MA 5219 - Logic and Foundations of Mathematics 1

Homework due in Week 4, Tuesday.
Frank Stephan. Departments of Computer Science and Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, S17\#07-04.
Email fstephan@comp.nus.edu.sg
Webpage http://www.comp.nus.edu.sg/~fstephan/mathlogic.html
Telephone office 65162759
Office hours Thursday 14.00-15.00h
Hand in each starred homework; 1 mark per homework (if it is correct), up to 10 marks in total for homework.
4.1* Proof systems. Consider the following rules.

$$
\begin{array}{cl}
\frac{\emptyset}{A \vdash A} & \frac{X \vdash A}{X \cup Y \vdash A} \\
\frac{X \vdash A, A \rightarrow B}{X \vdash B} & \frac{X, A \vdash B}{X \vdash A \rightarrow B} \\
\frac{X \vdash A \rightarrow \perp}{X \vdash \neg A} & \frac{X \vdash \neg A}{X \vdash A \rightarrow \perp} \\
\frac{X \vdash \neg(A \rightarrow \neg B)}{X \vdash A, B} & \frac{X \vdash A, B}{X \vdash \neg(A \rightarrow \neg B)} \\
\frac{X \vdash \neg \neg A}{X \vdash A} & \frac{X \vdash A}{X \vdash \neg \neg A} \\
\frac{X \vdash \neg A \rightarrow B}{X \vdash \neg B \rightarrow A} & \frac{X, A \vdash B \text { and } X, \neg A \vdash B}{X \vdash B}
\end{array}
$$

Derive the following rules from the above rules.

$$
\begin{array}{r}
\frac{X \vdash A \rightarrow B, \neg A \rightarrow B}{X \vdash B} \\
\frac{X \vdash A \rightarrow B \rightarrow C}{X \vdash B \rightarrow A \rightarrow C} \\
\frac{\emptyset}{X \vdash A \rightarrow B \rightarrow A} \\
\\
\hline(A \rightarrow B \rightarrow C) \rightarrow(A \rightarrow B) \rightarrow A \rightarrow C
\end{array}
$$

4.2 Models. Consider a set A with an operation \circ and let the lower case letters be variables in the models:

- $\forall x, y, z[(x \circ y) \circ z=x \circ(y \circ z)]$ and $\exists a, b \forall x, y[a \circ x=a \wedge y \circ b=b] ;$
- $\forall x, y, z[(x \circ y) \circ z=x \circ(y \circ z)]$ and $\exists e \forall x, y[e \circ x=e \wedge y \circ e=e]$.

Is there a model (A, \circ) which satisfies one set of axioms but not the other one?

