MA 5219 - Logic and Foundations of Mathematics 1

Course-Webpage http://www.comp.nus.edu.sg/~fstephan/mathlogic.html Homework due in Week 7, Tuesday 1 October 2013.

Frank Stephan. Departments of Mathematics and Computer Science, 10 Lower Kent Ridge Road, S17\#07-04 and 13 Computing Drive, COM2\#03-11, National University of Singapore, Singapore 119076.
Email fstephan@comp.nus.edu.sg
Telephone office 65162759 and 65164246
Office hours Thursday 14.00-15.00h S17\#07-04
Hand in each homework which you want to be checked; 1 mark per each correct starred homework; up to 10 marks in total for homework - there will be more than 10 starred homeworks, so you have several chances to try.
7.1 Substitution. (a) Make the following substitutions of formulas ϕ standing for $\forall x(x \circ y=y)$ and ψ standing for $\exists x(x \circ y=z):(\phi) \frac{1}{x},(\phi) \frac{y \circ 1 \circ 0}{y}(\psi) \frac{y z}{z y},\left((\phi \rightarrow \psi) \frac{y \circ y}{z}\right) \frac{2}{y}$. (b) A question left over from the lecture is why it would be a problem to substitute a free variable by a term containing a bound variable. For this, assume that the structure given are the natural number and discuss what would happen if one would do the substitutions like $(\exists x[y=x]) \frac{x+1}{y}$. Give also an example where a false formula becomes true by such a substitution.
7.2 Models and Compactness. Assume that the underlying logical language is infinite and contains the constants c_{0}, c_{1}, \ldots, the predicates P_{0}, P_{1}, \ldots and the variable x. Furthermore, let X be a set of formulas containing the formulas $P_{n}\left(c_{n}\right)$ and $\neg P_{n}\left(c_{m}\right)$ for all n and all $m \neq n$. Find a set Y of open formulas of the form $P_{n}(t)$ and $\neg P_{n}(t)$ where t is a term such that for every $F \subseteq Y$ the following is true:

- If F is finite then there is a model \mathcal{M} with base set A such that $\mathcal{M} \models X \cup F$ and for every $a \in A$ there is a constant c_{n} with $c_{n}=a$;
- If $F=Y$ then for every model \mathcal{M} with base set A there is an $a \in A$ with $c_{n} \neq a$ for all constants c_{n}.
7.3* Rings. Let $(A,+, \cdot, 0,1, a, b)$ be a ring satisfying the following set X of formulas: $a \cdot a=a \wedge b \cdot b=b \wedge 0 \neq 1$;
$\forall x, y, z[x+y=y+x \wedge(x+y)+z=x+(y+z)] ;$
$\forall x, y, z[x \cdot y=y \cdot x \wedge(x \cdot y) \cdot z=x \cdot(y \cdot z)]$;
$\forall x, y, z[x \cdot(y+z)=(x \cdot y)+(x \cdot z)]$;
$\forall x[x+0=x \wedge x \cdot 1=x]$;
$\forall x \exists y[x+y=0]$;
$\forall x \exists y, z[x=a \cdot y+b \cdot z]$;
$\forall x \exists y[x \cdot a=0 \vee(x \cdot a) \cdot(y \cdot a)=a] ;$
$\forall x \exists y[x \cdot b=0 \vee(x \cdot b) \cdot(y \cdot b)=b]$;
Find the least number n such that $n \geq 2$ and n cannot be the cardinality of A.

