MA 5219 - Logic and Foundations of Mathematics 1

Homework due in Week 6, Tuesday.

Frank Stephan. Departments of Computer Science and Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, S17#07-04.

Email fstephan@comp.nus.edu.sg

Webpage http://www.comp.nus.edu.sg/~fstephan/mathlogic.html

Telephone office 65162759

Office hours Thursday 14.00-15.00h

Hand in each starred homework; 1 mark per homework (if it is correct), up to 10 marks in total for homework.

- **6.1 Substituion.** (a) Make the following substitutions of formulas ϕ standing for $\forall x (x \circ y = y)$ and ψ standing for $\exists x (x \circ y = z)$: $(\phi) \frac{1}{x}$, $(\phi) \frac{y \circ 1 \circ 0}{y}$ $(\psi) \frac{y}{z} \frac{z}{y}$, $((\phi \to \psi) \frac{y \circ y}{z}) \frac{2}{y}$. (b) A question left over from the lecture is why it would be a problem to substitute a free variable by a term containing a bound variable. For this, assume that the the structure given are the natural number and discuss what would happen if one would do the substitutions like $(\exists x [y = x]) \frac{x+1}{y}$. Give also an example where a false formula becomes true by such a substitution.
- **6.2*** Models and Compactness. Assume that the underlying logical language is infinite and contains the constants c_0, c_1, \ldots , the predicates P_0, P_1, \ldots and the variable x. Furthermore, let X be a set of formulas containing the formulas $P_n(c_n)$ and $\neg P_n(c_m)$ for all n and all $m \neq n$. Find a set Y of open formulas of the form $P_n(t)$ and $\neg P_n(t)$ where t is a term such that for every $F \subseteq Y$ the following is true:
 - If F is finite then there is a model \mathcal{M} with base set A such that $\mathcal{M} \models X \cup F$ and for every $a \in A$ there is a constant c_n with $c_n = a$;
 - If F = Y then for every model \mathcal{M} with base set A there is an $a \in A$ with $c_n \neq a$ for all constants c_n .

6.3 Rings. Let $(A, +, \cdot, 0, 1, a, b)$ be a ring satisfying the following set X of formulas: $a \cdot a = a \wedge b \cdot b = b \wedge 0 \neq 1$;

```
\begin{split} \forall x,y,z \left[ x+y=y+x \wedge (x+y)+z=x+(y+z) \right]; \\ \forall x,y,z \left[ x\cdot y=y\cdot x \wedge (x\cdot y)\cdot z=x\cdot (y\cdot z) \right]; \\ \forall x,y,z \left[ x\cdot (y+z)=(x\cdot y)+(x\cdot z) \right]; \\ \forall x \left[ x+0=x \wedge x\cdot 1=x \right]; \\ \forall x\exists y \left[ x+y=0 \right]; \\ \forall x\exists y,z \left[ x=a\cdot y+b\cdot z \right]; \\ \forall x\exists y \left[ x\cdot a=0 \vee (x\cdot a)\cdot (y\cdot a)=a \right]; \\ \forall x\exists y \left[ x\cdot b=0 \vee (x\cdot b)\cdot (y\cdot b)=b \right]; \end{split}
```

Find the least number n such that $n \geq 2$ and n cannot be the cardinality of A.