MA 3219 - Computability Theory

Frank Stephan. Departments of Computer Science and Mathematics, National University of Singapore, 3 Science Drive 2, Singapore 117543, Republic of Singapore

Email fstephan@comp.nus.edu.sg
Webpage http://www.comp.nus.edu.sg/~fstephan/computability.html
Telephone office $+65-6874-7354$
Office room number S14\#06-06
Office hours Thursday 15.00-17.00h
Assignment for 06.04.2005. Can be corrected on request, it is not obligatory to hand the homework in.

1. Many-One Reduction. Assume that $A \leq_{m} C$ and $B \equiv_{m} C$. Which of these properties are then inherited to A or to B or to both:
(a) C is recursively enumerable;
(b) C is simple;
(c) C is creative;
(d) C is semirecursive;
(e) C is recursive.

Here the set C is semirecursive iff there is a recursive linear ordering \sqsubset such that whenever $x \sqsubset y$ and $x \in C$ then also $y \in C$.
2. Turing Reduction. Which two of the following sets are Turing equivalent? Prove this equivalence:
(a) \emptyset;
(b) $\left\{e: \phi_{e}(2345) \downarrow=8\right\}$;
(c) $\left\{e: \phi_{e}(0) \uparrow \vee \phi_{e}(1) \uparrow\right\}$;
(d) $\left\{e: \phi_{e}\right.$ is total $\}$;
(e) $\left\{e: \phi_{e}\right.$ is infinitely often undefined $\}$.
3. Special Cases. Prove that \emptyset, \mathbb{E} and \mathbb{N} Turing equivalent but not many-one equivalent; \mathbb{E} is the set of even natural numbers.
4. Classifying Reductions. Which of the following reductions are many-one reductions and Turing reductions; if a reduction is both then state that it is a many-one reductions:
(a) $x \in A \Leftrightarrow x \notin B$;
(b) $x \in A \Leftrightarrow 2 x \in B \wedge 2 x+1 \notin B$;
(c) $x \in A \Leftrightarrow 256^{x} \in B$;
(d) $x \in A \Leftrightarrow \forall y\left(2^{x} \cdot 3^{y} \in B\right)$;
(e) $x \in A \Leftrightarrow y$ is even for the least y with $2^{x} \cdot 3^{y} \in B$.

At (e) it is assumed that for every x there is a y with $2^{x} \cdot 3^{y} \in B$.
5. Growth of functions. Let A, B be r.e. sets and assume that for every total A recursive function f there is a total B-recursive function g such that $\forall x(f(x) \leq g(x))$. Prove that then $A \leq_{T} B$.

