## MA 5219 - Logic and Foundations of Mathematics 1

Homework due in Week 10, Tuesday.
Frank Stephan. Departments of Computer Science and Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, S17\#07-04.
Email fstephan@comp.nus.edu.sg
Webpage http://www.comp.nus.edu.sg/~fstephan/mathlogic.html
Telephone office 65162759
Office hours Thursday 14.00-15.00h
Hand in each starred homework; 1 mark per homework (if it is correct), up to 10 marks in total for homework.

## 10.1* Truth in Arithmetics.

Mojzesz Presburger introduced the axioms of arithmetic with addition which are the following:

1. $x+1 \neq 0$;
2. $x+1=y+1 \rightarrow x=y$;
3. $x+0=x$;
4. $x+(y+1)=(x+y)+1$;
5. If $\phi$ is a first-order formula using addition and constants $0,1, \ldots$ and some variables including $z$ and if $x, y$ do not occur in $\phi$ then the following formula is an axiom: $\phi \frac{0}{z} \wedge \forall x\left[\phi \frac{x}{z} \rightarrow \phi \frac{x+1}{z}\right] \rightarrow \phi \frac{y}{z}$.

Note that in 5 ., the formula $\phi$ itself can have quantified parts and bounded variables different from $x, y, z$. These axioms are today referred to as Presburger arithmetic. Mojzesz Presburger proved that Presburger arithmetic is consistent, complete and decidable. Say that a function $f$ is definable in Presburger arithmetic iff there is a formula $\phi$ with two free variables in Presburger arithmetic satisfying $\forall x \forall y[y=f(x) \leftrightarrow$ $\phi(x, y)]$. Which of the following functions is definable in Presburger arithmetic?

1. $f_{1}(x)=3 \cdot x+5$;
2. $f_{2}(x)=x^{2}$;
3. $f_{3}(x)=\operatorname{round}(x / 2)$ where $\operatorname{round}(y)$ is the largest natural number below $y$ : $\operatorname{round}(0)=0, \operatorname{round}(2.5)=2$ and $\operatorname{round}(3)=3$;
4. $f_{4}(x)=1$ if $x$ is odd and $f_{4}(x)=0$ if $x$ is even.

If the function or relation is definable then give the corresponding formula else say in a few words why it is undefinable.

### 10.2 Register Programs.

Write a register program computing the recursive function $f$ given by the following formulas (with $x>0$ ): $f(0)=0 ; f(1)=0 ; f(2 x)=f(x)+1 ; f(2 x+1)=f(x)+1$.

