MA 3219 – Computability Theory

Frank Stephan. Departments of Computer Science and Mathematics, National University of Singapore, 3 Science Drive 2, Singapore 117543, Republic of Singapore

Email fstephan@comp.nus.edu.sg Webpage http://www.comp.nus.edu.sg/~fstephan/computability.html Telephone office +65-6874-7354 Office room number S14#06-06 Office hours Thursday 15.00-17.00h

Assignment for 06.04.2005. Can be corrected on request, it is not obligatory to hand the homework in.

1. Many-One Reduction. Assume that $A \leq_m C$ and $B \equiv_m C$. Which of these properties are then inherited to A or to B or to both:

(a) C is recursively enumerable;

- (b) C is simple;
- (c) C is creative;
- (d) C is semirecursive;
- (e) C is recursive.

Here the set C is semirecursive iff there is a recursive linear ordering \square such that whenever $x \square y$ and $x \in C$ then also $y \in C$.

2. Turing Reduction. Which two of the following sets are Turing equivalent? Prove this equivalence:

(a) \emptyset ; (b) $\{e : \phi_e(2345) \downarrow = 8\};$ (c) $\{e : \phi_e(0) \uparrow \lor \phi_e(1) \uparrow\};$ (d) $\{e : \phi_e \text{ is total}\};$ (e) $\{e : \phi_e \text{ is infinitely often undefined}\}.$

3. Special Cases. Prove that \emptyset , \mathbb{E} and \mathbb{N} Turing equivalent but not many-one equivalent; \mathbb{E} is the set of even natural numbers.

4. Classifying Reductions. Which of the following reductions are many-one reductions and Turing reductions; if a reduction is both then state that it is a many-one reductions:

(a) $x \in A \Leftrightarrow x \notin B$; (b) $x \in A \Leftrightarrow 2x \in B \land 2x + 1 \notin B$; (c) $x \in A \Leftrightarrow 256^x \in B$; (d) $x \in A \Leftrightarrow \forall y (2^x \cdot 3^y \in B)$; (e) $x \in A \Leftrightarrow y$ is even for the least y with $2^x \cdot 3^y \in B$. At (e) it is assumed that for every x there is a y with $2^x \cdot 3^y \in B$.

5. Growth of functions. Let A, B be r.e. sets and assume that for every total A-recursive function f there is a total B-recursive function g such that $\forall x (f(x) \leq g(x))$. Prove that then $A \leq_T B$.