate 10−2 or greater, all algorithms have the same low
performance since random loss is now the dominant factor
determining TCP throughput. Note that random loss can occur
in the wireline network as well if RED is enabled on the
routers.

In order to generate congestion loss, 4 FTP sessions using
TCP Sack are generated from the cross traffic sources in Figure
6 to the cross traffic sinks. The bottleneck link is the link going
from router N1 to N2 and has a link bandwidth of 2Mbps
with delay of 1ms. The packet buffer on router N1 is set to
100. Different congestion conditions are simulated by varying
the link bandwidth between the cross traffic sources and the
router N1 from 300kbps to 500kbps. The impact of congestion
loss on performance is shown in Figure 10(b). The loss rate
plotted in the figure is the loss rate experienced only by the
traffic going from S1 to M1.

A number of observations can be made. Both WRB and AR
perform better than DT with congestion loss rate below 10−3
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Fig. 10. Throughput vs. Loss

though the difference in performance decreases fairly rapidly
from 10−5 to 10−3. On the other hand, WRD performs poorly
with respect to congestion loss and performs worse than DT
for even very small amount of loss. Similar result is true for
WRS. The results for congestion loss, which is different from
random loss, can be explained as follows.

During congestion buildup, the buffer in router N1, which
can buffer up to 100 packets, increases the RTT by up to
400ms in the worst case. With the increase in RTT, the
throughput of WRD, as shown in Section V-C, decreases
rapidly. In fact, throughput of WRD decreases to below 400
kbps before any packet loss happens and is caused solely by
the increase in wired latency due to congestion. The same
is true for WRS which performs even worse as it operates
with a smaller window. Interestingly, the performance of AR
and WRD do not degrade as significantly. This is due to the
fact that these schemes have an ack buffer that can provide
fast feedback. Recall that for both AR and WRD, whenever
the data queue (going towards the mobile device) is empty,
the reset mechanism is enabled and more acks are released.

Per-User 
Queue

Per-Flow Queue

Fig. 11. Queuing Structure of Scheduler

This provides quick feedback to the TCP source and high
throughput is maintained even in the presence of congestion
losses.

E. Comparison Summary

We conclude this section by summarizing the results of the
evaluation. Simulation results show that DT and WRS cannot
adapt to the large rate and delay variation in the wireless
channel and TCP throughput suffers as a result. AR adapts
reasonably well to the large variation but does not perform
well when the wired latency is significant as estimation errors
cause throughput degradation. WRD performs well in terms
throughput and robustness against reasonable wired latencies
but performs poorly in the presence of congestion loss. Finally,
WRB is the best algorithm in terms of maximizing overall
throughput and is robust against reasonably large wired laten-
cies and packet loss.

VI. SHORT FLOW DIFFERENTIATION

In the previous section, the problem of improving the
performance of long-lived TCP flows is addressed. However,
it is well known that Internet traffic consists of a small number
of long-lived flows that make up a large part (in bytes) of the
total traffic and a large number of the flows (in count) that
are short-lived. This is especially true with the popularity of
applications such as web browsing. As a result, optimizing
the third generation wireless data system for short-lived TCP
flows is also important. The main difference between the
performance goal for between long and short flows is that in
the former case the goal is to maximize throughput and in the
latter case, the performance goal is to minimize the average
transfer latency.

In this paper, we consider a two level hierarchical queuing
system, as shown in Figure 11 where the first level consists of
per-flow queue for a given user and the second level consists
of a per-user queue. Within each first level queue, an intra-
user scheduler selects a packet to be sent first among all the
flows of that respective user. At the second level queue, a
3G scheduler selects a packet among different users to be
sent over the wireless channel. For example, in HDR, the
first level scheduler is a First-in-First-out (FIFO) scheduler
and the second level scheduler is a proportional fair queuing
(PF) scheduler [3].

The main contribution of this section is for inter-user
scheduling where we show that a straight forward application
of flow differentiation without fully exploiting user diversity
does not improve short flow latency and at the same time also
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reduces overall throughput. We propose a scheduling algorithm
for the inter-user scheduler that integrates the elements of
flow differentiation into the PF algorithm such that short flow
latency can be reduced without sacrificing system throughput.

A. Scheduling

In this section, we first briefly describe our intra-user
scheduler called Short Flow Priority (SFP). We then present
three inter-user scheduling algorithms.

In SFP, only two classes are defined and strict priority is
implemented between the classes. Therefore, if packets from
the higher priority class are present, they will always be
scheduled first. A flow is identified by the information in the
packet header (e.g. Type of Service bits in the IP header or
the 4 tuples, namely source IP address, destination IP address,
source TCP port and, destination TCP port) and a flow is
classified as either a short or long flow by the amount of bytes
sent so far by the scheduler. Initially all flows are classified as
short flows and a counter keeps track of the total number of
bytes sent so far for each flow. When that counter increases
beyond a pre-defined threshold, the flow is re-classified as
a long flow. This simple reclassification scheme reduces the
likelihood of starving long flows of the same user because
SFP would eventually promote short flows to long flows. A
flow is also re-classified from a long flow to a short flow if
the flow is idle (no packet arrival) for a certain amount of
time, called the Reset Duration. This reclassification has two
advantages. First, for interactive applications like telnet, such
resets will allow a telnet session to be classified as a short
flow even though the total amount in bytes of a telnet session
is large. Second, for the case where web traffic from a mobile
terminates on a proxy or uses persistent connections (HTTP
1.1), it is important to re-classify the flow as short since the
idle period likely indicates that the data belongs to a new
Web download. A strict priority buffer eviction is used, where
high priority packets always evict lower priority packets if the
buffer is full (except for the packet being served). We found
that the use of RED/RIO schemes as in [7], [8] requires tuning
of parameters which can be difficult. The use of a strict priority
eviction policy is simple and provide sufficient differentiation.

Next, we consider the inter-user scheduler. There are three
parameters that can be taken into account by such a scheduler,
namely: exploiting user diversity in order to improve overall
throughput, maintaining long term fairness, and minimizing
short flow latency. Flows to a given user are classified as being
a long or short flow based on the first packet in the queue.
We consider three different schedulers that take into account
different aspects of the above three parameters.

1) PF scheduler: PF is the scheduler used in HDR [3].
In order to understand how PF works we first need to
understand the concept of user diversity which is central to
how PF improves channel throughput. Consider the model
where there are N active users sharing a wireless channel.
The channel condition seen by each user varies independently.
Better channel conditions translate into higher user rate and
vice versa. Each user continuously sends its measured channel

condition back to the centralized PF scheduler which resides
at the base station. If the channel measurement feedback delay
is relatively small compared to the channel rate variation, the
scheduler has a good enough estimate of all the users’ channel
condition when it schedules a packet to be transmitted to
the user. Since channel condition varies independently among
different users, user diversity can be exploited by selecting
the user with the best condition to transmit in different time
slots. This approach can increase system throughput substan-
tially compared to a round-robin scheduler. However, such a
rate maximizing scheme can be very unfair and users with
relatively bad channel conditions can be starved. Hence, the
mechanism used in PF is to weight the current rate achievable
by a user by the average rate received by a user. The decision
of the PF scheduler is to select the user with the largest
maxi

Ri

Ai
, where Ri is the rate achievable by user i and Ai

is the average rate of user i. The average rate is computed
over a time window as a moving average:
Ai(t + 1) = (1 − α)Ai(t) + αRi if scheduled
Ai(t + 1) = (1 − α)Ai(t) if not scheduled

Since PF takes into account the average rate, if traffic from
user i is predominantly short web traffic that arrives infre-
quently and the other users have only long-lived TCP flows
(or a mixture of long and short flows), PF does a good job of
giving priority to the short flows from user i since Ai is smaller
and will be given higher priority compared to the other users
with long-lived flows. On the other hand, in the presence of a
large number of users with long flows, short flows from users
with a mixture of short and long flows (where the average
rates, Ais, are high) does not get priority.

2) PF-SP scheduler: One possible way to improve short
flow latency over the PF scheduler is to include a notion of
priority in the PF scheduler so that users with short flows are
given higher priority than users with long flows. We call this
the PF-SP (Proportional Fair with Strict Priority) scheduler.
PF-SP always prefers short flows over long flows. In PF-SP, we
select the user with the highest instantaneous rate among users
with short flows. When there are only long flows in the system,
the default PF is run. The PF-SP is summarized in Figure 12.
PF-SP gives strict priority to short flow across all users and,

Let set of short flow user be S
Let set of long flow user be L
if S is non empty

select the user i with the largest Ri

else if L is non empty
select the user i with the largest Ri

Ai

Update Ai for all users

Fig. 12. The PF-SP Algorithm

in a channel with no variation, can be expected to provide the
lowest latency for short flows. In PF-SP, by selecting the user
with the highest rate among all users with short flows, some
user diversity is also exploited (limited to users with short
flows only instead of over all flows) and short flow latency is
expected to be minimized, at the expense of fairness among
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users. The average rate for each user is maintained over all
short and long flows.

3) PF-RP scheduler: One of the problems of the PF-SP
scheduler is that it always prefers short flow over long flow,
independent of channel conditions. Short flows by definition
cannot be always present in the queue as long flows dominate
in terms of byte count. As a result, the amount of diversity
available to PF-SP could be reduced in comparison to PF.

Run the PF and let user i be selected
Run the PF-SP and let user j be selected
if Ri > Rj

select user i
else

select user j
update Ai for all users

Fig. 13. The PF-RP Algorithm

We propose an algorithm called PF-RP: Proportional Fair
with Rate Priority which attempts to strike a better balance
between minimizing short flow latency, exploiting user diver-
sity, and providing fairness among users. In PF-RP, in each
time slot, both PF and PF-SP are run logically. The selection
from PF-SP is used if the user selected has a higher Ri than
the user selected from PF; otherwise the user selected from
PF is used. This allows us to exploit diversity across all users
(with both long and short flows) while retaining differentiation
for short flows. The algorithm is summarized in Figure 13.

Since PF is used except in cases when using PF-SP improves
the channel utilization, PF-RP has the property that it can
decrease short flow latencies while at the same time provid-
ing higher throughput. However, PF-RP algorithm sacrifices
fairness to users with only long flows but that is necessary by
definition in any mechanism that provides differentiation to
short flows. As in the case of PF-SP, the average rate for each
user is maintained over all short and long flows and provides
some measure of overall fairness to users with little or no short
flows.

The amount of improvement provided by PF-RP depends
on the channel conditions. If the user with short flow has very
bad channel conditions, PF-RP will not force the transmission
of packets from the short flow since it would cause too much
throughput degradation. On the other hand, if the user with
short flow has good channel condition, short flow latency will
be reduced significantly but with the risk of unfairness to other
users. However, note that the SFP algorithm at the first level
would eventually promote short flows to long flows (after the
threshold bytes are transferred) and thus unfairness cannot be
persistent. The latency reduction for short flows in PF-RP is
also a function of user diversity and improves when there are
more users with short flows.

B. Performance

Using the same ns-2 simulation setup as before, we calculate
the flow completion time distribution for various file sizes for
one user and compare the three different inter-user scheduling
mechanisms with the SFP intra-user scheduler: PF, PF-SP,
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Fig. 14. Download Latency for 4 users, Different Base SNR

and PF-RP. As a baseline, we compare these three algorithms
with the standard PF inter-user/FIFO intra-user scheduler. The
parameters of the web traffic model used is shown in Table I.
FTP sessions are used as background traffic, and arrive at
a constant interval of 200 and 80 seconds for medium and
heavy load conditions respectively. The FTP file size is fixed
at 1000 packets (or 1MB since packet length is 1KB). Flows
are classified as short if the file size is below 15KB and the
reset duration is set to 1 second. The averaging parameter α
used in calculating Ai is set to 0.001.

Figures 14 and 15 show a series of plots that demonstrate
the strength and weaknesses of the three inter-user scheduling
schemes presented in Section VI-A. Flow latencies using the
PF/FIFO is provided as a basis for comparison. Figure 14
shows the results for all four scheduling algorithms but with
different base SNR among users. Two users have base SNR
of +4dB and two users have base SNR of −4dB. In addition,
user 1 (with base SNR of +4dB) only has the web traffic
component in Table I while users 2 to 4 have the medium
load FTP traffic component.
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Web Model Elements Attributes Distribution and values
Web Page Time interval between Pages (s) Exponential, mean=15

Number of Web objects per pages Exponential, mean=5
Web Object Time interval between Web objects (s) Exponential, mean=0.01

object size Bounded Pareto, mean = 12, shape = 1.2, max=200

FTP Model Elements Attributes Distribution and values
File Size Time interval between FTP Session (s) Constant, mean=200/80 (medium/heavy traffic)

FTP File Size Constant, mean=1000

TABLE I

TRAFFIC MODEL PARAMETERS
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As expected, the short flow latency of PF/FIFO has the
highest latencies for short flows. PF/SFP shows latency im-
provement for flows under 15KB by reducing the latency by
17% and has similar performance as PF/FIFO after that. By
emphasizing fairness across users over flow differentiation, PF
cannot take advantage of the better channel condition of the
short flow user even if doing so increases the overall channel
utilization. On the other hand, both PF-SP and PF-RP have the
capability to exploit the difference in channel condition and
reduce short flow latencies significantly. The improvement in
latency in PF-SP and PF-RP is significant and is true for all

file sizes less than 200 packets and the negative impact is only
felt by the 1000 packet FTP flows. The improvement of short
flow latency is 54% over PF/FIFO.

Figure 15 shows the results for all four scheduling algo-
rithms with the same base SNR of −4dB and uses the web
and medium FTP load as shown in Table I. The results show
surprisingly that the greedy approach of PF-SP performs the
worst for all file sizes and increases both the short and long
flow latencies. The average increase in short flow latency is
93% (from 1.48s to 2.86s). One explanation for this result
is that PF-SP forces short flows to be scheduled immediately
even when the channel condition is bad. Delaying the transmis-
sion and waiting for a better channel condition (and thus higher
bandwidth) could actually help improve latency. In addition,
the amount of diversity (number of candidate user to choose
from) available is much smaller in PF-SP since diversity is
exploited only across users with short flows when short flows
are present. The average number of backlogged short flow
queues, representative of user diversity, for PF-SP is 1.64.
On the other hand, for PF and PF-RP, the average number of
backlogged queues is 3.01. Therefore, as a result of limiting
the effect of user diversity by selecting from a smaller pool
of users, PF-SP performs poorly.

From the simulation results, in the wireless channel sim-
ulated, PF/SFP always performs better than the default
PF/FIFO. On the other hand, depending on the overall user
channel conditions, PF-SP may be better or worse than PF. For
the channel conditions simulated, PF-RP is the most robust.

VII. CONCLUSION

In this paper, we make two important contributions. First,
we proposed a network-based solution called the Window
Regulator that maximizes TCP performance in the presence of
channel variations for any given buffer size at the congested
router. We analyzed the performance of various versions
of the Window Regulator schemes and make the following
observations. Window Regulator-Static (WRS), a common
algorithm used in wired routers, performs poorly. The Window
Regulator with ack Buffer (WRB) scheme, which explicitly
adapts to the wireless channel conditions and also performs
ack regulation, improves the throughput by up to 100% over a
drop-tail scheme. WRB also delivers robust performance gains
even with reasonably large wired latencies and small amount
of packet losses.

Next, we presented a scheduling and buffer sharing algo-
rithm that reduces the latency for short flows while exploiting
user diversity, thus allowing the wireless channel to be utilized
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efficiently. We found that the proposed PF-RP/SFP scheme
provides robust performance over different user channel con-
ditions and improves latency up to 54% over PF/FIFO.

The open question remains as to what is the best way to
balance all three parameters: diversity, fairness, and preference
for short flows. Answering this question would require a better
understanding of the trade-off and comparison metric. We are
exploring this issue as part of future work.
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