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Abstract— Coordination of cellular base stations (BS) with
overlapping coverage enables joint optimization of radio resource
allocation in a multiple cell environment. This paper extends
existing Proportional Fairness model for wired networks and
single wireless cell, to the context of multiple (probably hetero-
geneous) wireless cells with overlapping coverage. The proposed
fair allocation achieves both global Pareto optimality and inter-
cell fairness (load balance). However, the ideal allocation is not
practical as it requires a mobile station (MS) be simultaneously
associated with multiple BSs. Instead, we use a simple GLS
(Greedy Logarithmic Sum) scheme, which associates each new
arrival MS with only one BS, to approximate the optimal
allocation. Simulation result shows that GLS performs close to
optimal scheme in a wide range of network settings.

I. INTRODUCTION

Overlapping coverage of cellular base stations(BS) is a
common phenomenon in wireless communication systems. For
a particular radio access network, neighboring cells or sectors
overlap with each other. In addition, deployment and interoper-
ation of a wide array of wireless access networks, ranging from
3G network, WiMax, to 802.11 hotspots, opens the opportunity
of overlapping coverage from BSs using heterogeneous radio
access technologies. When neighboring (heterogeneous) BSs
can coordinate with each other, and (multi-radio) MSs can
flexibly associate with any one or even multiple of nearby BSs,
it is important to study the radio resource allocation model for
such multi-cell environment.

This paper extends existing proportional fairness framework
for wired networks [4] and single wireless cell [3], to the con-
text of multiple (probably heterogeneous) wireless cells with
overlapping coverage. The proposed fair allocation achieves
both global Pareto optimality and inter-cell fairness (load bal-
ance). However, the ideal allocation requires a multi-radio MS
be simultaneously associated with multiple BSs. Instead, we
show that a simple GLS (Greedy Logarithmic Sum) scheme
achieves performance close to the optimal allocation while
associating each MS to only one BS.

The rest of the paper is organized as follow. In Section
II, we review related works. Section III presents the ideal
proportional fairness model for multiple cells with overlapping
coverage. Section IV describes the GLS scheme and some
common heuristics. Performance of above schemes is evalu-
ated in Section V. Finally, we conclude in Section VI.

II. RELATED WORKS

The most common understanding of fairness in networking
literature is max-min fairness, which allocates rates as equal as
possible [1]. Although max-min fairness is Pareto-optimal, it
has been criticized to allocate too much resource to resource-
inefficient requests, thus not suitable for wireless communica-
tion systems which are characterized by scarce radio resource.
When some MSs in a cell use a lower bit rate than the others,
the performance of all MSs is considerably degraded to almost
the worst one [2]. Compared to max-min fairness, proportional
fairness [4] strikes a good balance between overall system
throughput and user fairness.

Definition(Proportional Fairness): A scheduling P is pro-
portionally fair if and only if, for any feasible scheduling S,
it satisfies: ∑

i∈I

R
(S)
i − R

(P )
i

R
(P )
i

≤ 0 (1)

where I is the user set, and R
(P )
i and R

(S)
i are the average

rates of user i allocated by scheduler P and S respectively.
Proportional fairness favors resource-efficient requests more
than max-min fairness, by allowing large sharing to increase
further, if the sum of the proportional changes is non-negative.

[4] shows that proportional fair scheduling scheme in (1)
is also the unique solution for a social utility optimization
problem:

P = arg max
S

∑
i∈I

Ui(R
(S)
i ) (2)

where the utility functions Ui(·) are logarithmic functions
of the allocated bandwidth. Traffic that exhibits such utility
function is often denoted as elastic traffic.

The utility maximization interpretation used in [4] suffers
from the disadvantages that user utilities are only known
in some qualitative sense. Instead, [6] considers bandwidth
directly rather than abstract utility functions using Nash
bargaining framework from cooperative game theory [7]. It
is shown that proportional fairness is an Nash Bargaining
Solution (NBS) out of all Pareto optimal points.

Proportional Fairness is implemented by opportunistic
scheduling in Qualcomm’s High Data Rate (HDR) system [3].
Instead of simultaneously serving multiple MSs and stabilizing
every MS’s received SINR through power control, HDR BS
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transmits packet data to one single MS every Transmit Time
Interval (TTI) using the maximum power. and scheduling
priority is given to MS i∗ with the highest data rate request
relative to its received data rate averaged over a time window,
according the equation:

i∗ = arg max
i∈I

ri

Ri
(3)

where ri is the instantaneous data rate. All MSs inform
BS instantaneous Channel Quality Indication (CQI) through
an uplink data rate request every TTI. Ri is the average
data rate. On one hand, by considering instantaneous rate ri,
PF scheduler allocates resources opportunistically to the MS
whose radio channel is experiencing a constructive multipath
fade to achieve user diversity gain. On the other hand, by
monitoring average throughput Ri, BS will raise the priority
of the MS which has not been transmitted for some time.
[3] shows that all MSs asymptotically get transmitted with
the same fraction of time under some symmetric assumptions
on their fading process. Most of successive research so far
consider single cell case.

For multi-cell setting, [5] extends HDR opportunistic
scheduling algorithm to multi-carrier system. Multi-carrier can
be viewed as a special case of overlapping environment. The
proposed algorithm is an opportunistic scheduling scheme
asymptotically approaching the ideal proportional inter-carrier
fairness allocation. After this paper is submitted, we notice the
publication of [8], which takes a similar approach as us. [8] fo-
cuses on 3G networks, thus they model user diversity gain and
single-BS association constraint in their optimization problem,
which thus becomes NP-hard and inapproximable. Instead,
we consider general wireless networks, which may consist of
heterogeneous radio access technologies (thus opportunistic
scheduling may not be implemented). Ideally we allow multi-
BS association so that the problem can be processed using
standard convex optimization techniques. In our simulation,
we focus on the impact of different overlapping settings.

III. PROPORTIONAL FAIRNESS FOR OVERLAPPING CELLS

Let us first briefly review Kelly’s proportional fairness
model. In a network with a set J of resources, and Cj is
the finite capacity of resource j, for j ∈ J . A route r is a
non-empty subject of J , and R is the set of possible routes.
Ajr = 1 if j ∈ r, i.e., resource j lies on route r, and Ajr = 0
otherwise. This defines a 0-1 matrix A = (Ajr, j ∈ J, r ∈ R).
A source-sink i can simultaneously use multiple paths, thus
it is defined as a non-empty subset of R. I is the set of
possible source-sinks. Hir = 1 if r ∈ i, i.e., route r serves
the source-sink i, and Hir = 0 otherwise. This defines a
0-1 matrix H = (Hir, i ∈ I, r ∈ R). For simplicity and
WLOG, each r ∈ R maps to a single i ∈ I such that
Hir = 1, i.e. every route r serves only a single source-sink
i. Suppose that if a rate xi is allocated to the source-sink i
then this has utility Ui(xi) to i, so that the aggregate utility
of rates x = (xi, i ∈ I) is

∑
i∈I Ui(xi). A flow pattern

y = (yr, r ∈ R) supports the rates x = (xi, i ∈ S) if Hy = x,

so that the flows over all routes serving the source-sink i
sum to the rate xi. A flow pattern y is feasible if y ≥ 0
and Ay ≤ C, so that the flow over routes through resource
j sum to not more than the capacity of resource j. To find
the proportional fairness rates is to solve the optimization
problem below by setting Ui(xi) = ln(xi).

ProportionalFair(U,H,A,C):

maximize
∑
i∈I

Ui(xi) s.t. Hy = x,Ay ≤ C, y ≥ 0 (4)

The objective function is differentiable and concave and the
feasible region is convex and compact; hence a unique solution
x exists and can be calculated numerically with the maturing
convex programming techniques (y is not necessary unique).

In wired networks, resource is characterized directly in
terms of bandwidth (such as a router’s interface forwarding
speed), and a resource can serve all routes passing it with same
efficiency. In contrast, wireless resource is characterized by, for
example, time slot or frequency spectrum. To support per unit
flow from different MSs, a single BS needs to use different
amount of radio resource because of the location dependent
and time varying channel condition. Thus, the definition of
matrix A in Kelly’s model should be generalized from a 0-1
matrix to a matrix with arbitrary non-negative entries. Ajr

is set to the amount of radio resource BS j used to support
per unit flow from route r. If MS is under poor channel
condition, more radio resource is required to support per unit
flow, i.e., Ajr is larger, while MS with good channel condition
has smaller Ajr. If resource j doesn’t lie on route r, still set
Ajr = 0. Ajr is subjected to change because of mobility and
channel variation, which makes resource allocation decision
difficult. In practice, an estimation of time-averaging channel
condition can be used for resource allocation decision, which
can be updated dynamically when new estimation is available.

Above modification of matrix A doesn’t change the nature
of ProportionalFair(U,H,A,C), hence standard convex pro-
gramming techniques can still apply just as in Kelly’s original
model. To further simplify the formalization, we assume all
sources are located in wired networks and all sinks are MSs.
Only the last hop (BS to MS) of every route is bottleneck,
thus the capacity constraint inequalities for resources in wired
networks can be removed from ProportionalFair(U,H,A,C)
without changing the feasible solution region. Given m BSs,
n MSs, and L links between them, each BS corresponds to
a resource, each MS corresponds to a sink-source, and each
link corresponds to a route. Thus A is a m × L matrix, and
H is a n × L matrix.

Figure 1 shows a simple example. There are two BSs
[M,N ] with overlapping coverage, four MSs [a, b, c, d], and
6 links [(a,M), (a,N), (b,M), (b,N), (c,M), (d,N)]. The
weight of link is the amount of resource required to support
per unit flow in this link (in comparison, wired network can
be viewed as a special case of uniform weight). Thus:
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Fig. 1. A simple example

A =
[

1 0 2 0 3 0
0 2 0 1 0 3

]
, H =




1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


.

Both M and N have capacity 1. The optimal solution is:
x = [1/2, 1/2, 1/6, 1/6]′, y = [1/2, 0, 0, 1/2, 1/6, 1/6]′. As
the load is symmetrically distributed, it’s observed that MS
a is served totally over route (a,M), and MS b is served over
route (b,N), both of which have better channel condition than
their alternatives. The solution of ProportionalFair(U,H,A,C)
is global Pareto optimal.

By considering proportional fairness in a global sense
(among all MSs), the solution of ProportionalFair(U,H,A,C)
also achieves inter-cell load balance. For example, if MS c
moves from area covered only by BS M to area covered only
by BS N , the traffic load becomes asymmetric, and BS N
is more congested than BS M . Route (c,M) is replaced by

(c,N) with weight still 3, then A =
[

1 0 2 0 0 0
0 2 0 1 3 3

]
,

while H is unchanged. The optimal solution becomes x =
[3/4, 3/8, 1/8, 1/8]′, y = [3/4, 0, 1/8, 1/4, 1/8, 1/8]′. Notice
that in this setting MS b is also served partially by BS M ,
because BS N is more congested than BS M . The optimal
solution adaptively distributes load from congested BS to other
BSs.

IV. GLS (GREEDY LOGARITHMIC SUM) SCHEME

The optimal solution for ProportionalFair(U,H,A,C) re-
quires MSs to be simultaneously assigned to multiple BSs,
which is hard to implement in practice. For example, software
defined radio can only associate with one BS at a time. The
complexity and instability of maintaining multiple association,
as well as the increased power consumption also prohibit this
approach.

In this section, we study resource allocation schemes which
associate each MS with only one BS. Under this constraint,
to maximize the logarithmic sum of all MSs’ data rate, every
single BS should maximize the logarithmic sum of data rate
over MSs which have been assigned to it. Thus, every BS
should allocate radio resource proportionally fair as in HDR.
The remaining problem is to decide for each MS with which
BS it should associate. As ProportionalFair(U,H,A,C) is to
maximize the logarithmic sum of data rate over all MSs, a
natural heuristic is to greedily associate arrival MS with the BS

which is selected so that the logarithmic sum of all MSs’ data
rate after the assignment is greedily maximized. We name this
scheme as GLS (Greedy Logarithmic Sum) scheme. Formally
GLS scheme assigns new arrival MS i to BS j∗ ∈ Ji:

j∗ = arg max
j∈Ji

(ln
Rij

|Ij |+1
+

∑
n∈Ij

(ln
Rnj

|Ij |+1
−ln

Rnj

|Ij | ))

= arg max
j∈Ji

(ln
Rij

|Ij |+1
−|Ij |∗ln(1+

1
|Ij | )) (5)

= arg max
j∈Ji

(ln Rij−ln
(|Ij |+1)|Ij |+1

|Ij ||Ij | ) (6)

where Ji is the set of BSs covering MS i, Ij is the set
of MSs associated to BS j before MS i arrives, and |Ij | is
its cardinality. Rnj is the full data rate of the wireless link
between MS n and BS j. When |Ij | = 0, the second terms in
both (5) and (6) are defined as zero.

The first term in (5) is the allocated data rate of MS i if
it is associated with BS j, taking into account both channel
condition (Rij) and congestion (|Ij |). The second term in (5)
takes fairness into consideration by accounting for the decrease
in allocation in existing MSs, for which the only information
required is the number of existing MSs. A selfish MS may
choose to associate with BS j̄ = arg maxj∈Ji

ln Rij

|Ij |+1 , i.e.,
greedily maximizes its individual allocated data rate regardless
of the social utility. We denote this as Non-Cooperative
scheme against GLS scheme in which MSs are cooperative.
The difference between social utility of Non-Cooperative and
GLS scheme after the decision is upper-bounded by the second
term in (5), which itself is upper bounded by 1.

Equation (6) separates Rij and |Ij |. Two common practices,
Best-Signal scheme and Least-Population scheme, choose the
first and second term as association criteria respectively. For
Best-Signal scheme, MS i is greedily associated with BS
ĵ = arg maxj∈Ji

Rij . Least-Population (LP) scheme, instead,
selects BS j̃ = arg minj∈Si

|Ij |.
V. SIMULATION

A. Setup

Our simulation is based on a 10 × 4 torus topology where
two grids of BSs are generated, and each grid consists of
5× 2 BSs, as shown in Figure 2. Grid-A of BSs are centered
at location (x, y), where both x and y are even integers.
Their coverage areas are marked by dash lines. Instead, both
coordinates of grid-B BSs’ center are odd integers. Their
coverage areas are circled by solid lines. Every BS covers
a disk with radius =

√
2. The percentage of area covered by

different number of overlapping BSs is calculated in Table I.

TABLE I

COVERAGE PROBABILITY

Number of BSs 1 2 3 4
Grid-A or Grid-B separately 42.92% 57.08% 0 0
Grid-A and Grid-B together 0 17.36% 51.12% 31.52%

MSs arrive following a Poisson distribution, and their
sojourn time follows an exponential distribution, which is



Fig. 2. BSs topology

assumed not affected by MS’s allocated bandwidth for simplic-
ity. Load ρ = E[|ActiveMS|]

|BS| is defined as the average number
of active MSs in the system divided by the number of BSs
(20). MS arrives randomly in the torus, and the set Ji of
BSs covering MS i are determined from MS i’s location.
To introduce asymmetry in traffic distribution, The 4 × 2
rectangular with vertices (0, 0) and (4, 2) (occupying 20%
of the whole torus) is selected as hot area. Among all MSs
generated, κ ≥ 20% are generated in this area. For BS j ∈ Ji,
the full rate Rij between MS i and BS j is a random variable
depending on varying channel condition. For simplicity, we
assume:

(1) Rij follows a uniform distribution U [Rmin, Rmax]
with mean µ = Rmin+Rmax

2 and standard deviation σ =√
3∗(Rmax−Rmin)

6 =
√

3∗(µ−Rmin)
3 ≤

√
3

3 µ.

(2) Grid-A and grid-B have different distribution parame-
ters, denoted as (µA, σA) and (µB , σB) respectively.

(3) In the coverage area of a specified BS j, the distribution
of Rij does not depend on location of MS i. For BS j ∈ Ji and
k ∈ Ji, Rij and Rik are independent. In real situation, path
loss, for example, introduces location dependent rate distribu-
tion and results in negative inter-BS rate covariance in many
topologies, which may stochastically increase the difference
between Rij and Rik, thus reduces the effective coverage area
of overlapping cells for rate-aware algorithms, while further
exposing the ignorance of rate-unaware algorithms. Results of
path loss simulations reveal this trend and are not shown here
to save space.

(4) Once MS i arrived, the BSs set Ji covering it and all
Rij for j ∈ Ji are fixed through MS i’s lifetime. Rij can be
interpreted as the average full rate from BS j through MS i’s
lifetime. To model the measure and prediction error, we use
another random variable R′

ij as the input to algorithms below.
R′

ij = αRij +(1−α)u where u is an i.i.d random variable of
Rij , and α ∈ [0, 1] tunes accuracy of R′

ij . It is easy to prove

that α = cov(Rij ,R′
ij)

σ(R′
ij)σ(Rij)

. Thus α is the statistical correlation of

R′
ij and Rij . When α = 0, R′

ij is statistically independent of
Rij . When α = 1, R′

ij is perfect estimation.

All parameters are summarized in Table II. Performance of
Coordinated Proportional Fairness (Ideal) scheme (calculated
using convex optimization), GLS scheme, Best-Signal scheme,
Least-Population scheme, and Non-Cooperative scheme are
compared.

TABLE II

EXPERIMENT PARAMETERS

Parameter default value range
Load ρ 5 > 0

Traffic asymmetry factor κ 20% (symmetrical) 20% - 100%

Grid-A Rij mean µA, 1Mbps, > 0Mbps;

standard deviation σA 0.2Mbps 0Mbps -
√

3
3

µA

Grid-B Rij mean µB , 1Mbps, > 0Mbps;

standard deviation σB 0.2Mbps 0Mbps -
√

3
3

µB

Estimation accuracy α 0.5 0 - 1

B. Numerical Results

Figure 3 plots the cumulative distribution function (with
arithmetic and geometric mean in parentheses) of per-flow
throughput under standard setting in Table II. Among all
schemes, Best-Signal scheme has the highest arithmetic mean
of throughput, because it greedily assigns each MS to the BS
providing the best channel condition. However, Best-Signal’s
geometric mean of throughput is lower than the ideal fairness
scheme, because of MSs associated with BSs which though
offer the best channel condition, but too crowded to allocate
enough radio resource to each of them. As shown in Figure
3, there are 22% of the flows in Best-Signal have throughput
lower than 150kbps, compared to 8% in ideal fairness.

GLS and Non-Cooperative scheme approximate ideal fair-
ness very well, because they consider both Rij and |Ij |.
Non-cooperative network performs similar to cooperative net-
work, because the second term in (5) is upper bounded.
This phenomenon exists for almost all simulations we con-
ducted. Least-Population performs poor in both arithmetic
and geometric mean of throughput, implying that traditional
load balancing technique is not applicable to wireless data
networks.

We also simulate Independent-Grid setting. In this setting,
there is no inter-operation between Grid-A and Grid-B, and
every MS must pre-define their type. Type-A MS can only
associate with Grid-A BSs, while Type-B MS can only asso-
ciate with Grid-B BSs. Load of type-A MSs ρA and type-B
MSs ρB are both set to ρ/2. It is shown that GLS scheme
under Independent-Grid performs worse than the standard
inter-operation setting, because of the smaller overlapping
probability. This suggests the benefits of overlapping coverage,
and also indicates the potential benefits of inter-operation
among (heterogeneous) radio access networks.

Since geometric mean of per-flow throughput embodies both
the overall system resource efficiency and fairness among
flows, following experiments compare geometric mean.

Figure 4 shows the impact of asymmetric traffic distribution.
The figure shows that GLS performs close to ideal scheme
even under highly asymmetric traffic distribution. Such ro-
bustness is expected for GLS since its objective function also
takes into account BS utilization. In comparison, performance
of Best-Signal deteriorates with increasing traffic asymmetry.

Figure 5 shows the impact of load ρ. The performance gap
between GLS and ideal fairness is getting smaller with in-
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creased traffic intensity. This is because GLS allocates resource
on a per MS basis. Hence, the larger the traffic load, the finer
the relative granularity of GLS, also the more chance GLS is
able to recompute or perform load balancing. In fact, the only
case that we observe obvious difference between ideal scheme
and GLS scheme is when the average number of MS per BS
is very small (e.g.≤ 3)

Figure 6 examines network heterogeneity by tuning µA from
1Mbps to 8Mbps. the relative performance gap Notice that
there is a strange drop of performance of Best-Signal when µA

increases from 1Mbps to 2Mbps, because with this setting
Best-Signal scheme shadows the relatively lower rate network
(Grid-B BSs) from associating MSs, thus accumulates all load
to Grid-A BSs. In comparison, other schemes can smoothly
exploit the increased capacity.

Rate estimation accuracy α and rate standard deviation σ
are also interesting. When σ = 0 or α = 0 with µA = µB ,
GLS and Non-Cooperative degenerate to Least-Population
scheme. When σ or α increase, relative performance of Least-
Population scheme decreases, while relative performance of
Best-Signal scheme increases. Figures are omitted to save
space.
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VI. CONCLUSION

In this paper, a general proportional fairness model is
formalized for elastic traffic in the context of multiple wireless
cells with overlapping coverage. And a simple GLS scheme
is proposed which approximates ideal fairness scheme closely
under a wide range of simulation settings.
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