
DEAL: Discover and Exploit Asymmetric Links
in Dense Wireless Sensor Networks
Binbin Chen, Mingze Zhang, Shuai Hao, Mun Choon Chan and A.L. Ananda

School of Computing, National University of Singapore
{chenbinb,zhangmi3,haos,chanmc,ananda}@comp.nus.edu.sg

Abstract— Asymmetric links commonly exist in low power
wireless sensor networks. However, it is difficult to discover and
exploit them efficiently. In this work, we propose DEAL, a link
management scheme to Discover and Exploit Asymmetric Links
efficiently in dense wireless sensor networks. Equipped with a
novel feedback mechanism, DEAL dynamically adapts its link
maintenance mechanism based on the estimated link quality, and
manage the (small) neighbor table so as to retain the most useful
information.

We implement DEAL in TinyOS and evaluate its performance
using both TOSSIM and testbed. The simulation results show
that more than 80% of asymmetric links can be discovered
and maintained with minimum overhead. Using a collection tree
application and ETX as the routing metric, the average path ETX
can be reduced by up to 20%. Testbed evaluation also shows that
DEAL improves the network routing performance by identifying
useful asymmetric links.

I. INTRODUCTION

With low-power wireless nodes, asymmetric links are com-
mon even if the same transmit power is used. Measurement
studies in [1], [2], [3], [4] have demonstrated the presence
of asymmetric links. Amount of asymmetric links increases
with lower power [1] and the fraction of asymmetric links is
high enough that topology control mechanisms should take
such links into account [2]. Many reasons contribute to the
existence of asymmetric links, including transmission power
disparity, interference, obstacles, noise level difference, as well
as radio irregularity [5].

By considering both symmetric and asymmetric links, net-
work connectivity improves. In addition, measurement results
from our testbeds (as well as the work in [1]) have shown that
asymmetric links tend to span longer distance than symmetric
links. As a result, inclusion of asymmetric links can improve
network performance in terms of both routing reliability and
efficiency.

While there are many benefits in considering asymmetric
links, efficient discovery and exploitation of these links remain
a challenge due to the following reasons: (1) Link discovery
and exploitation heavily rely on the information exchanges
between the neighbor nodes. Thus, efficient information de-
livery over the “poor” direction of the asymmetric link is
the fundamental prerequisite to use it. (2) The time-varying
link quality requires the link maintenance strategy to provide
both accurate and efficient measurement. (3) The hardware
limitation of cheap sensor nodes often places additional barrier
on asymmetric link exploitation.

In this paper, we present DEAL, a link management scheme
to Discover and Exploit Asymmetric Links efficiently in dense
wireless sensor networks. We make the following contributions
in this work:

1) We propose Source-Specified Relay (SSR), a novel in-
formation feedback scheme over the poor direction of
the asymmetric links. SSR is much more efficient than
existing information feedback schemes [6], [4], which
incur either high communication cost or high memory
consumption. For SSR, both the memory and commu-
nication costs are constants O(1).

2) To maintain and exploit asymmetric links under different
link quality situations, we propose Dynamic Driven
Maintenance (DDM), a link maintenance scheme which
dynamically adopts different strategies so the most effi-
cient link maintenance scheme will be utilized depend-
ing on the link quality.

3) We design the Asymmetry-Aware Caching (AAC) neigh-
bor table management scheme, which systematically
addresses the impact of the limited memory size on the
asymmetric link maintenance. To our knowledge, this is
the first work to consider this. All the existing work [1],
[2], [3], [4], [7], [8] simply assumes that the memory
size is unlimited.

We have implemented DEAL in TinyOS, and study its
impact on a tree collection application. Simulation using
TOSSIM shows that more than 80% of asymmetric links are
discovered and maintained with minimum overhead, which
improves routing layer packet delivery efficiency by up to
20%. Testbed evaluation also shows that the proposed schemes
indeed exploits the asymmetric links which enrich the network
connectivity and routing efficiency.

The paper is organized as follow. Section II discusses asym-
metric link measurements from our sensor testbeds. Section III
presents existing techniques to discover and exploit asymmet-
ric links. Section IV describes our proposed asymmetric-aware
link discovery and exploitation (SSR and DDM) and Section
V describes the design of AAC. Performance evaluation is
presented in Section VI and conclusion is given in Section
VII.

II. CHARACTERISTICS OF ASYMMETRIC LINKS

A. Testbed Measurements
In this section, we motivate our problem by presenting link

measurement results from 2 sensor testbeds deployed.

2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
R

R
 in

 th
e

w
or

se
 d

ire
ct

io
n

PRR in the better direction

(a) PRR for MICA2 (433MHz)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
R

R
 in

 th
e

w
or

se
 d

ire
ct

io
n

PRR in the better direction

(b) PRR for MICAz (2.4GHz)

Fig. 1. PRR measurements on testbeds

The first testbed, consisting of 34 MICA2 (433MHz) motes,
is deployed in an indoor office environment on a single floor
(with walls and barriers). The distances among these nodes
vary from 3m to 60m. In our measurement, all nodes use the
same transmit power (−10dBm) and each node takes turns
to broadcast packets. The packet reception ratios (PRR) are
then recorded. The measurements are taken over five different
24-hour intervals. Over the entire measurement period, each
node broadcast a total of around 25, 000 packets.

A scatter plot of the PRR is shown in Figure 1(a). Each point
in Figure 1(a) represents a link between a pair of nodes. The
horizontal axis shows the PRR in the good direction, and the
vertical axis shows the PRR in the bad direction. All the points
lie below the diagonal line, which represents the complete
symmetric line. It can be seen that most of the points are
located at the top right corner where PRR values are high in
both directions. At the same time, there are also a large number
of asymmetric links. For example, 17.6% of these links have
differences of at least 0.25 in their PRRs in the two directions.

While not shown in the figure, this measurement using
MICA2 also indicates that as the distance increases, the per-
centage of asymmetric links grows. On the average, asymmet-
ric links are 75% longer than symmetric links. This property
of MICA2 links indicates two potential benefits of asymmetric
links. First, inclusion of asymmetric links can significantly
improve the overall network connectivity. Next, as asymmetric
links tend to be longer than symmetric links, by including
these (usually longer) links in the network topology, some
long routes (in hop count) can be avoided.

A similar set of PRR measurement is also carried out on a
second testbed, which consists of 40 MICAz (2.4GHz) motes
deployed over two floors of a building. The distances among
these nodes vary from 5m to 80m. In this measurement, all

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1A
C

K
 R

ec
ei

ve
 R

at
io

 (
A

R
R

,3
by

te
s)

Packet Receive Ratio (PRR,46bytes)

MICA2 measurement
ARR=pow(PRR, 3/46)

Fig. 2. ARR vs. PRR

nodes are battery powered and use the same transmit power
(0dBm).

The scatter plot of PRR pairs is shown in Figure 1(b).
The percentage of asymmetric links is lower than the MICA2
testbed and the average distances between symmetric and
asymmetric links follow similar trends as the MICA2 testbed.
About 10% of these links have differences of at least 0.25 in
their PRRs in the two directions.

It is interesting to note that our result is different from the
measurement in [9] which shows that there are few asymmetric
links using MICAz motes. We believe that there are two factors
that contribute to the difference. First, the motes in [9] are
deployed in an open area with little obstruction and motes are
mostly in line-of-sight. Our measurement is based on an indoor
environment with obstruction of walls. Second, the nodes in
our testbed are powered by batteries, while the motes in [9]
are AC-powered. As a result, the mote’s transmission in our
testbed can be affected by the battery voltage level.

B. ACK-capable Asymmetric Links

Due to the poor PRR in one direction, it is often assumed
that asymmetric links cannot be used for packet transmission.
However, this is not always true. For some applications, in
particular, those involving data collection, reliable delivery of
acknowledgement in the reverse direction is sufficient. Hence,
in addition to PRR, ACK reception ratio (ARR) should also
be measured. In this section, we will present results on why
PRR is an overly pessimistic estimation of ARR and justify
the use of certain asymmetric links.

There are two reasons why the ARR is higher than PRR over
the same directed link. First, as also mentioned in [4], since
ACK is sent immediately after the data packet, the channel
around the sender tends to be clearer because of neighbor
backoff. Second, MAC layer ACK is smaller in size. Take
TinyOS 1.x radio stack as an example. For MICA2 motes
(with CC1000 radio chip), packet size (SPKT) can vary from 17
bytes to 46 bytes (including preamble and SYN bytes), while
ACK size (SACK) is 3 bytes, and is sent immediately after data
packet without any preamble sequence. In fact, since PRR is
often estimated using large beacon packets (up to 46 bytes),
the difference in packet size used for PRR and ARR is often
very large.

Figure 2 plots ARR against PRR for all node pairs in
our MICA2 testbed. The measurement is done by employing
unicast communication between each pair of nodes. It is clear

3
that ARR 6= PRR and is in fact often much larger. For PRR
as low as 10%, ARR can still be as high as 90%. From
the figure, the independent loss model ARR = PRRSACK/SPKT

[10] gives a good match to the measured data. When PRR
is smaller than 10%, ARR can be any value in the range of
[PRR, 100%]. If the ARR in poor direction of an asymmetric
link is higher than 70%, we call this asymmetric link an ACK-
capable asymmetric link. In the MICA2 based testbed, out of
all asymmetric links, around 70% of them are ACK-capable.

ACK-capable asymmetric links are useful because they
provide high quality links for data forwarding and suffi-
cient robustness for small acknowledgement packets. However,
exploiting these asymmetric links requires additional tasks,
which will be addressed in the following sections.

III. EXISTING LINK DISCOVERY AND EXPLOITATION
SCHEMES

While asymmetric links can improve the network perfor-
mance, discovery and exploitation of these links by both ends
are complicated. Consider an asymmetric link between A and
B (link quality from A to B is good), the information at B
has to be fed back to A (on a poor link) before A can be
aware of and possibly utilize the asymmetric link to B.

In this section, we will first briefly introduce the widely
adopted Broadcast-based Active Probing (BAP) scheme [3],
[11] and show why BAP cannot efficiently discover and exploit
asymmetric links. Several existing mechanisms on how to
resolve the drawbacks of BAP will then be described.

A. Broadcast-based Active Probing (BAP)

Broadcast is an efficient way for nodes to discover and
maintain each other over symmetric links. In BAP, two nodes
identify each other by exchanging “HELLO” and “I-HEAR-
YOU” messages. When a node receives a “HELLO” message
from another node, it identifies the latter as one of its inbound
neighbors, and it will include the latter in the “I-HEAR-YOU”
message and broadcast the message back to the latter. When
a node receives “I-HEAR-YOU” message from another node
(i.e., its ID is included in this “I-HEAR-YOU” message), it
identifies the latter as an outbound neighbor. The two nodes
will become both inbound and outbound neighbors for each
other, if they can hear both “HELLO” and “I-HEAR-YOU”
messages from each other (i.e., the link is symmetric).

As link quality varies, a node uses the ratio of “HELLO”
packets it received from each of its neighbors as an estimation
of inbound link quality (inbound PRR). This inbound PRR
value is then also put in the “I-HEAR-YOU” packet (together
with the inbound neighbor ID) and broadcast back to the
corresponding neighbor, so that the neighbor is able to be
aware of its outbound link quality (outbound PRR) to this
node.

Note that in the widely adopted implementation of BAP, the
“I-HEAR-YOU” message, which contains the list of inbound
neighbors as well as their PRR values, and the “HELLO”
message, are often combined into one packet. We refer to these
dual-role broadcast packets as beacons.

B. Asymmetric Link Discovery and Exploitation using BAP

As introduced in previous section, BAP is designed for
symmetric links. It has two main drawbacks when facing
asymmetric links.

Firstly, BAP cannot effectively convey information over the
poor links. Consider an example where the link between node
A and node B is asymmetric (A to B is good direction).
B can detect that A is its good inbound neighbor, as B can
receive A’s beacons. In addition, B can identify that A is not
its outbound neighbor, as B does not find itself in A’s beacons
(or the PRR from B to A in A’s beacons is very low). As a
result, B is aware of the existence of the asymmetric link.

Unfortunately, under the BAP scheme, it is hard for A to
be aware of the existence of asymmetric links, because the
beacons (“I-HEAR-YOU” messages) from B rarely reach A.
For the same reason, it is also hard for A to maintain the
instantaneous outbound PRR to B, although B is able to
continuously estimate that its inbound PRR from A is good.

Secondly, in an ACK-enabled network, the link quality is
not only defined by outbound PRR, but also the inbound ACK
reception ratio (ARR). For example, the widely adopted link
metric for link quality based routing, expected transmission
count (ETX) [12] is defined as 1

PRRA→B
× 1

ARRB→A
(ETX from

node A to node B).
However, BAP can only measure PRR. It cannot measure

ARR directly. Existing approaches adopting BAP try to infer
ARR from PRR, including (1) assuming ARR = 100% as
in TinyOS 1.x and [4]; (2) assuming ARR = PRR as in
TinyOS 2.x and [12]; and (3) using experimental model,
such as ARR = PRRSACK/SPKT in [10]. When PRR is high
(the symmetric link), these three approaches make no big
differences. However, when PRR is small (the poor direction
of an asymmetric link), the estimation errors can be large.
Although Figure 2 shows that the third estimation can be more
accurate than the first two, it may not apply to all wireless
environments. Especially, when PRR is low, ARR has large
variation, and cannot be inferred accurately using PRR.

C. Information Feedback via Multihop Relaying

In order to convey the information from B to A (the poor
direction of an asymmetric link), the most natural way is to let
one (or many) intermediate nodes between A and B participate
in the relay of this information. Previous works employed
mechanisms including controlled flooding, unicast routing and
volunteer relaying, which will be described below.

1) Controlled Flooding: Controlled flooding [6] is probably
the simplest way to feed back information from B to A.
When B detects the existence of the asymmetric link, it simply
floods the “I-HEAR-YOU” packet to its k-hop neighbors, by
setting TTL (Time-To-Live) of the packet to k. If a path exists
from B to A within k hops, the “I-HEAR-YOU” packet can
reach A through the path. However, the multi-hop broadcast is
essentially “blind” and notorious for wasting both energy and
network capacity. Making things worse, in order to maintain
the time-varying link quality or update A about B’s current

4
A

C

B

Fig. 3. Asymmetric link discovery

routing metric, the controlled flooding needs to be carried out
regularly.

2) Unicast Routing: Most stateful n-to-n routing protocols
such as AODV can provide shortest paths from a node to
any other nodes in the network. Utilizing network layer
information, it is possible for B to unicast the asymmetric
link discovery and maintenance information to A along the
shortest path from B to A [6]. This scheme is both bandwidth
and energy efficient compared to controlled flooding. How-
ever, stateful routing protocols require each wireless node to
maintain states for all other nodes in the network, which is
often too expensive to be implemented in low power sensor
networks.

This approach can also lead to a deadlock situation where
some routes exist only when some asymmetric links are
discovered, while the discovery of those asymmetric links
requires the routes to exist first.

Consider the case of three nodes A, B and C shown in
Figure 3. The link between node A and C is symmetric link.
The link between A and B is asymmetric (A to B is good),
and the link between B and C is asymmetric (B to C is good).
When B finds that A is a good incoming neighbor, and wants
to forward this information to A, it can not find any route to
A, unless the link from B to C is discovered first. However,
when C wants to tell B the information about the link from B
to C, it can not find any route to B, unless the link from A to
B is discovered first. This deadlock will result in neither of the
two asymmetric links being discovered. We will show in the
next section that this can be solved by our proposed Source
Specified Relaying (SSR) scheme, because it uses only link
layer information.

3) Volunteer Relaying: In [4], Sang et al. propose volunteer
relaying for information feedback. In their scheme, each node
need to monitor all links of its 1-hop neighbors to identify
asymmetric links among them. Again take Figure 3 as an
example. Node C can be aware of the fact that the link between
A and B is asymmetric, as C can receive both A and B’s
beacon. By examining their beacons, C finds that B’s beacon
includes A while A’s beacon does not include B. If C also
knows that its link quality to A is good, it will volunteer itself
to relay the link discovery and maintenance information to A
for B.

This scheme is inefficient in two ways. First, suppose each
node has n neighbors, this requires the node to keep states
for O(n2) links, which can be expensive in a dense sensor
network. Second, due to the fact that more than one neighbors
may volunteer themselves, the scheme can cause unnecessary
duplicates. Though suppression techniques may be employed

to reduce duplication, the performance will rely on the effi-
ciency of the suppression technique, and all volunteer nodes
need to keep even more states for suppression.

Also, implementation wise, this scheme is sensitive to the
predetermined parameter of relaying threshold. C volunteers
itself only when its link quality (PRR) to A is good enough.
The given implementation sets the threshold value to 80%.
If this threshold is set too low, a non-optimal neighbor (with
low PRR to A) may volunteer itself to help A before a better
node volunteers. If the value is set too high, even a good
enough neighbor may be disqualified and the link will not be
discovered.

D. Unicast Probing for ARR Measurement

One way to resolve the inaccurate ARR estimation in
BAP is to use unicast probing. Unicast based link quality
measurement is the most accurate scheme because it measures
the link quality (PRR × ARR) in the exact way that the
link is being used. However, unicast probing incurs per-pair
overhead in link estimation, which does not scale as well as
BAP. The overhead of unicast probing may be reduced by
techniques such as opportunistically exploiting real traffic and
cross traffic, as suggested in [3].

IV. ASYMMETRIC-LINK AWARE LINK DISCOVERY AND
EXPLOITATION

As stated in the previous section, although BAP is efficient
in discovering and exploiting symmetric links, it has various
drawbacks when dealing with asymmetric links. In this sec-
tion, we propose an efficient link discovery and exploitation
scheme. In our work, BAP is still used for symmetric link
discovery and exploitation. We propose two techniques to
work together with BAP and efficiently resolve the deficiencies
of BAP.

First, we introduce an efficient information feedback scheme
over poor links called Source Specified Relay (SSR). SSR
opportunistically makes use of the local information at the link
layer for asymmetric link discovery and exploitation. Unlike
the existing relaying protocols which have either large com-
munication cost (controlled flooding), or large memory cost
(unicast routing and volunteer relaying), SSR needs almost no
extra communication and memory cost. Second, we propose
Dynamic Driven Maintenance (DDM) which adaptively
switches between BAP, SSR-enabled BAP and unicast probing
for link maintenance under different link conditions. ARR
can also be more accurately estimated by adapting different
schemes under different conditions.

In the rest of this section, we will present SSR and DDM
in detail.

A. Source Specified Relay (SSR)

SSR serves mainly as an information feedback mechanism
over the poor direction of an asymmetric links. It opportunisti-
cally makes use of the local information at link layer to find the
relay nodes for information feedback over the poor direction
of the asymmetric link.

5

A B

X

A: Beacon (X, …)

B: Neighbor Table

X

A

...

A: Neighbor Table

X

...

...

B: Beacon (X, A, …)

Fig. 4. Source specified relaying

SSR is better explained using the example shown in Figure
4. Let the link between A and B be asymmetric (A to B
is the good direction). B needs to find a common neighbor
(X) of A and B who can help relay the neighbor discovery
message from B to A. If possible, X shall be the best among
all common neighbors of A and B considering both the link
qualities from B to X and X to A. In other words, X must be
in both A and B’s neighbor tables and has the largest product
of PRR from B to X (B’s outbound link quality) and PRR
from X to A (A’s inbound link quality).

As shown in Figure 4, B knows who are its neighbors
as well as its outbound link quality to these neighbors. The
outbound link quality of its neighbors are obtained via link
quality feedback from these neighbors through BAP.

On the other hand, B has to know A’s neighbor as well
as the inbound link quality from A’s neighbor to A before
it can decide who is the best common neighbor for relaying.
Fortunately, this information is provided by A’s link quality
feedback beacons to A’s neighbors. Because the link quality
from A to B is good, B can consistently hear A’s link quality
feedback beacons. It is then possible for B to check the
intersections (common neighbors) of its own neighbor table
and A’s feedback beacon packets and find the best X . After
X is identified, B can directly request X to relay its beacon
to A.

In SSR, B does not need to maintain A’s neighbor table
because the table is broadcasted by A periodically in A’s
beacons. Upon inserting A into its table, B can already begin
to search for X every time B receives a beacon from A. Thus,
once SSR is triggered, B can immediately use the identified
optimal relay node to forward packet to A. This identify-while-
wait scheme is especially useful when it takes the other node
(A) several beacons to broadcast its entire neighbor table. Note
that, as all of the above information are already available in
BAP, there is almost no extra cost. This process is illustrated in
Figure 5(a). Note that SSR does not require the link between
A and X , as well as X and B to be symmetric links. Thus, a
just discovered asymmetric link can be used to discover new
asymmetric links.

Consider the example in Figure 3 again, when node C
wants to feed back B about the asymmetric link between
them, it will intersect B’s inbound neighbors with its outbound
neighbors, and find A as the relay node. Once the asymmetric
link between B and C is discovered, B can use C to forward
beacon to A. Thus, the asymmetric link between A and B can
also be discovered.

The weakness of SSR is similar to the volunteer relaying

A B

No B

No B

No B
A

A

A

X

A

(a) Normal Discovery

No B

No B

No B

A

A

A

A

A BX

(b) False Discovery

No B

No B

No B

A

A

No B
No A

No A

A B

(c) Early Eviction

Fig. 5. Triggering of asymmetric link discovery. Solid arrow: the packet is
received successfully. White arrow: the packet is lost. Shaded circle: the other
side is in neighbor table. White circle: the other side is not in neighbor table.

scheme. It works only if X exists. Our evaluation in Section
VI shows that, the existence probability of relay node is
high (more than 80%) as long as the network density is not
too sparse. Note that there are cases where the asymmetric
links cannot be discovered by SSR (and volunteer routing)
even though they can be discovered by two-hop flooding. For
example, if the link between A and C in Figure 3 is also an
asymmetric link (C to A is good direction), both SSR and
volunteer routing cannot discover any of the three asymmetric
links, while two-hop flooding can.

B. Dynamic Driven Maintenance (DDM)

Based on discussions in previous sections, it can be seen that
the three schemes (BAP, BAP with relaying feedback, Unicast
probing) are suitable for different scenarios. In particular, BAP
should be used when the links are good in both directions,
relaying feedback (SSR) should be used together with BAP
when BAP alone is not efficient for link quality feedback over
poor links, and unicast probes should be applied when PRR
is so small that ARR cannot be accurately estimated.

DDM tradeoffs accuracy and efficiency by dynamically and
adaptively using broadcast probing (BAP), SSR-enabled BAP
and unicast probing.

The design of DDM is motivated by the fact that the
asymmetric link can be a temporal phenomenon. The poor
direction’s PRR (using the same example, B to A is the poor
direction) can vary. When PRR of an asymmetric link over the
poor direction (from B to A) is higher than some threshold
(B is able to know this information from A’s beacons), say
Qgood, the link is more likely to be a symmetric link, BAP
is more sufficient for link maintenance. The ARR can also be
inferred with relatively high accuracy from PRR.

On the other hand, if the PRR (from B to A) is lower
than the threshold Qgood (direct feedback is less efficient than
relaying), DDM chooses to maintain the link using broadcast
but with the help of SSR to improve information feedback
efficiency. For example, B will use SSR to identify a relay
node that relays the link quality information (from A to B)
back to A.

Lastly, in an ACK-enabled network, when PRR from B to
A drops below a threshold, say Qbad (the ARR cannot be

6

Unicast

probing

BAP

PRR
In
 < Q
bad

PRR
In
 >
Q
good

BAP with

SSR

P
R
R
 I
n

<

Q

b
a
d

P
R
R
I
n

>

Q
g
o
o
d

Q
b
a
d

<

P
R
R
I
n
 <

Q
g
o
o
d

Q
b
a
d

<

P

R
R
 I
n

<

Q

g
o
o

d

Fig. 6. DDM flow with respect to a single neighbor

accurately estimated directly from PRR), node A transits to
use unicast probing to maintain the forward link to node B.
In this situation, the ARR over the poor direction (from B to
A) can be measured much more accurately.

Note that, when unicast probing is used for link quality
measurement (the PRR × ARR from A to B), B still needs
to update A about its own routing metric. SSR can be used
for the routing metric update. More details about this will be
discussed in Section V-C.

The control flow of DDM with respect to a single neighbor
is shown in Figure 6. To improve stability, our implementation
includes a hysteresis threshold in triggering the state change.

V. MEMORY CONSTRAINTS AND ASYMMETRY-AWARE
CACHING (AAC)

Typical WSN platforms have limited memory. Most sensor
node designs have just a few kilobytes of RAM. For example,
the MICA2 and MICAz motes have only 4KB of RAM, and
the Telosb motes have only 10KB of RAM. This, in turn,
imposes limits on the storage requirements of network (and
other) protocols, requiring routing tables, buffering, and caches
be kept small. The historical trends of monetary and energy
costs suggest these constraints are likely to last [13].

As a result, the amount of resource dedicated to neighbor-
hood management should also be very small. As such, the
default neighbor table sizes are 16 and 10 in TinyOS 1.x
and 2.x respectively. Such limitations often mean the motes
cannot store state for all possible neighbors [14]. In addition,
in order to reduce the complexity, the link status (and routing)
information must be maintained in a table with constant
space regardless of cell density [11]. The use of small table
size also helps to reduce state maintenance/computation and
communication overhead needed to keep the state information
up-to-date.

Therefore, even with good asymmetric link discovery and
proper link maintenance, it is essential that the neighbor
table management is also aware of asymmetric links, in
particular, when using a small, fixed size neighbor table.
Improper neighbor management can cause symmetric links to
be incorrectly identified as asymmetric links (false discovery),
and asymmetric links to be evicted before it is discovered
(early eviction). In this section, we propose Asymmetry-Aware
Caching (AAC) to work with SSR and DDM proposed in
previous section, so that both symmetric and asymmetric links
are discovered and exploited efficiently. The name AAC comes

from the fact that the neighbor table functions like a kind of
cache of desirable links [11].

A. False Discovery

As mentioned in Section III, for an asymmetric link between
node A and B (A to B is good direction), B triggers
asymmetric link discovery (SSR) when it finds itself not in
A’s beacons. However, if neighbor table size is limited, the
fact that B is not in A’s feedback beacons does not necessarily
imply A cannot hear B. It can also be because A has no space
to maintain B in its neighbor table. We call the phenomenon
that the link quality from B to A is sufficiently good while B
still triggers the asymmetric link discovery as a false discovery.
This is shown in Figure 5(b). False discovery is not desirable
because it introduces unnecessary forwarding overheads.

AAC suppresses false discovery by adding a small field in
each node’s beacon: table entry threshold. This threshold is
computed as the smallest (outbound) PRR of all neighbors
kept in the table. For a given node A, if (and only if) a new
neighbor B’s quality (in terms of A’s PRR to B) is higher
than A’s table entry threshold, B is guaranteed to enter A’s
table (possibly with some existing entry in the table evicted).

Under AAC, before a node B sends feedback to a newly
discovered neighbor A, it first compares the PRR from A with
the latest table entry threshold announced by A. If the PRR
from A is lower than the threshold, B suppresses the sending
of feedback. This is because, even if the feedback is sent, it
will not be used by A. In contrast, if the PRR from A is
higher than A’s table entry threshold, B puts A (with PRR) in
feedback beacons. When A receives this feedback, it puts B
into table, and feeds back B. Thus, if B does not find itself
in A’s feedback beacon after it sends out its feedback to A, it
can safely infer that its feedback is not received by A. When
such situation happens repeatedly, B starts the asymmetric link
discovery using SSR.

Broadcasting table entry threshold can greatly reduce the
probability of false discovery under neighbor table size con-
straints. In addition, note that even if a symmetric link is
falsely identified as asymmetric link, DDM can ensure that
it quickly switches back to BAP maintained states.

B. Early Eviction

If the reverse link is good, broadcast-based discovery is
less expensive than SSR discovery as the latter incurs un-
necessary relaying. Thus, when one node begins to feedback
a new neighbor, it will firstly use broadcast feedback. SSR
is triggered only when the neighbor fails to be notified after
several retrials. During this testing period, the outbound link
quality towards that new neighbor is unknown. When neighbor
table size is limited, such neighbor is easily evicted from table
by existing neighbor table schemes. If an asymmetric link is
evicted during testing period (before SSR is invoked), we call
it an early eviction.

For example, in TinyOS 1.x implementation, when the
neighbor table overflows, the neighbor with least outbound
PRR is evicted. In TinyOS 2.x implementation, the neighbor

7
with least product of inbound and outbound PRR is evicted. In
both cases, a neighbor without outbound link quality is easily
evicted, even if its inbound link quality is high. Early eviction
reduces the number of asymmetric links found, and increases
the delay for asymmetric link discovery.

AAC reduces early eviction by preventing a neighbor from
being removed before its status can be clearly determined. Due
to lack of space, the detail logic and state transition will not
be presented here.

C. Stateless Routing Metric Feedback

A final problem with neighbor table size constraint is that
when SSR is to be applied on routing metric feedback during
maintenance stage as shown in Figure 4, the receiving end of
the good link, in this case node B, must keep node A in its
neighbor table. Otherwise, when B’s routing metric changes,
node B does not know that it needs to update A. This is
because that the broadcast-based method for routing metric
update does not work well due to the asymmetric link, and B
has to use SSR to send its routing metric to A.

Note that even if B maintains A’s state, which is not
desirable when the neighbor table size is limited, it is still
not able to execute SSR immediately, because it needs time to
find the relay node X to node A. Depending on the length of
interval that node A takes to dump its whole neighbor table
into feedback beacons, the delay can be quite large.

When to trigger B to send feedback, and how to find the
relay from B to A are two issues address by the Stateless
Routing Metric Feedback scheme. Here stateless refers to the
fact that B does not need to maintain any state about A.

In the scheme, we take advantage of the fact that, when
B evicts A out of its neighbor table, node A must use
unicast probing in DDM to maintain the link quality. We
achieve stateless routing update by opportunistically using the
(free) unicast probing packets from A to B. Node A puts
two additional information into the unicast packet: the latest
link/routing information of B as known by A, and the identity
of node X that can serve as a relay from node B to node A.
Upon receiving such a unicast probe from A, node B checks
whether the information as reported by A is outdated, and will
start a relayed feedback to A via X if it is outdated.

The remaining question is how A computes X . In fact, it is
done in a similar way as SSR. The idea is shown in Figure 7.
A is able to know that an inbound neighbor X is suitable for
relaying, because A knows the inbound link quality from X
to A (recorded in A’s own neighbor table), as well as the link
quality from B to X (announced in X’s feedback beacons).
To find the optimal relay X , A simply searches for B in each
beacon that it receives from its neighbors.

VI. PERFORMANCE EVALUATION

We first evaluate the performance of SSR, followed by eval-
uation of AAC with constrained table size using simulation.
Then, we study the performance of DEAL (SSR, DDM and
AAC as a whole) using routing performance as the benchmark
by both simulation and testbed evaluation.

A B

X

B: Neighbor Table

X

...

...

A: Neighbor Table

X

B

...

X: Neighbor Table

A

B

...

X: Beacon (A, B, …)

A: Unicast (X, Routing Metric)

Fig. 7. Stateless routing metric feedback

 0

 50

 100

 150

 200

 250

 300

 350

 400

 10 20 30 40 50 60

A
vg

 m
em

or
y

ov
er

he
ad

 p
er

 n
od

e

Neighborhood size

CF-2Hop
VR

SSR

(a) Memory overhead vs. neighborhood sizes

40

35

30

25

20

15

10

5
2
0

 10 20 30 40 50 60A
vg

 tr
af

fic
 o

ve
rh

ea
d

pe
r

as
ym

. l
in

k

Neighborhood size

CF-2Hop
VR

SSR

(b) Communication overhead vs. neighborhood
sizes

Fig. 8. Performance of SSR

A. Evaluation of SSR

We evaluate the performance of SSR using TOSSIM [15].
In the simulation, nodes are generated randomly in a 150m×
150m square field and link qualities among nodes are gener-
ated based on the empirical measurements collected from our
MICA2 testbed. Table size is set to 16.

The performance of SSR is compared with 2-hop con-
trolled flooding (CF-2Hop) and volunteer relaying (VR) using
three metrics: percentage of asymmetric links that can be
discovered, memory required at each node and communication
overhead. The neighborhood size is varied by changing the
number of nodes generated. Each point is the average of 100
runs.

In terms of percentage of asymmetric links found, the result
shows that 2-hop controlled flooding discovered 99.5% of
the links, SSR 94.5% and VR 82%. SSR discovers more
asymmetric links than VR, because when there is no relay
nodes with PRR higher than 0.8, SSR automatically finds the
optimal relay node among those available, while in VR, no
node will volunteer as relay.

Figure 8(a) plots the average memory required per node over
different neighborhood sizes. Controlled flooding does not

8

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 20 30 40 50

N
um

be
r

of
 a

sy
m

. l
in

ks
 d

is
co

ve
re

d

Neighborhood size

TOS2+SSR
DEAL

|Asym. Links|

(a) Asym. link found vs. neighborhood size

 0

 100

 200

 300

 400

 500

 600

 10 20 30 40 50

N
um

be
r

of
 fa

ls
e

di
sc

ov
er

ie
s

Neighborhood size

TOS2+SSR
DEAL

(b) False discoveries vs. neighborhood size

 0

 500

 1000

 1500

 2000

 0 300 600 900 1200 1500 1800

N
um

be
r

of
 a

sy
m

. l
in

ks
 d

is
co

ve
re

d

Simulation time (seconds)

TOS2+SSR
DEAL

(c) Asymmetric link discovery time

Fig. 9. Performance of AAC

require any additional memory consumption. As SSR needs to
record selected relay nodes in the neighbor table, it consumes
a small amount of memory for each table entry. On the other
hand, in order to volunteer their services, nodes in VR have to
monitor all links in their neighborhood. As a result, it incurs
the highest memory overhead. In fact, when neighborhood size
increases by n, the memory overhead of VR can increase by
O(n2).

Figure 8(b) plots the average communication overhead
incurred to discover one asymmetric link. The communication
overhead for 2-hop controlled flooding is the highest since all
neighboring nodes forward the packet. For volunteer relaying,
Figure 8(b) shows the worst case average communication
overhead per asymmetric link, as we do not employ any
relay suppression. The value shown is the number of duplicate
relay nodes. For SSR, as only one relay node is selected, the
communication overhead per link is constant.

Overall, the results show that SSR is able to discover
most of the asymmetric links with very low memory and
communication overhead compared to CF-2Hop and VR.

B. Evaluation of AAC

This section evaluates the performance of DEAL when the
neighbor table size is constrained. Simulation setup is the
same as the previous section. To make a fair comparison, we
implemented SSR in TinyOS 2.x and compare it to DEAL
(SSR+DDM+AAC). Therefore, we allow TinyOS 2.x to make
use of SSR for asymmetric link discovery, while using its
default neighbor table management scheme. In the simulation,
the neighbor table size is set to 20. (This is larger than the
default values of 16 in TinyOS 1.x and 10 in TinyOS 2.x).
The average neighborhood size is varied from 10 to 50.

Figure 9(a) shows the number of asymmetric links dis-
covered by DEAL and TinyOS 2.x with SSR. When the
neighborhood size is smaller than 20, the two protocols have
similar performance, where most of the asymmetric links are
discovered. This is because the neighbor table size is larger
than the average neighborhood size and there is very little
overflow in the neighbor table.

However, when the neighborhood size increases further, the
performance of TinyOS 2.x with SSR drops rapidly. In fact, the
total number of asymmetric links discovered does not increase
when the average neighborhood size increases beyond 30. This

is because most asymmetric links are evicted from the table
before they can be discovered.

On the other hand, with a better table management policy,
DEAL can continue to discover more asymmetric links even
as the average neighborhood size increases to 50, more than
2 times the neighbor table size of 20.

Figure 9(b) shows the number of false discoveries (as
defined in Section V-A) for TinyOS 2.x with SSR as well
as DEAL. The results clearly show that DEAL has a much
smaller number of false positives compare to TinyOS 2.x.
Taking the results of the figures together, when the average
neighborhood size is large, say 50, DEAL discovers over 2500
asymmetric links with only 100 false positives, while TinyOS
2.x with SSR discovers about only 800 asymmetric links with
about 550 false positives!

Figure 9(c) shows the number of asymmetric link discovered
over time, when the neighborhood size is 40. It can be seen
that DEAL discovers more asymmetric links in a shorter time.
After 300 seconds (30 beacon intervals), DEAL discovers
more than 80% of asymmetric links, compare to around only
30% for TinyOS 2.x.

C. Routing Performance Evaluation of DEAL

In this section, we evaluate the end-to-end performance of
DEAL using a data collection tree application and ETX (prod-
ucts of PRR and ARR) as the routing metric. For performance
comparison, we use the default TinyOS 2.0 implementation
using the product of PRRs as routing metric (TOS2+PRR), and
the default TinyOS 2.0 implementation using ETX as routing
metric (TOS2+ARR). Note that the same default TinyOS
routing algorithm is used in all the three schemes.

Figure 10 plots the average path ETX values for the three
schemes with increasing average neighborhood size. The result
shows that for different neighborhood sizes, DEAL outper-
forms the other two scheme. The average reduction in path
ETX is 25% and 10% over TOS2+PRR and TOS2+ARR
respectively. The performance gap between TOS2+PRR and
TOS2+ARR shows the importance of estimating ARR accu-
rately (the purpose of incorporating DDM into DEAL). Similar
performance improvement can also be observed for end-to-end
data transmission delay and average hop count.

Figure 11 plots the ETX reduction comparing DEAL and
TOS2+ARR of different runs for the case when the average
neighborhood size is 20. It can be seen that the average path

9

 6

 7

 8

 9

 10

 11

 12

 13

 10 20 30 40 50

A
ve

ra
ge

 p
at

h
E

T
X

Neighborhood size

TOS2+PRR
TOS2+ARR

DEAL

Fig. 10. ETX reduction vs. neighborhood size

12 13 14 15 17 18 19 20

A
vg

 p
at

h
E

T
X

 r
ed

uc
tio

n

16

Runs

 0%

 5%

 10%

 15%

 20%

 25%

 30%

1 2 3 4 5 6 7 8 9 10 11

Fig. 11. ETX reduction for each run

ETX can be reduced by up to more than 20% in some cases. In
cases with substantial ETX reduction, there exist a number of
long asymmetric links pointing towards the sink. On the other
hand, in cases where the improvement is small, the asymmetric
links tend to be pointing away from the sink, making them less
useful.

D. Testbed Evaluation

In this section, we compare the performance of the default
implementation of TinyOS 2.x and DEAL on a Telosb (which
has the same radio as MICAz) testbed with 16 nodes. The
testbed is installed in an open indoor area, and each node is
connected to the AC power. The nodes are mounted from the
ceiling and there is line-of-sight between most pair of nodes.
The nodes can be remotely accessed for easy experimental
data collection.

When sensor nodes are battery-powered, the batteries on
these nodes drain at different rates. Typically, nodes closer
to the sink encounter faster energy depletion rate. Our mea-
surements on battery powered sensor nodes indicated that as
the battery power drained, PRR decreases. In order to simulate
such effect, we vary the transmission power on selected nodes.

Starting from the situation where all nodes are using high
power (−15dbm), we randomly pick one additional node to
reduce its power to −25dbm. Nodes closer to the sink tends
to be picked earlier. With 16 nodes, there are 17 sets of
experiments.

The result is shown in Figure 12. It can be seen that
DEAL generally achieves better performance (in terms of
lower ETX) than the default TinyOS 2.x implementation. This
is especially true when the nodes around the sinks start using
low power. The largest improvement in path ETX is about 21%
comparing to TinyOS 2.x. The better performance of DEAL
can be attributed to the fact that adopting of asymmetric links
decreases the average hop count of the network.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12 14 16 18

A
ve

ra
ge

 p
at

h
E

T
X

Rounds

TOS2
DEAL

Fig. 12. Testbed evaluation

VII. CONCLUSION

This paper systematically addresses the problem of exploit-
ing asymmetric links in link layer. We propose DEAL to
discover and maintain asymmetric links both accurately and
efficiently. DEAL consists of SSR, a scheme for information
feedback over the poor direction of an asymmetric link; DDM,
a scheme for both efficiency link maintenance and accurate
ARR estimation; and AAC, a scheme for limited neighbor
table size handling. We implement DEAL in TinyOS, and
study its impacts on a tree collection application. Simulation
and evaluation results show that more than 80% of asymmetric
links are discovered and exploited with minimum overhead,
which improves routing layer packet delivery efficiency by up
to more than 20%. Testbed evaluation also shows that DEAL
improves the network routing performance by identifying
useful asymmetric links.

REFERENCES

[1] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, and D. Estrin,
“Complex behavior at scale: An experimental study of low-power
wireless sensor networks,” UCLA/CSD,” Technical Report, 2002.

[2] J. Zhao and R. Govindan, “Understanding packet delivery performance
in dense wireless sensor networks,” in ACM Sensys03.

[3] K.-H. Kim and K. G. Shin, “On accurate measurement of link quality
in multi-hop wireless mesh networks,” in ACM Mobicom’06.

[4] L. Sang, A. Arora, and H. Zhang, “On exploiting asymmetric wireless
links via one-way estimation,” in ACM Mobihoc’07.

[5] G. Zhou, T. He, S. Krishnamurthy, and J. Stankovic, “Impact of radio
irregularity on wireless sensor networks,” in ACM Mobisys’04.

[6] M. R. Pearlman, Z. J. Haas, and B. P. Manvell, “Using multi-hop
acknowledgements to discover and reliably communicate over unidi-
rectional links in ad hoc networks,” in WCNC’00.

[7] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris, “Link-level
measurements from an 802.11b mesh network,” in ACM Sigcomm’04.

[8] K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis, “Understanding the
causes of packet delivery success and failure in dense wireless sensor
networks,” in ACM Sensys’06.

[9] K. Srinivasan and P. Levis, “Rssi is under appreciated,” in EmNets’06.
[10] S. Lee, B. Bhattacharjee, and S. Banerjee, “Efficient geographic routing

in multihop wireless networks,” in ACM MobiHoc’05.
[11] A. Woo, T. Tong, and D. Culler, “Taming the underlying challenges of

reliable multihop routing in sensor networks,” in ACM Sensys’03.
[12] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-

throughput path metric for multi-hop wireless routing,” in ACM Mo-
bicom’03.

[13] P. Levis, E. Brewer, D. Culler, D. Gay, S. Madden, N. Patel, J. Polastre,
S. Shenker, R. Szewczyk, and A. Woo, “The emergence of a networking
primitive in wireless sensor networks,” Communication of the ACM,
2008.

[14] R. Fonseca, O. Gnawali, K. Jamieson, and P. Levis, “Four-bit wireless
link estimation,” Tech. Rep.

[15] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: accurate and
scalable simulation of entire tinyOS applications,” in ACM Sensys’03.

