MA 5219 - Logic and Foundations of Mathematics 1

Course-Webpage http://www.comp.nus.edu.sg/~fstephan/mathlogic.html Homework due in Week 8, Tuesday 8 October 2013.

Frank Stephan. Departments of Mathematics and Computer Science, 10 Lower Kent Ridge Road, S17#07-04 and 13 Computing Drive, COM2#03-11, National University of Singapore, Singapore 119076. Email fstephan@comp.nus.edu.sg Telephone office 65162759 and 65164246 Office hours Thursday 14.00-15.00h S17#07-04

Hand in each homework which you want to be checked; 1 mark per each correct starred homework; up to 10 marks in total for homework - there will be more than 10 starred homeworks, so you have several chances to try.

8.1 Logical Implication. Here let e is a constant and v, w, x, y, z are variables. Let

X	$\operatorname{contain}$	$\forall x, y, z [x \circ (y \circ z) = (x \circ y) \circ z], \ \forall x [x \circ e = x], \ \forall x [x \circ x = e]$
α	be	$v \circ w = w \circ v,$
β	be	$v \circ (v \circ v) = v$ and
γ	be	$v \circ (v \circ v) = e.$

Do $X \models \alpha$, $X \models \beta$ and $X \models \gamma$ hold? Justify for each of the formulas α, β, γ your answers.

8.2 Henkin Sets. Let the logical language \mathcal{L} contain first-order formulas over variables x_0, x_1, \ldots and constants c_0, c_1, \ldots and one predicate symbol P. Check whether the following sets X, Y and Z are Henkin sets. Explain why you think that the corresponding sets are Henkin sets or not.

X contains for all distinct i, j the formula $c_i \neq c_j$ as well as for every k the formulas $x_k = c_k$ and $P(c_k)$.

Y contains the same formulas as X plus the formula $\forall x_0 [P(x_0)]$.

Z contains the same formulas as X plus the formula $\exists x_0 [\neg P(x_0)]$.

8.3^{*} Countable models. Assume that X is a Henkin set and \mathcal{A} is a model of X. Show that \mathcal{A} has a substructure \mathcal{B} which is an at most countable model of X.

8.4^{*} **Proof System.** Use the enlarged rule system on next page obtained by adding Modus Ponens and two similar further rules for \rightarrow to those of page 92 in order to prove the following tautology (where *e* is a constant and \circ an operation symbol which could be rewritten as a function with two inputs):

$$\begin{array}{l} \forall x \left[x \circ (x \circ x) = e \right] \rightarrow \forall x, y, z \left[x \circ (y \circ z) = (x \circ y) \circ z \right] \rightarrow \forall x \left[x \circ e = x \right] \rightarrow \\ \forall x \left[e \circ x = x \right] \rightarrow \forall y, z \left[y \circ (z \circ (y \circ (z \circ y))) = z \circ z \right]. \end{array}$$

Derivation Rules. Here are the rules from page 92 of Rautenberg's book plus the three rules for \rightarrow .

$$\begin{array}{ll} (IR) & \overline{X\vdash\alpha} & \text{where } \alpha\in X \text{ or } \alpha \text{ is of the form } t=t \\ (MR) & \frac{X\vdash\alpha}{X\cup Y\vdash\alpha} \\ (MP) & \frac{X\vdash\alpha,\alpha\to\beta}{X\vdash\beta} \\ (\to1) & \frac{X\vdash\alpha\to\beta}{X\vdash\alpha\to\beta} \\ (\to2) & \frac{X,\alpha\vdash\beta}{X\vdash\alpha\to\beta} \\ (\wedge1) & \frac{X\vdash\alpha,\beta}{X\vdash\alpha\to\beta} \\ (\wedge2) & \frac{X\vdash\alpha,\beta}{X\vdash\alpha,\beta} \\ (\wedge2) & \frac{X\vdash\beta,\gamma\beta}{X\vdash\alpha,\beta} \\ (-1) & \frac{X\vdash\beta,\gamma\beta}{X\vdash\alpha} \\ (-2) & \frac{X,\beta\vdash\alpha|X,\gamma\beta\vdash\alpha}{X\vdash\alpha} \\ (\forall1) & \frac{X\vdash\forall x(\alpha)}{X\vdash\alpha\frac{t}{x}} \text{ where } \alpha, \frac{t}{x} \text{ is collision-free} \\ (\forall2) & \frac{X\vdash\alpha\frac{y}{x}}{X\vdash\forall x(\alpha)} \text{ where } y\notin free(X)\cup var(\alpha) \\ (=) & \frac{X\vdash s=t,\alpha\frac{s}{x}}{X\vdash\alpha\frac{t}{x}} \text{ where } \alpha \text{ is prime} \end{array}$$