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1 DMotivation

The source of meaning of formulas in the previous chapters were models. Once a
particular model is chosen, say a valuation for propositional logic, the meaning
of every formula can be investigated. The formula is considered to hold or not
to hold, depending on the given valuation, which assigns truth values T or F' to
every propositional atom in the formula.

Sometimes, we would like to consider different valuations to be related to
each other. For example, we would like to say that a particular proposition is
true now, but false in the next second, and remain false from then onwards.
In this case, one valuation characterizes the situation now, and another one
the situation in one second. Time provides the relationship between these two
situations. We can say that a proposition will always hold, if it holds in all
future situations.

As another example, we may want to describe scenarios that an agent consid-
ers believable, when considering certain facts. Here the agent’s belief structure
defines the relationship between two scenarios. An agent can then be said to
believe a proposition, given a scenario of facts, if the proposition holds in all
scenarios that he considers believable.

Thirdly, we may be interested in necessity and possibility. Here, a scenario is
considered possible based on a given situation, if the scenario is consistent with
some underlying framework of reality, such as the laws of physics, or philosoph-
ical concepts. A proposition would then be called necessarily true, if it holds in
all possible scenarios.

Ways of reasoning about situations or scenarios are called modalities. In the
modality of time, we will be able to express that a proposition always holds; in
the modality of belief, we will be able to say that an agent believes a proposition;
and in the modality of necessity, we will be able to say that a proposition is
necessarily true. We shall introduce modal logic to capture such modalities, by



first extending the syntax of propositional logic with modal operators, and then
formally define their semantics, based on situations (or scenarios).

2 Syntax

For simplicity, we limit our investigation to a propositional modal logic in this
lecture; a study of modal predicate logic is beyond the scope of this module. We
add two modal operators to the syntax of propositional logic, namely (0 and ¢.

Definition 1. For a given set A of propositional atoms, the set of well-formed
formulas in propositional modal logic is the least set F' that fulfills the following
rules:

e The constant symbols L and T are in F.

e FEvery element of A isin F.

o If ¢ isin F, then (—¢) is also in F.

o If ¢ and ¢ are in F, then (¢ A1) is also in F.
e If ¢ and ¢ are in F, then (¢ V1) is also in F.
o If ¢ and ¢ are in F, then (¢ — ) is also in F.
o If ¢ isin F, then (O¢) is also in F.

o If ¢ isin F, then (Oo) is also in F.

Depending on the modality that we are interested in, we may pronounce [l¢ as:
e ¢ holds now and always in the future (modality of time), or
e an agent A believes that ¢ holds (modality of belief), or
e ¢ necessarily holds (modality of necessity).

Recall that in propositional logic, not all operators are strictly required. We
could for example consider ¢ V 1) as an abbreviation of —(¢ A ¢). Thus a propo-
sitional logic with all operators except the V operator is not less expressive than
a propositional logic with all operators. We include V for the convenience of
succinctly expressing a disjunctive relationship between two formulas.

A similar situation holds for modal logic. We may consider {¢ to be an
abbreviation for —(0J(—¢)). For the sake of convenience, we include ¢ as an
operator, although it can be expressed in terms of [J.

Once we have decided to treat ¢¢ as an abbreviation for =(0(—¢)), we can
work out how to pronounce (¢ in our example modalities.

e If O¢ means that ¢ holds now and forever, then (¢ = —(0(—¢)) means
that it is not the case that —¢ holds now and forever. That means that
there is or will be some time at which ¢ holds.



e If (¢ means that an agent A believes ¢, then 0¢ = —(0(—¢)) means that
it is not the case that the agent believes —¢. In English, we may say that
A considers ¢ plausible.

e If O¢ means necessarily ¢, then ¢0¢ = —(0(—¢)) means that it not nec-
essarily the case that ¢ does not hold. In other words, ¢ may possibly
hold.

3 Semantics

We have seen that the goal of modal logic is to be able to reason about scenarios.
In different application domains, these scenarios have different relationships with
each other. For example, in the modality of time, a scenario x can be seen to
be related to a scenario y, written R(z,y), if y occurs at the same time as or a
later time than x. Since we operate in a propositional setting, each scenario is
characterized by a valuation, which is an assignment of propositional variables
to T or F. In modal logic, we call such scenarios worlds.

Definition 2. A model M over a particular set of propositional atoms A is:
e q set of worlds W,
e q binary relation R C W x W, called the accessibility relation, and

e a mapping called labeling function L : W — A — {T, F'}.

The following is a lightweight encoding of modal logic using Coq. We start
with representing worlds and the accessibility relation.

Parameter world : Type.

Parameter R : world -> world -> Prop.

Note that we do not specify how a “world” actually looks. A world is entirely
described by the operations in which it occurs, namely modal logic proposi-
tions.

Definition Proposition : Type := world -> Prop.

A proposition is a predicate that says whether it holds or does not hold in the
world to which it is applied.

Note that for any world € W, the application L(w) results in a function from
A to {T, F}, in other words a valuation. Models of modal logic that are based
on possible worlds are often called Kripke models in honour of the logician Saul
Kripke, who was instrumental in laying the foundation of modal logic.



Example 1. Consider the following Kripke model, where L lists the proposi-
tional atoms that evaluate to T in the respective world.

W = {m1,$2,$3,x4,$5,$6}
R {(x17x2)a (xlal'?))a (1'2,.’172), (.1'2,.’1}3>7 (.’1/'37.'132), (.'1,'4,555), (.’L‘5,I4), (:CE); xﬁ)}

L {(z1,{a}), (w2, {p 4}), (23, {P}), (x4, {q}), (w5, {}); (6, {P})}

We can depict the model graphically as follows.
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Formulas in modal logic do not simply evaluate to T or F', but do so relative to
a particular world . The following relation I formalizes this concept.

Definition 3. Let M = (W,R,L), x € W, and ¢ a formula in basic modal
logic. For any x € W, we define x |- ¢ via structural induction:

e x| T always holds,

o z |- L never holds; we write x I L

zlkp iffpe L(x)

zlk—¢ iff c I ¢

zlFpAY iff k¢ and x Ik

zlFoVY iffxl- ¢ orxl-

z - ¢ = Y iff x Ik ¢ implies that x I+ 1)

z |- O¢ iff for each y € W with R(x,y), we have y IF ¢
o x|k 0O iff there is a y € W such that R(z,y) and y I+ ¢.

Here the definition of x I Q¢ follows from our definition of ¢. If Q¢ is an
abbreviation for —(O-¢, then = IF Q¢ is defined by x IF —=[0-¢, which means
that = IF O-¢ does not hold. Thus, —¢ does not hold for all y € W with
R(z,y). This means that there is at least one y € W such that R(z,y) and

y Ik ¢.



Definition holds_in (w : world) (phi : Proposition) : Prop :=
phi w.

Notation "w ||- phi" := (holds_in w phi) (at level 30).

To express w I ¢, we apply the predicate holds_in, supported by the infix
notationw | |- phi. Thus, we can use the tactic unfold holds_in to apply
phi to w to see if phi holds in w.

Now we can define the basic (propositional) operators.

Definition Top : Proposition :=
fun w => True.

This means Top is true in all worlds. Similarly, Bot should be false in all
worlds.

Definition Bot : Proposition :=
fun w => False.

We proceed to define the syntax of propositional modal logic by explaining
what propositions result from negation, conjunction, disjunction and implica-
tion of other propositions.

Definition Neg (phi : Proposition) : Proposition :=
fun w => ~ (w ||- phi).
Notation "! phi" := (Neg phi) (at level 16).

Definition And (phi psi : Proposition) : Proposition :=
fun w => (w | |- phi) /\ (w ||- psi).
Notation "phi && psi" := (And phi psi).

Definition Or (phi psi : Proposition) : Proposition :=
fun w => (w | |- phi) \/ (w ||- psi).
Notation "phi || psi" := (Or phi psi).

Definition Impl (phi psi : Proposition) : Proposition :=
fun w => (w ||- phi) -> (w ||- psi).
Notation "phi --> psi" := (Impl phi psi) (at level 20, right associativity).

Finally, we define the modal operators [1 and { by using forall and exists
in Coq.



Definition Box (phi : Proposition) : Proposition :=
fun w => forall w’, R w w’ => (w’ ||- phi).

Notation "[] phi" := (Box phi) (at level 15).

Definition Diamond (phi : Proposition) : Proposition :=
fun w => exists w’, Rw w’ /\ (v’ ||- phi).

Notation "<> phi" := (Diamond phi) (at level 15).

Example 2. Consider the same Kripke model as presented in the previous

example.
xz
Ty
T3
T4 -
6
Z5
e r1lFgq

r1 - 0g, 1 I Ug
s I Op, x5 ¥ Og, x5 I Op Vv Oq, x5 IFO(p V q)

xg IF O holds for all ¢, but x¢ Iff O

By stating that p and q are Propositions, we are assuming that they either
hold in a world, or don't. In other words they behave like propositional atoms.

Section Example.

Parameter p q : Proposition.

After introducing the six worlds

Parameter x1 x2 x3 x4 x5 x6: world.

we proceed to describe R and L.



Hypothesis Kripke_example:
R x1 x2 /\ R x1 x3 /\ R x2 x3 /\
R x3 x2 /\ R x2 x2 /\ R x4 x5 /\
R x5 x4 /\ R x5 x6 /\

1 11-tp) /N (x1 |l-q /\
2 11-p) /N &2 11- @ /\
3 I1-p) /N &3 II-' @ /\
4 11-'p) /N x4 I1-@ /\
5 1=t p) /N x5 II- ' @ /\

6 Il-p) /\ x6 |- @

We can show z1 |- (g through Ji.

Lemma Kripke_example_1: x1 |[[|- <> q.
Proof.

unfold holds_in, Diamond.

exists x2.

tauto.

Qed.

End Example.

We said g IF O¢ holds for all ¢, but zg If O¢ Greek letters denote formulas,
and are not propositional atoms. Terms where Greek letters appear instead of
propositional atoms are called formula schemes.

Exercise 1. For each of the following formulas, give an example for a Kripke
model, in which the formula holds in all worlds of the model.

e OpA-lp

« OT

o 0L

e OpAOG— O(pAq)

Definition 4. A set of formulas T' entails a formula v of basic modal logic if,
in any world x of any model M = (W, R, L), whe have x |F ¢ whenever z I+ ¢
for all d €. We say T entails ¥ and write T = 1.

We write ¢ = ¢ if ¢ =1 and ¢ | ¢.

The following list states a few well-known equivalences.

e De Morgan rules: =g = $—¢, ~O¢ = 0o



e Distributivity of (1 over A:

O(¢ A ) = 0 A Db
e Distributivity of ¢ over V:

0@V ) =00V Oy

e T =T,0L=1
Exercise 2. Prove the distributivity of O over V using the definition of |=.

Definition 5. A formula ¢ is valid if it is true in every world of every model,

i.e. iff = ¢ holds.

In order to express validity in Coq, we use the definition of |= directly.

Definition valid (phi: Proposition) : Prop :=
forall w, w ||- phi.
Notation "|= phi" := (valid phi) (at level 30).

Examples of valid formulas:

e All valid formulas of propositional logic
0—¢ — -¢

o O(pA) — O ATy

O(@VY) = 0oV Oy

Formula K: O(¢ — ) A Q¢ — O

We prove the four formulas above in Coq.

Lemma DiamondNotNotBox: forall phi,
= <> (! phi) --> ! ([] phi).
Proof.
intros.
do 3 intro.
destruct H.
unfold holds_in,Box in HO.
spec HO x.
destruct H.
apply HO in H.
contradiction H.
Qed.



Lemma boxConj: forall phi psi,

= ([1 (phi && psi) --> (([] phi) && ([] psi))).

Proof.
intros.
intro.
intro.
unfold holds_in, And.
split.
intro.
intro.
spec H w’.
apply H in HO.
destruct HO.
trivial.
intro.
intro.
spec H w’.
apply H in HO.
destruct HO.
trivial.

Qed.

Lemma diamondDisj: forall phi psi,
= (<> (phi || psi) --> ((<> phi) || (<> psi))).
Proof.

intros.

intro.

intro.

destruct H.

destruct H.

unfold holds_in, Or.

unfold holds_in, Or in HO.
destruct HO.

left.

exists x.

auto.

right.

exists x.

auto.

Qed.



Lemma K : forall phi psi,

= ([ (phi --> psi)) --> [] phi --> [] psi.
Proof.

intros.

do 5 intro.

spec H w’ H1.

apply H.

apply HO.

trivial.
Qed.

The last formula is named K after Saul Kripke. It plays an important role as
the modal logic version of modus ponens. in modal logic.

4 Logic Engineering
We have seen that in a particular context ¢ could mean:
o It will always be true that ¢
e Agent @) believes that ¢
e [t is necessarily true that ¢
Other modalities allow us to express:
e It ought to be that ¢
e Agent Q knows that ¢
e After any execution of program P, ¢ holds.

Since Q¢ = —[0-¢, we can infer the meaning of { in each context.
O¢ 0o
It is necessarily true that ¢ It is possibly true that ¢
It will always be true that ¢ Sometime in the future ¢

It ought to be that ¢ It is permitted to be that ¢
Agent @ believes that ¢ ¢ is consistent with @’s beliefs
Agent Q knows that ¢ For all @Q knows, ¢

After any run of P, ¢ holds. After some run of P, ¢ holds

4.1 Valid Formulas wrt Modalities

In each modality, we can investigate whether particular formulas should be
considered valid. A close examination of the modalities allows us to build the
following table.
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G
o S SR g
O¢ RSP IR IR
It will always be that ¢ | x / X x X X 4/ X
Agent Q believes that ¢ | x v/ v v V X X
It is necessary that ¢ vV vV VoV X VX
It ought to be that ¢ X X X 3/ ox oy X
Agent Q knows that ¢ |/ v v vV V X X
X X

After running P, ¢

X X X X 4/ X

Thus by reasoning from known properties of a modality, we can infer the validity
of additional formulas in the modality.

4.2 Properties of R

We can also infer a “meaning” for the accessibility relation R by investigating the
respective modalities. For example, in the modality of time, R(x,y) expresses
that y is a future (or present) worlds of .

Do

R(z,y)

It will always be true that ¢
Agent Q believes that ¢

It is necessarily true that ¢

It ought to be that ¢

Agent QQ knows that ¢

After any execution of P, ¢
holds

y is a future world of x

y could be the actual world according to Q’s
beliefs at x

y is possible world according to info at z

y is an acceptable world according to the in-
formation at x

y could be the actual world according to Q’s
knowledge at x

y is a possible resulting state after execution
of P at «

Recall from the study of discrete mathematics that we can classify binary rela-
tions according to their properties.

o reflexive: for every x € W, we have R(z, x).

e symmetric: for every x,y € W, we have R(z,y) implies R(y, ).

e serial: for every x there is a y such that R(z,y).

e transitive: for every z,y,z € W, we have R(z,y) and R(y,z) imply

R(z,z).

e Euclidean: for every z,y,z € W with R(x,y) and R(z, z), we have R(y, z).

e functional: for each x there is a unique y such that R(z,y).
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e linear: for every z,y,z € W with R(z,y) and R(z, z), we have R(y, z) or
y =z or R(z,y).

e total: for every z,y € W, we have R(x,y) and R(y, z).

e equivalence: reflexive, symmetric and transitive.

Since we have connnected modalities to the validity of certain formulas on
the one hand, and to relations on the other hand, it will come as no surprise that
the validity of formulas corresponds to properties of the accessibility relation.
This relationship is the basis of correspondence theory.

4.3 Correspondence Theory

We would like to establish that some formulas hold whenever R has a particular
property. In order to investigate this relationship, it will be useful to be able
to ignore L, and only consider the (W, R) part of a model, which we will call a
frame. We shall then establish formula schemes based on properties of frames.

Theorem 1. Let F = (W, R) be a frame. The following statements are equiv-
alent:

1. R is reflexive;

2. F satisfies o — ¢;

3. F satisfies (p — p for any atom p
Proof.

1 = 2: Let R be reflexive. Let L be any labeling function; M = (W, R, L). We
need to show for any z: z IF O¢p — ¢.

Suppose x I O¢. Since R is reflexive, we have x IF ¢. Using the semantics
of — we can conclude: z IF O¢ — ¢

2 = 3: Just set ¢ to be p

3 = 1: Suppose the frame satisfies Op — p. Take any world x from W.

Choose a labeling function L such that p € L(x), but p € L(y) for all y
with y # x.

Proof by contradiction: Assume (z,x) € R. Then we would have z I Op,
but not z IF p. Contradiction!

O

In Coq, the proof is simpler than on paper.
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Lemma Theoreml:
(forall w, R w w) <-> forall phi, |= [] phi --> phi.
Proof.
split.
repeat intro.
auto.
repeat intro.
spec H (fun w> => R w w’).
apply H.
intro.
intro.
unfold holds_in.
trivial.
Qed.

The reverse direction is remarkable, since the proposition, with which the
hypothesis H is specialized, holds in a world w’ if and only if R w w’ holds.

Theorem 2. The following statements are equivalent:
e R is transitive;
o F satisfies ¢ — 0o,
o F satisfies Op — OOp for any atom p

Exercise 3. Provide a paper proof for Theorem 2.

Again, the Coq proof is simple, using a similar trick as for Theorem 1.

Lemma Theorem2:

(forall wil w2 w3, R wl w2 -> R w2 w3 -> R wl w3)
<=>

(forall phi, |= [] phi --> [1 [] phi).
Proof.

split.

repeat intro.

apply HO.

apply H with w’.

apply H1.

apply H2.

intros.

spec H (fun w’ => R wl w’) wl.

unfold Box,Impl,holds_in in H.

apply H with w2; auto.

Qed.

Exercise 4. Prove (on paper) that OL corresponds to R = 0.

13



Exercise 5. Conduct the proof using Coq.

Exercise 6. Find a property of R that corresponds to the formula OT. Prove
the correspondence on paper and using Coq.

The following table summarizes important correspondences. Note that names
on the left are traditional names of the formulas used in modal logic literature.

name formula scheme property of R
T Up — ¢ reflexive
B ¢ — 00 symmetric
D Up — 0o serial
4 U¢ — U0o transitive
5 O¢ — U0 Euclidean
(¢ — 0¢) A (O — Oo) functional

O(¢AOp — ¥) VOW ADY — ¢)  linear
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