MA 3205 - Set Theory - Homework due Week 5

Frank Stephan, fstephan@comp.nus.edu.sg, 6516-2759, Room S14\#04-13.
Homework. The homework follows the lecture notes. You have to hand in one starred homework in Weeks 3-6, in Weeks 7-9 and in Weeks 10-13. Further homework can be checked on request. Homework to be marked should be handed in after the lecture on Tuesday of the week when the homework is due.

Exercise 5.6*. Determine the functions f_{n} given by the following recursive equations:

1. $f_{1}(0)=0, f_{1}(S(n))=f_{1}(n)+2^{n}$,
2. $f_{2}(0)=1, f_{2}(1)=0, f_{2}(n+2)=f_{2}(n) \cdot \frac{4 n+2}{n+1}$,
3. $f_{3}(n)=1$ for $n=0,1, \ldots, 9, f_{3}(10 n+m)=f_{3}(n)+1$ for $n=1,2, \ldots$ and $m=0,1, \ldots, 9$,
4. $f_{4}(0)=0, f_{4}(1)=0, f_{4}(2)=0, f_{4}(3)=1, f_{4}(S(n))=f_{4}(n)+\frac{1}{2}\left(n^{2}-n\right)$ for $n>2$,
5. $f_{5}(n)=1, f_{5}(S(n))=256 \cdot f_{5}(n)$.

Give informal explanations what these functions compute, for example, consider f_{6} given by $f_{6}(0)=0, f_{6}(1)=0$ and $f_{6}(S(n))=f_{6}(n)+2 n$ for $n \geq 1$. Then $f_{6}(n)=$ $n(n-1)$. One explanation would be to assume that there is a soccer league with n teams. Then there are $f_{6}(n)$ games per season, each pair $\{A, B\}$ of two different teams plays once at A 's place and once at B 's place. Another example would be coming from set theory; let the function $f_{7}(n)$ say how many subsets of $n=\{0, l, \ldots, n-1\}$ have an even number of elements. Then f_{7} is given by $f_{7}(0)=1, f_{7}(1)=1$ and $f_{7}(n+1)=2 \cdot f_{7}(n)$ for all $n>0$.

Exercise 5.9. Let $H: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ be a function and $h_{m}: \mathbb{N} \rightarrow \mathbb{N}$ be given by $h_{m}(n)=H(m, n)$ for all n. Show that there is a function f dominating every h_{m}; that is, show that there is a function f such that for every m there is an n with $f(k)>h_{m}(k)$ for all $k>n$.

Exercise 6.7. Prove by giving a one-to-one function that the set \{Auckland, Christchurch, Dunedin, Wellington\} of New Zealand's largest towns has a cardinality which is less than the set \{Adelaide, Brisbane, Canberra, Melbourne, Perth, Sydney\} of Australian towns. Furthermore, prove that it is not less or equal than the cardinality of the set $\{$ Singapore $\}$.

Exercise 6.11. Show that if $|X|=|X \times \mathbb{N}|$ then $\left|\{0,1\}^{X}\right|=\left|\mathbb{N}^{X}\right|$.

