MA 3219 - Computability Theory

Frank Stephan. Departments of Computer Science and Mathematics, National University of Singapore, 3 Science Drive 2, Singapore 117543, Republic of Singapore

Email fstephan@comp.nus.edu.sg
Webpage http://www. comp.nus.edu.sg/~fstephan/computability.html
Telephone office $+65-6874-7354$
Office room number S14\#06-06
Office hours Thursday 15.00-17.00h
Assignment for 30.03.2005. Can be corrected on request, it is not obligatory to hand the homework in.

1. Recursively Enumerable Sets. Let A be recursively enumerable and undecidable set and B be any set such that the symmetric difference $A \Delta B=(A \cup B)-(A \cap B)$ is finite. Show that B is then also recursively enumerable and that $B \leq_{m} A$.
2. Productive Sets. Consider the set $E=\left\{e: W_{e}\right.$ is recursive $\}$. Show that E is productive by constructing a function f such that

$$
e \notin K \Leftrightarrow f(e) \in E
$$

and applying an appropriate theorem of the lecture. Show furthermore that also the complement $\bar{E}=\left\{e: W_{e}\right.$ is not recursive $\}$ is productive.
3. Creative Sets. Let π be a computable bijection from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} and let A and B be creative sets. Consider the following sets C, I and U :

- $C=\{x: x \notin A\} ;$
- $I=\{\pi(x, y): x \in A$ and $y \in B\}$;
- $U=\{\pi(x, y): x \in A$ or $y \in B\}$.

Which of these three sets are creative. Prove your answers.
4. Simple Sets. (a) Show that the set $\left\{x: \exists e \exists y\left(\phi_{e}(y) \downarrow=x \wedge 2 \cdot(e+y)^{2}<x\right)\right\}$ is simple.
(b) Prove that for every simple set A and every r.e. set B, either $A \cap B$ is infinite or B is finite.
(c) Let A be simple. Prove that there is a set $B \leq_{m} A$ such that B is neither simple nor recursive.
(d) Let A be simple, $a \notin A$ and $B=A \cup\{a\}$. Prove that $A \not 又_{1} B$, that is, prove that there is no injective, total and computable function f such that, for all x, $A(x)=B(f(x))$. Note that injectiveness of f is essential in this proof since $A \leq_{m} B$.

