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Abstract—Information latency and information reachability = update and can be used to design efficient routing and/or data
are widely used metrics for measuring information flow in collection schemes.

Opportunistic Networks. We present an alternative measurehat (2) Mobile phones or vehicles can be used to sense the

looks at the amount of information updates or changes from a . Effici d ion f h d
given sender, which is an important and yet relatively unexpored environment. icient data aggregation for the sensor data

metric for characterizing opportunistic networks. collection is important. In static wireless sensor netvgork

In this paper, we propose a novel concept to measure informa- data aggregation has been extensively researched. Most of
tion freshness — how much the latest information received diers  them focus on selecting cluster headers or good information
from the most up-to-date information on the sender. Based on fjoyy paths. However, we do not see general solutions for data

information freshness, awareness on how information propgated agareaation in opportunistic networks. How much a node can
may have changed, orchange awareness, can be computed. ggregation in opportunist W - How mu

Change awareness can be exploited to design efficient algmns, KNow about other nodes’ updates can undoubtedly help select
in particular, data aggregation algorithms. Evaluation on real uploaders, i.e., cluster headers for opportunistic nekaior

world traces shows that change awareness based solutionsnca |n this paper, the following contributions are made.

achieve similar results as data aggregation algorithm witha

connection oracle. 1) We propose a measure to quantify information freshness,

Index Terms—Opportunistic Network; message freshness; data calledchange awarenessn opportunistic networks and
aggregation. how it can be computed.
2) We propose the concept of change awareness coverage
|. INTRODUCTION and show how a small number of informative nodes can

be used to construct a fresh (or real-time) snapshot of
network states. Our trace based evaluation shows that
depending on the application scenarios, the information
collected from 0.3% to 50% of the nodes can form a
fresh snapshot on topology states.

Finally, we present the application of change awareness
in data aggregation. Extensive evaluation shows that
change awareness based solution can achieve similar
performance as the solution with connection oracle.

This paper is organized as follows. In Section Il, we present
r%lated work. We present the concept of information paths in
gection lll, change awareness in Section IV and the coverage
of informative nodes in Section V. Application of change
awareness is presented in Section VI and we conclude the
pgper in Section VII.

Opportunistic networks formed by mobile devices with short
range wireless communication, e.g., Pocket Switch Network
(PSN) [1] and Vehicle Ad hoc Networks (VANET) [2], have
emerged and gained popularity in the past decade. The most
distinctive feature of opportunistic networks is the inbér 3)
tency of connections. The intermittent connections enaple
portunistic communication, meanwhile, they also compéica
many problems that have much simpler solutions in static
networks with persistent connections, e.g., the comprtaif
the distance between two nodes.

The behavior of opportunistic networks are often measur
by information latency [3][4] and reachability [5]. We proge
a novel measure with a focus on tfreshnesof the infor-
mation available. In particular, we measure informaticsh-
ness by capturing how much the latest information receiv
by a receiver differs from the most up-to-date information Il. RELATED WORK
being propagated by a sender. Such differences are due to o
the changes caused by recent connections. fiiismation A- The Measurement on Opportunistic Networks
freshnesameasure is independent from transmission latency.As a natural model for opportunistic networks, Time-

It instead depends on how much global information may hav@arying Graphs (TVG) [4] have attracted a plethora of resiear
changed from the local view. We illustrate the usefulness witerest. In a TVG, edges, i.e., communication chancesapp
information freshness by the following two examples. and disappear and hence, a node’s information on other nodes

(1) In a dynamic network, many applications require nodés usually delayed. Research on TVGs has evolved from the
to collect data. It is often impossible to collect real-timstudy on the common feature with static graphs to a focus on
topology information due to the intermittent connectividf temporal features. Initially, the research on TVGs corregatl
short range communication. Knowledge on how much then connectivity issues, such as the k-failure invulnergbil
topology has changed provides a way to view this informatigroblem [6], the computation of the shortest paths [3], and



Symbol

Interpretation

g(V7 E7 T,P) or g

a Time-Varying Graph

e(u,v,t)

a connection between andv ending att.

Time(e(u, v, t))

the end time of connectiorz, i.e., t.

IP(“7 U’tsv te)’

information path, the latest information path,

conn start - conn end

Fig. 1: An example of temporal graph.

broadcast properties [7]. More recent work focus on ‘terapor
features’, e.g., information latencies and reachabihtyVVG.

As an extension for the work of investigating information

flow in Online Social Network (OSN) [8], message latencies

in DTNs with arbitrarily long contacts was examined in [9].

Research in [4] formalized temporal related features that a

Ij(u, v, ts, te), fresh information path from: to v starting at

If(u,v,ts,te) ts and ending at.

Ip(u,v,t), the set of information paths (the latest infor-

I; (u,v,t), mation paths, fresh information paths) fram

Tf(u,v,t) and reachable to no later thant

F(G,u,v,t) pairwise change awareness: the change aware-
ness measured hy regarding tou at ¢.

F(G,v,t) vertex change awareness: the centrality oh
receiving changes from all other verticestat

F(G,t) graph change awareness: the average change
awareness of vertices i@ at ¢

C the smallest number of out-of-band connec-
tions required to achieve fresh snapshot

P the set of smallest panorama informative nodes

common for dynamic networks and proposed techniques for

investigating the evolution of network properties. The kvor

TABLE I: Table for symbols interpretation.

in [5] formalized reachability graphs and set up a theoattic First, an information path is one where information can flow
framework for computing reachability graphs. Along witifrom source to destination, e.g{, — C — Y. However, when
these theoretical analysis, many other research examifimd i considering whether the information is the latest infororat

mation latencies, information reachability in OSN trac&g]|

the receiver can get, we can see that at different time points

as OSNs can provide convenient avenues of collecting dealathe latest information are transmitted via different imh@tion

traces.

paths. For example, at the time 14s, the latest information b

These existing work investigates information transmissid” comes from the pattk’ — B — Y. Finally, when we are
by examining latencies and reachability. Our work insteawbncerned with whether the latest information receivedhés t
examines the changes observable in the network and hewst up-to-date, i.e., the same as the sender’s view, then th
these changes affect information collection. In fact, oorkv information is up-to-date or absolute fresh only after tineet
is similar in spirit to the seminar work [11] in that we atteimpl5s, since the earlier information received Bythrough the

to find a meaningful fresh snapshot of the network state.

pathsX — C — Y andX — B — Y is already outdated (via

a later contacts occurred t&) by the time the information

B. Data Aggregation on Opportunistic Networks

reached Y.

We briefly discuss the work on data aggregation relative These three different concepts of information path are

to our evaluations. For a detailed survey, readers might reifilized in our work. In the rest of this section, we define
[12]. Our solution in data aggregation is close to clustesebla them formally using a model based on Time Varying Graph.
solutions [13] and network-flow based solutions [14]. Brigt A Temporal graphs and connections

solutions are often designed for static wireless networld a . . .
are unsuitable for opportunistic networks due to connigtiv We use Time-Varying Graphs (TVG‘?‘) to merI dy”am'c
networks, as TVGs can naturally exhibit dynamic properties

dynamics. Most solutions for opportunistic networks explo . :
the location information of vehicles and road side infrastr Our notations for TVGs are based on those used in [4][5].

tures [15]. Our approach does not rely on location inforomati Definition 1 (Temporal graph)Let V be the set of verticés
Recent theoretic work [16] investigates the possibility cdind E C V x V be the set of edged denotestime span

collecting data via short range connections to a subset@ésiowhich starts at7, and ends at7,, where7,,7, € R, and

to reduce the use of long range connections. They proved < 7.. p(e,t): E, R — {0,1} is edge presence function,

theoretical bounds and show that no aggregation algoritimiicating whether an edge exists at timep(e, ¢t_) indicates

can achieve better performance than the optimal solutidim wihe presence af before or att; p(e, t ) indicates the presence

connection oracle. Our solution in evaluation has the saroge aftert. We callG(V, E, T, p),or G for short, as a TVG .

goal of reducing the use of long range communications. Weo f d ds fon |

investigate how much can change awareness help minimize ne occurrence ol an edge corresponds 1o a connection in

the number of uploaders, or cluster headers as in clustedba ynamic networ_ks. The occurrence of the edge, v, t) (.je'
aggregation. notes a connection betweerandv that ends at. We consider

the time instance of a connection as its connection end time.
The set of universal connections ¢his denoted byg. We
use&g(v,t_) and&g(v,t) denotev’'s connections before and

after ¢ respectively. The sefg(t) contains all connections in

We use Figure 1 to illustrate three different notions oé at ¢, i.e., the connections in the snapshot®fat ¢. For
information paths used in this work. The interval indicated T

on each link is the duration in which the link exists.

Ill. TEMPORAL GRAPH MODELS AND INFORMATION
PATHS

Lvertex’ and ‘node’ are interchangeably used.



information communication, we assume that a connection has "3 E'é)aes"f 'antaer:f:(::r/]ge Context
sufficient bandwidth to allow sufficient message exchange. ~RollerNef[17] 62 bluetooth outdoor rollerblad-
) ing
B. Information Paths Haggle 1CO6[18] | 98 bluetooth conference
. . . . SF taxi[19 500 50m,100m, city taxi
An information path, also known as information flow, el 200m b
consists of a series of connections that can relay infoomati ~Seattle Bus[20] | 1200 50m city shuttle bus
from the first node to the last node. ?h?%?;ﬂa' 5000 100m city taxi
axi
Definition 2 (Information path) Yu,v € V, I,(u,v,ts,t) RPGM[22] 100 10m f8ferenceb,|,t point
. . . group mobility
designates an information path fromto v. I,,(u, v, ts, t.) has Random — Way | 100 om andom—andTree
the format of(u, v1,t1) ~ (vi,ve,t2) ~ -~ (Vg—1,0, tx), Point (RWP) node movement
where(t, =t <to <--- <t =t.). Also,vy = u,v; = v, ] . .
pleitd) = 1, wheree; : (vi,vi01) andi = 0,--- & — 1. TABLE II: Summary of traces used in evaluation.

I} (u, v, ts, te) indicates thei'* connection inl,(u, v, ts,te), both metadata (e.g. connection status or buffer contest), a
i.e., e = (vi—1, v, t;); I;ast(u,v,ts,te).denotes the last con- well as application data.

nection in I, (u, v, s, te). Let Time(I,(u,v,ts,tc)) present  Change awareness is measured based on the status of
the time of the"" connectionl,(u, v, t) symbolizes the set ofinformation paths involved. Three closely related metrics
information pathsl}, (u, v, ts, ), wheret, <. for information awareness are thereby proposed: pairwise
h change awareness, vertex change awareness, and graple chang
awareness. These three measurement have peer metrics that
| have stirred a plethora of research interest: geodesitcesrt
distance, vertex centrality, mean geodesic distance.

Definition 3 (Latest information path)An information pat
Ip(u,v,ts,te) is the latest information path of; (v, v, ts, t.)
in I,(u,v,t) if and only ift is the latest (largest) among al
information paths irl,(u,v,t). Hence,l;(u, v, ts, t.) carries

the latest information from: available tov at ¢. I;(u,v,t) A, Definition on Change Awareness
symbolizes the set of latest information paths frero v no

Definition 5 (Pairwise change awarenessjhe pairwise
later thant.

change awareness'(G,u,v,t) is the ratio of u's con-
Definition 4 (Fresh information path)An information path nections that can be known by at t. F(G,u,v,t) =
I(u,v,ts,t.) is a fresh information path at time or |Eg(u,7_)|/|Eg(u,t_)|, where is the latest connection time
I (u,v,ts,t.) if and only if p({(u,z),tsr) = 0 for Vo € Wwith win I;(u,v,t). 7 is set to7, if I;(u,v,t) is (.

V — {u}. In other words. has no connection with any other F(G,u,v,t) is computed based on the set of latest infor-

nqdes n t_he intervat, to ¢, and the information carrl_ed by mation paths and measures the portion:sf connections no
this pat_h IS absolu'ge freshas thew has no connection to later thanT andu’s connections no later than The largest
ypdate its informationly (u, v, ¢) Qenotes the set of all freShfreshness value, one, occurs when a fresh information path
information paths from to v at ime .. exists. The smallest freshness value, zero, occurs when no
In Figure 1, there are three information paths— A — Y, information path exists from: to v. As an example, the
X—-B—=YandX —-C-—=Y. pairwise change awareness of the network at 17s in Figure 1
From nodeY’s point of view, before the time 7s, it doesis presented in the following table, where the row is a source
not have any information about node The latest information (u) and the column is a destination)(
path fromX to Y are: X — C' — Y between the time 7s A B C D
and 13s,X — B — Y between the time 13s and 15s, and 272 0/2 0/2 0/2
X — A — Y when the time is later than 15s. 2/2 2/2 0/2 0/2
In terms of fresh information path, there is none before the 2/3 2/3 3/3 3/3
time 15s, and the path iX — A — Y from the time 17s 0/1 0/1 1/1 1/1
onwards. o
The information paths defined have the following prOlol_)eﬁmuon 6 (Vertex change awarenessjhe vertex change
erties. First,I;(u,v,t) C L(u,v,t) C L(u,v,t). Second, awareness of a node F(G,v,t) measures how much can
I(u,v,t) = 0 if and only if I,(u,v,¢) = 0. Third, based be aware of the changes of other nodes. It can be computed

TQw™

on local observation only, a node can know which path is tRS 2-zcv.aro F'(9, 2 0,8)/([V] = 1).

latest information path but it cannot judge whether a path fSefinition 7 (Graph change awarenesgjhe graph change
fresh information path or not. awareness ofj: F(G,t) designates the average awareness
over all vertices ing. It equals)_ _, F(G,v,t)/(|V]) or

>wyev F(G 2y, 1)/P([V],2).
Based on the information paths introduced, we now present ey

a concept on howhangesn the network can be quantified. InB- Computation of Change Awareness
particular, we are interested in changes that occur as & ofsu  Pairwise change awareness can be computed through ‘last
communication between two nodes. Such changes can afféeparture time’:Time(I}(u,v,t)) [23]. Vertex and graph

IV. CHANGE AWARENESS
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Fig. 2: Vertex change awareness with different time spagthen

Data: G(V; E, T, p, §) awareness usually increases as the time span becomes. longer
Output: F(G,v,t)

init.: last(z) — To, ¥z € V, known(e) — false,Ve € &, For example, in the SF taxi trace, vertex change awareness
W — {v}, last(v) — ¢ varies from 0 to 0.8 when the time span is 3600s. For a short
while (W is not empty)do time span of 60s, the awareness varies from 0 to 0.38.
selectu wheremax(last(u),u € W) . .
for eache : e(u, y,7) Or £ : £(y, u, 7) do For testing the effects of contacts density, we set the trans
if known(e) = false then mission ranges of 50m, 100m and 200m, which respectively
i Tii?(“)(iitgeal(last( ) has the density of 16.8, 28.1, 48.7 contacts per hour per
if y ;W then vhT node for SF taxi trace. Figure 3a shows the results for time
| addyto W span of 3600s. Increase in node density have two opposite
Z?L‘iwn(s) — true effects. One effect is to make information transmitted by
end stale faster, which decreases change awareness. Andiber ef
end is to speed up the message transmission, which increases
?anloveu from W change awareness. The results indicate that the posifeetef
en slightly outperform the negative effects as the transroissi
fT IFE( gvmd?} 1) . No-ofkeoun conn. ot range increases. In an extreme case where the contactydensit
end No. of conn. invalvingz is so large that end-to-end paths always exist, the change
F(G,v,t) — erv,x-#u F(G,z,v,t)/(]V|-1) awareness approaches one.

We test effects on the loss in change awareness by perform-
ing duty cycling. The results in Fig 3c show that the vertex
change awareness decreases slowly with edge removals. With
i . up to 60%, the decrease is insignificant. Striking decre@ses
change awareness can be computed via repetitively runnm,p%nge awareness are observed when a node only awakes 20%
pa|rvxl/)|se freshnezs,bbut this Ca“ﬁ?"‘f expeinsn_/eh. Thﬁy ho(‘j’veﬁ?'iime. The results indicate that nodes can have duty ayclin
can be computed by a more efficient algorithm that adals saye energy without significant loss in change awareness.
dijkstra algorithm for computing shortest pathes from one We also test the effects on change awareness by removing
vertex. This is shown in Algorithm 1 with the time complexitynodes from a network. The results in Figure 3b show no
of ©(|€g| + |V log|V']) [24]. dramatically effects on vertex change awareness till thmat u
C. Change Awareness in Traces to 40% of the nodes are removed. The reason could be thgt
. . the removal of nodes reduces the chance of updates meanwhile
We investigate the three types of change awareness on tra R . : . o
. L It Slows information dissemination. In the extreme caserehe
in Table Il. Due to space limitation, we only present th

X ere are only two nodes, change awareness is always one.
results of vertex change awareness on SF taxi, Roller nﬁe}, y 9 y

and Haggle InfoComO06 traces, whose contexts respectively
represents vehicle traffic, outdoor human mobility, ancbord
human mobility. We investigate change awareness with otspe Next, we will investigate how a node’s change awareness
to four factors: (1) length of the time spans, (2) connectiazen be exploited. In particular, we focus on nodes that have
density (by varying transmission range), (3) node dendiyy (the most information about changes in the network. We call
removing random nodes), and (4) edge density (by removisgch nodeinformative nodesAn informative node is the last
random edges to simulate duty cycling) [25]. node in a fresh information path, i.e:,in Iy(u,v,ts,te), Or

For measuring the effects of the length of time spaB} ( v in F(G,u,v,t) when F(G,u,v,t) equals one. In terms of
we varies the length from 60s to 3600s. Results in Figurechange awareness, an informative hode must have a pairwise
reveal two points. First, some nodes are much more awarecbfinge awareness of one with respect to at least one other
changes in the network than others; Second, pairwise chamgele.

Algorithm 1: Vertex change awareness computation.

V. INFORMATIVE NODE
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Fig. 3: Vertex change awareness in different situations.

We will show that a set of informative nodes can be The smallest panorama informative node set can be
combined to provide dresh or ‘real-time’ snapshot of a computed by Algorithm 2 with the time complexity of
dynamic network and we aim to find the minimum numbeD(|€]). The complexity of sorting edges i©(|€|log|&]).
of informative nodes required to obtainfresh snapshot For example, Algorithm 2 outputs the coverage association
{{(C(or D),{C,D}), (A(or Y),{A,B,X,Y})} for the net-
work in Figure 1. We write such an association in the format
of (v,C(v)), wherewv is an informative node and’(v) is
In an ideal case, a node has fresh information pathsthe coverage set af. We name the set of informative nodes

from all vertices, which guarantees thatcan access global computed by Algorithm 2 ag. Next, we would like to state
fresh information. This ideal case however only occurs tbe following lemmas. The proofs are not included in this
some special topologies, e.g., complete bipartite. To oreaspaper due to space constraints.

how much absolute fresh information a node can collect, W& ,ma 1. The coverage sets of nodesfnforms a partition
introduce the concept of change awareness coverage. of V. That is, for any two informative nodes,p; € P
. y v 7] !

_ For two vertices,u and v, we sayu is covered byv  ¢(p,)(\C(p) = 0 if p; # p;, andU,cp C(p) = V.

if v has a fresh information path to. The coverage ob ]

is defined as the set of nodes that have at least one fré§fnma 2. F(G,u,p,t) =1, foru € C(p), p € P. That s, a
information path tov. The nodev is thus an informative fresh information path exist at

node. An informative node can cover multiple vertices andemma 3. Algorithm 2 generates the smallest panorama
a vertex can be covered by multiple informative nodes. A Sgfformative node set.

of informative nodes is called thganorama informative node )
setif the union of their coverage equals the set of whole nodes.Based on these three lemmas, the following theorem holds.

The set of all vertices obviously form a panorama inforn@tiviheorem 4. A fresh snapshot of a dynamic network at
node set, as each node can cover itself. We are interestegifife ¢ can be obtained by assembling information from all

computing the smallest panorama informative node set. Ti@ormative nodes inP, and P is such node set with the
smallest panorama informative set has potential appdinati minimum size.

in opportunistic networks, such as the one we will discuss in

A. Node Fresh Coverage

Section VI Note that whileP is not unique, the size of differef® is
the same.
gptutitg 0,0 . B. Evaluation using Traces
utput: (v,C(v)), ve V. . 3 .
initialize coverage association sets, We study howP varies with the parameter of time spans and
M — {{v,C(v))},v € V,C(v) — {v} transmission ranges. We divide one day’s trace into segment
Wh"ienﬁ%vles: tr;1oet gg’lri)gs[ioconnectim (u,v,t) in € of different length {;, ¢; + D) with ¢, = 0, 1,--- ,86400 — D
if only one node (e.gy) in ¢ is isolated? then and compute the average size Bffor each D. Instead of
‘ add C'(u) tOCC(v)]c u looking at the size ofP, we measure the average number of
ok remove(u, C(u)) from nodes that can be covered by an informative node. Average
if bothv and u are isolated nodeshen size of P is simply can be computed by dividing number of
;%r(‘jdg(“g tsoe'g‘z:);’ node (e.g.) nodes by the average coverage. The results are shown ireFigur
remove<u’c(u)> from M 4 fOI’ the SF taXI trace.
§ end The result shows that the average coverage increases slowly
en

when the transmission range grows from 50m to 200m. For a

return M . .. . .
Algorithm 2: The computation for smallest panorama infor’Xed transmission range, as time spans increases, thegavera

mative node set. 2A node is isolated if it has no connections with any other node
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Thus,1/y is the ratio of uploaders for gaining real-time global sregts

coverage increases quickly but stabilizes beyond 3600s. In algorithm based on short range communication can help
terestingly, both the two human mobility traces have averag reduce the number of uploaders. Thus, delays are usually
coverage that varied between five to seven when the time span allowed.
is larger than five minutes. 2 Asynchronous Sensor Reading (ASR)In this type of

An important indication by the results is that it provides an  applications, each sensor logs its sensor readings once
lower bounder for the number of required nodes to get network it gets a new reading. The log of sensor readings is in
states or some types of application data. This has intagesti  an asynchronous manner. One example is the monitor of
application in data aggregation, as discussed in the fatigw noise pollution level. The pollution level changes every
section. 20dB. The pollution is at level 0 if the noise decibel is
within O - 20dB; it is level 1 if the noise decibel falls
into 20 - 40dB, and so on. A sensor in a taxi records the
sensed noise pollution level only when the new level is

In this section, we apply change awareness to data aggre- jtferent from the previous one. Another example is the
gation. In our evaluation model, each node in opportunistic  ~q|lection of taxi states, e.g., does a taxi have passengers
networks has short range wireless communication, e.g.,WiFi g, board, or which area a taxi is in. The sensed data is
and long range wireless communication, e.g., 3G and LTE. A aggregated and uploaded to the server at the end of an
server regularly collects sensor readings from all nodes. W aggregation period.
target to minimize the number of long range communicationg Connection-triggered Sensor Reading (CSR)In this
connections, i.e., uploaders, for collecting applicatutata. type of applications, the data changes only when the
The reduced use of uploaders has two main advantagesy/Firstl hosting node has a connection with other nodes. For
it can reduce the size of data to be uploaded after local example in a system where news or advertisements are
aggregation. The amount of reduction depends on concrete gisseminated over a VANET, the business operators are
applications. Secondly, it can save power. WiFi commuiocat interested to know the distribution information of ad-
is much more energy efficient tha_n ceIIuIar_communication vertisement copies to charge customers and to control
[26]. The transmission of large size data is more energy sqvertisement dissemination. The distribution of news

efficient than the transmission of small size data, esggcial change only when the nodes have connections.
in LTE [27].

VI. CHANGE AWARENESSAPPLICATIONS IN DATA
AGGREGATION

Figure 5 illustrates the three types of applications. Theese

A. Types of Sensor Data in Opportunistic Networks periodically collects data on all nodes through uploadiess t
We discuss the aggregation for the following three types afe a subset of nodes. These uploaders can aggregate data via
sensor data in opportunistic networks. short range connections. For example, in Figure 5a, node E

1 Synchronous Sensor Reading (SSR)n SSR sensors can transfer its data to D via their connections. And E and
values on all nodes are read at a synchronized time. OA& data can be collected by C via the connections between C
example application is to build pollution or temperatur@nd D, and so on. Finally, either only node A or B needs to
maps for a city. Suppose that all taxis in a city havepload. However, in Figure 5b, D’s data can reach C, but E's
synchronized time and Global Positioning System (GPSJata cannot reach C. In this case, either E or D has to upload.
They hourly sense air temperatures or pollution. TH& Figure 5c, due to the connection patterns, two nodes E (or
sever can collect all the sensor reading on tempefd) and A (or B) have to upload. The lower bound for the
ture/pollution with GPS and form a temperature/pollutioRumber of uploaders can be exploited in the follow ways.
map with one hour delay. In SSR, if the data is required to Under the assumption on the access to connection oracle,
be collected at the sensing time, then no data aggregatibe server can compute the reachability of data. t.ét) be
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Fig. 5: The illustration of different types of applications line between two nodes indicates a connection. An emptjeci
is the last connection of a relative node. A solid circle @adé a connection that is not the last one of the relative ndde
crossing symbolize the point when the sensor data generate.

the sensor data generation time«wrif the last departure time collect all data that are generated before their hostingesiod
from v to u is later (larger) thart;(v), thenv’s sensor data last connection. In ASR, the nodes whose sensor readings
can be uploaded by. We call the set of nodes whose sensare generated after their last connection upload their own
data can be uploaded hyas K (u). With the uploader-ship, sensor reading by themselves. Actually, no algorithm cdp he
(u, K(u)),u € N (N is the set of nodes.), the minimizationaggregate these data as no short range connection occurs to
of uploader set equals the minimum Set Covering Probletime hosting node after the generation of the data.

(SCP), which is NP-hard. Greedy algorithms can be exploitedThe second approach (CA-Plus) enhances CA-Base hy
with proved approximation ratio, as in our benchmark soluti controlling different uploaders. Each node also needs loadp

(COMPLETE-Greedy) that we will discuss later. its last connection to the server. Firstly, when a node geasr
For these three types of applications, we give a summadgta after its last connection (as in ASR), the data is only

on minimum number of uploaders in Table IlI. knowable to itself. Such nodes upload their own sensor data

and the collected data to the server. Then, the server camput
App) Hg'oadef Note the informative nodes and their coverage, and greedilyctele
SSH [07'73“ depending on Teachabilty of data the next uploader from mfo_rmatlve_nodes that ha_s the most
ASR [0, [N] the node whose data are generated after its Uncollected sensor data. This step is repeated until theser
last connection need to upload the data itself. has collected data from all nodes.

CSR = |P] as shown by Theorem 4.

TABLE III: The lower bound of the number of uploaders. - Dat@ Aggregation Algorithms for Comparison

N is the total number of nodes) 1) The Benchmark Algorithm (COMPLETE-Greedihe

Please note that only CSR tightly fits the definition obfenchmark is gained in the case when a server collects all
change awareness. However, we also show how change awghert range connection information and thus can compute the
ness based solutions help the data aggregation for SSR, A8&mplete reachability of all information flows. The benchikna
and CSR. algorithm COMPLETE-Greedy uses the greedy algorithm [28]

. . to select the next uploader as the one having the most
B. The Change Awareness Based Data Aggregation Algorithm, -mation to upload. COMPLETE-Greedy can compute the
(CA-Base, CA-Plus) minimum number of uploaders by constrained approximation

In change awareness based solution, for each data aggagios, but it can cause high overhead as all nodes need to
gation period, the server needs to collect each nodes’ lagioad all its connection information to the server.
connection to compute informative nodes by Algorithm 2. 2) Random algorithm and ID based algorithBeside the
Because the last connection information is of constantlsmbenchmark algorithm, we also compare our solution with two
data size (several bytes), it can be transferred using thigato other algorithms: RDM and ID-Based. RDM adapts from
or low bit rate channel of the cellular network, e.g., ShottEACH [13]. RDM randomly selecta% of nodes as fixed
Message Service (SMS), which is power efficient. Once thgploaders. A non-uploader forwards its data to an encoun-
informative nodes are identified, they upload collectedseen tered uploader. At the aggregation time point, both the fixed
data via the cellular data channel. uploaders and non-uploaders that have never encounteyed an

We tried two different change awareness based algorithrfixed uploader upload data to the server. We compare with
CA-Base and CA-Plus. In CA-Base, each node uploads RDM with different percentage of fixed uploaders. ID-Based
last connection information to the server, and then theesenchooses uploaders by nodes’ IDs. When two nodes encounter,
can compute a set of coverage associationa’(v)) by the one with smaller identity dump collected sensor data to
Algorithm 2. An informative node uploads the sensor reaslinghe one with larger identity. At aggregation time, all thedae
of nodes under its coverage. By this method, the server daaving data are uploaders.
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D. Evaluation Settings and Results by intermittent connections. This can be computed based on

We present evaluation results on two vehicle traces, Shafgnnections, as is done in COMPLETE-Greedy.

hai taxi trace and SF taxi trace, where Shanghai Taxi traces'he results on more traces are listed in Table IV. These
has ten times more taxies than SF taxi trace. The results Eg8ults show that CA-Plus can gain similar performance as
shown in Figure 6 and 7. The ratio of uploaders ranges froffPMPLETE-Greedy, which are the best among the five tested
0.003(for SSR, COMPLETE-Greedy and CA-Plus) to 0.9 (fatlgorithms. However, CA-Pluse can save much communication
CSR, RDM). For CSR, CA-Base can achieve similar pepverhead ranging from six times to 15 times.
formance as CA-Plus and COMPLETE-Greedy. CA-Plus andWe also investigate the intermediate states of data camllect
COMPLETE-Greedy achieve similar results for SSR and ASIgrocess, i.e., how much information is collected versus how
In most settings, the three algorithms require signifigelettss many uploaders are utilized. This is meaningful to appioret
uploaders than RDM and ID-Based algorithms. where only a portion of data needs to be collected. The result
These results further indicate the following points. Firstn Figure 8 shows that for a fixed number of uploaders, CA-
for CSR, CA-Base provides a lower bound for the number #lus and COMPLETE-Greedy can collect much more data
uploaders required for fresh snapshot, as shown by Theortlran other algorithms. The CA-Plus and COMPLETE-Greedy
4. Second, in many cases in SSR and ASR, not all informatigellect similar size of data for SSR and CSR. This implies
nodes need to upload data. The number of nodes requiredhat they have similar speed in information collection. For
upload all data depends on the data reachability consttain®SR, the COMPLETE-Greedy outperforms CA-Plus for the
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