MA 5219 - Logic and Foundations of Mathematics 1

Course-Webpage http://www.comp.nus.edu.sg/~fstephan/mathlogic.html Homework due in Week 5, Tuesday 10 September 2013.

Frank Stephan. Departments of Mathematics and Computer Science, 10 Lower Kent Ridge Road, S17#07-04 and 13 Computing Drive, COM2#03-11, National University of Singapore, Singapore 119076. Email fstephan@comp.nus.edu.sg Telephone office 65162759 and 65164246 Office hours Thursday 14.00-15.00h

Hand in each homework which you want to be checked; 1 mark per each correct starred homework; up to 10 marks in total for homework - there will be more than 10 starred homeworks, so you have several chances to try.

5.1 Finite Structures. (a) Let X contain the following formulas:

- $\exists x [Px];$
- $\forall x, y, v, w [(Px \land Py \land Pv \land Pw \land (x \neq v \lor y \neq w)) \rightarrow f(x, y) \neq f(v, w)];$
- $\forall u, v, w \left[Pv \land Pw \rightarrow \neg P(f(v, w)) \right];$
- $\forall u \exists v, w [\neg Pu \rightarrow (Pv \land Pw \land f(v, w) = u)].$

Assume that a structure $(A, f, P) \models X$ where A is finite set, f a function and P a predicate. Let n be the number of elements $a \in A$ satisfying Pa and m be the number of elements $a \in A$ satisfying $\neg Pa$. How do m and n relate to each other?

(b) Make a set Y of formulas using a function f and predicate P such that the m, n from above satisfy $m = 1 + 2 + 3 + \ldots + n$.

5.2 Graphs. A graph G is a base set V with a relation E such that E(x, y) stands for x and y being connected in the graph. A graph (V, E) is called a random graph iff V is infinite and for every two finite disjoint sets C, D of vertices there is a vertex z such that E(x, z) for all $x \in C$ and $\neg E(y, z)$ for all $y \in D$. Make a set X of formulas such that a graph (V, E) satisfies X iff (V, E) is a random graph.

5.3 Matrix Rings. Construct a set X of formulas which enforces that a structure $(R_1, R_2, +, \cdot, 0, 1, det, e_0, e_1, e_2, e_3)$ has the following properties: $(R_1, +, \cdot, 0, 1)$ is a commutative ring with 1 and is a subring of a noncommutative ring $(R_2, +, \cdot, 0, 1)$ with $R_1 \subseteq R_2$ such that $(R_2, +, \cdot, 0, 1)$ is isomorphic to the ring of 2 * 2-matrices over R_1 and det assigns to every member of R_2 the value which the determinant over the corresponding matrix would have. 0 and 1 are the neutral elements for ring addition and ring multiplication in R_2 . Use constants e_0, e_1, e_2, e_3 to define the structure.

5.4 Dense Linear Orders. Assume that (A, <, 0, 1) is a linearly ordered set satisfying the additional formulas 0 < 1 and $\forall x, y \exists z [0 \leq x < z < y \leq 1 \lor 0 \leq y < z < x \leq 1 \lor 0 \leq x = z = y \leq 1]$. Recall that $x \leq y$ abbreviates $x < y \lor x = y$; furthermore, linear orders satisfy the axioms $\forall x, y, z [x < y \land y < z \rightarrow x < z]$ and $\forall x, y [x < y \lor y < x \lor x = y]$ and $\forall x [\neg x < x]$. Show that all countable structures satisfying these axioms are isomorphic.