MA 5219 - Logic and Foundations of Mathematics 1

Course-Webpage http://www.comp.nus.edu.sg/~fstephan/mathlogic.html Homework due in Week 5, Tuesday 10 September 2013.
Frank Stephan. Departments of Mathematics and Computer Science, 10 Lower Kent Ridge Road, S17\#07-04 and 13 Computing Drive, COM2\#03-11, National University of Singapore, Singapore 119076.
Email fstephan@comp.nus.edu.sg
Telephone office 65162759 and 65164246
Office hours Thursday 14.00-15.00h
Hand in each homework which you want to be checked; 1 mark per each correct starred homework; up to 10 marks in total for homework - there will be more than 10 starred homeworks, so you have several chances to try.
5.1 Finite Structures. (a) Let X contain the following formulas:

- $\exists x[P x] ;$
- $\forall x, y, v, w[(P x \wedge P y \wedge P v \wedge P w \wedge(x \neq v \vee y \neq w)) \rightarrow f(x, y) \neq f(v, w)]$;
- $\forall u, v, w[P v \wedge P w \rightarrow \neg P(f(v, w))]$;
- $\forall u \exists v, w[\neg P u \rightarrow(P v \wedge P w \wedge f(v, w)=u)]$.

Assume that a structure $(A, f, P) \models X$ where A is finite set, f a function and P a predicate. Let n be the number of elements $a \in A$ satisfying $P a$ and m be the number of elements $a \in A$ satisfying $\neg P a$. How do m and n relate to each other?
(b) Make a set Y of formulas using a function f and predicate P such that the m, n from above satisfy $m=1+2+3+\ldots+n$.
5.2 Graphs. A graph G is a base set V with a relation E such that $E(x, y)$ stands for x and y being connected in the graph. A graph (V, E) is called a random graph iff V is infinite and for every two finite disjoint sets C, D of vertices there is a vertex z such that $E(x, z)$ for all $x \in C$ and $\neg E(y, z)$ for all $y \in D$. Make a set X of formulas such that a graph (V, E) satisfies X iff (V, E) is a random graph.
5.3 Matrix Rings. Construct a set X of formulas which enforces that a structure ($R_{1}, R_{2},+, \cdot, 0,1$, det, $\left.e_{0}, e_{1}, e_{2}, e_{3}\right)$ has the following properties: $\left(R_{1},+, \cdot, 0,1\right)$ is a commutative ring with 1 and is a subring of a noncommutative ring ($R_{2},+, \cdot, 0,1$) with $R_{1} \subseteq R_{2}$ such that ($R_{2},+, \cdot, 0,1$) is isomorphic to the ring of $2 * 2$-matrices over R_{1} and det assigns to every member of R_{2} the value which the determinant over the corresponding matrix would have. 0 and 1 are the neutral elements for ring addition and ring multiplication in R_{2}. Use constants $e_{0}, e_{1}, e_{2}, e_{3}$ to define the structure.
5.4 Dense Linear Orders. Assume that $(A,<, 0,1)$ is a linearly ordered set satisfying the additional formulas $0<1$ and $\forall x, y \exists z[0 \leq x<z<y \leq 1 \vee 0 \leq y<$ $z<x \leq 1 \vee 0 \leq x=z=y \leq 1]$. Recall that $x \leq y$ abbreviates $x<y \vee x=y$; furthermore, linear orders satisfy the axioms $\forall x, y, z[x<y \wedge y<z \rightarrow x<z]$ and $\forall x, y[x<y \vee y<x \vee x=y]$ and $\forall x[\neg x<x]$. Show that all countable structures satisfying these axioms are isomorphic.

