MA 5219 - Logic and Foundations of Mathematics 1

Course-Webpage http://www.comp.nus.edu.sg/~fstephan/mathlogic.html Homework due in Week 10, Tuesday 22 October 2013.
Frank Stephan. Departments of Mathematics and Computer Science, 10 Lower Kent Ridge Road, S17\#07-04 and 13 Computing Drive, COM2\#03-11, National University of Singapore, Singapore 119076.
Email fstephan@comp.nus.edu.sg
Telephone office 65162759 and 65164246
Office hours Thursday 14.00-15.00h S17\#07-04
Hand in each homework which you want to be checked; 1 mark per each correct starred homework; up to 10 marks in total for homework - there will be more than 10 starred homeworks, so you have several chances to try.
10.1* Birkhoff rules. Adjust the axioms of the Birkhoff rules to incorporate binary associative operations like \circ as follows (where the fourth rule is given for a function f of arity 3 but applies for functions of all arities):

$$
\begin{array}{cl}
\frac{\emptyset}{t=t} & \frac{s=t}{t=s} \\
\frac{s=t, t=r}{s=r} & \frac{s_{1}=t_{1}, s_{2}=t_{2}, s_{3}=t_{3}}{f\left(s_{1}, s_{2}, s_{3}\right)=f\left(t_{1}, t_{2}, t_{3}\right)} \\
\frac{\emptyset}{(r \circ s) \circ t=r \circ s \circ t} & \frac{\emptyset}{r \circ(s \circ t)=r \circ s \circ t} \\
\frac{s=t}{s \circ r=t \circ r} & \frac{s=t}{r \circ s=r \circ t} \\
\frac{s=t}{q \circ s \circ r=q \circ t \circ r} & \frac{s=t}{s^{\sigma}=t^{\sigma}} \text { for all global substitutions } \sigma
\end{array}
$$

In the following let x, y, z be variables and d, e be constants.
(a) Assume now that the additional axioms $x \circ x \circ x \circ x \circ x \circ x=e, e \circ x=x, x \circ e=x$ and $d \circ d \circ d \circ d \circ d=e$ are given. Prove that $d=e$.
(b) Assume now that the additional axioms $x \circ x \circ x \circ x \circ x \circ x=e, e \circ x=x, x \circ e=x$ and $d \circ d \circ d=e$ are given. Prove that one can neither derive $d=e$ nor derive $x \circ y=y \circ x$ by producing a model in which these two formulas are false.
(c) Assume now that the additional axioms $x \circ d=d, x \circ e=x, e \circ x=x, f(x \circ y)=$ $f(y) \circ f(x), f(f(x))=x$ and $x \circ x \circ f(x)=x$ are given, where f is a unary function symbol. Derive $f(x) \circ x \circ x=x$. Furthermore, provide a model which shows that $f(x)=x$ cannot be derived.
10.2* Second Order Logic. Second order language permits to quantify over sets. Using that the there are uncountably many subsets of the natural numbers, give a set X of formulas such that every second order model of X is uncountable. X should of course be satisfiable, that is, have at least one model. It is permitted to introduce constant symbols, predicate symbols and function symbols; furthermore, the symbol \in in the formula $a \in B$ is true iff a is an element of B; lower case variables range over elements and upper case variables range over sets.

