MA 5219 - Logic and Foundations of Mathematics 1

Course-Webpage http://www.comp.nus.edu.sg/~fstephan/mathlogic.html Homework due in Week 7, Tuesday 1 October 2013.

Frank Stephan. Departments of Mathematics and Computer Science,
10 Lower Kent Ridge Road, S17#07-04 and 13 Computing Drive, COM2#03-11,
National University of Singapore, Singapore 119076.
Email fstephan@comp.nus.edu.sg
Telephone office 65162759 and 65164246
Office hours Thursday 14.00-15.00h S17#07-04

Hand in each homework which you want to be checked; 1 mark per each correct starred homework; up to 10 marks in total for homework - there will be more than 10 starred homeworks, so you have several chances to try.

7.1 Substitution. (a) Make the following substitutions of formulas ϕ standing for $\forall x(x \circ y = y)$ and ψ standing for $\exists x(x \circ y = z)$: $(\phi)\frac{1}{x}, (\phi)\frac{y \circ 1 \circ 0}{y}, (\psi)\frac{y z}{z y}, ((\phi \to \psi)\frac{y \circ y}{z})\frac{2}{y}$. (b) A question left over from the lecture is why it would be a problem to substitute a free variable by a term containing a bound variable. For this, assume that the structure given are the natural number and discuss what would happen if one would do the substitutions like $(\exists x [y = x])\frac{x+1}{y}$. Give also an example where a false formula becomes true by such a substitution.

7.2 Models and Compactness. Assume that the underlying logical language is infinite and contains the constants c_0, c_1, \ldots , the predicates P_0, P_1, \ldots and the variable x. Furthermore, let X be a set of formulas containing the formulas $P_n(c_n)$ and $\neg P_n(c_m)$ for all n and all $m \neq n$. Find a set Y of open formulas of the form $P_n(t)$ and $\neg P_n(t)$ where t is a term such that for every $F \subseteq Y$ the following is true:

- If F is finite then there is a model \mathcal{M} with base set A such that $\mathcal{M} \models X \cup F$ and for every $a \in A$ there is a constant c_n with $c_n = a$;
- If F = Y then for every model \mathcal{M} with base set A there is an $a \in A$ with $c_n \neq a$ for all constants c_n .

7.3^{*} **Rings.** Let $(A, +, \cdot, 0, 1, a, b)$ be a ring satisfying the following set X of formulas: $a \cdot a = a \wedge b \cdot b = b \wedge 0 \neq 1$; $\forall x, y, z [x + y = y + x \wedge (x + y) + z = x + (y + z)]$; $\forall x, y, z [x \cdot y = y \cdot x \wedge (x \cdot y) \cdot z = x \cdot (y \cdot z)]$; $\forall x, y, z [x \cdot (y + z) = (x \cdot y) + (x \cdot z)]$; $\forall x [x + 0 = x \wedge x \cdot 1 = x]$; $\forall x \exists y [x + y = 0]$; $\forall x \exists y [x + y = 0]$; $\forall x \exists y [x \cdot a = 0 \lor (x \cdot a) \cdot (y \cdot a) = a]$; $\forall x \exists y [x \cdot b = 0 \lor (x \cdot b) \cdot (y \cdot b) = b]$; Find the least number n such that $n \geq 2$ and n cannot be the cardinality of A.