MA 5219 - Logic and Foundations of Mathematics 1

Course-Webpage http://www.comp.nus.edu.sg/~fstephan/mathlogic.html Homework due in Week 11, Tuesday 29 October 2013.

Frank Stephan. Departments of Mathematics and Computer Science,
10 Lower Kent Ridge Road, S17#07-04 and 13 Computing Drive, COM2#03-11,
National University of Singapore, Singapore 119076.
Email fstephan@comp.nus.edu.sg
Telephone office 65162759 and 65164246
Office hours Thursday 14.00-15.00h S17#07-04

Hand in each homework which you want to be checked; 1 mark per each correct starred homework; up to 10 marks in total for homework - there will be more than 10 starred homeworks, so you have several chances to try.

11.1* Substructures. Recall that for a logical language \mathcal{L} and an \mathcal{L} -structure \mathcal{A} , the language $\mathcal{L}\mathcal{A}$ is the language of all formulas which use besides constants from \mathcal{L} also constants c_a for each a in the domain of \mathcal{A} . The diagramme $\mathcal{D}\mathcal{A}$ is the set of all true $\mathcal{L}\mathcal{A}$ -formulas in \mathcal{A} which do not contain any free or bound variable. The elementary diagramme $\mathcal{D}_{el}\mathcal{A}$ is the set of all true $\mathcal{L}\mathcal{A}$ -sentences in \mathcal{A} . Assume that the domain of \mathcal{A} is a subset of the domain of \mathcal{B} . Now \mathcal{A} is a substructure of \mathcal{B} iff $\mathcal{B} \models \mathcal{D}\mathcal{A}$ and \mathcal{A} is an elementary substructure of \mathcal{B} iff $\mathcal{B} \models \mathcal{D}\mathcal{A}$.

So assume that \mathcal{A} is a 2-dimensional sub space of a given 3-dimensional vector space \mathcal{B} over the finite field \mathbb{F}_3 with 3 elements. Is \mathcal{A} a substructure or an elementary substructure of \mathcal{B} ? Note that the scalar multiplication with 0 is the function mapping all vectors to the zero vector, the scalar multiplication with 1 is the identity mapping and the scalar multiplication with 2 is the mapping $x \mapsto x + x$.

11.2* Categoricity. Assume that \mathcal{L} contains infinitely many constants c_0, c_1, \ldots and that $X = \{c_i \neq c_j : i, j \in \mathbb{N} \land i \neq j\}$. Is T be the theory of all sentences logically implied by X. Is $T \aleph_0$ -categorical? Is $T \aleph_1$ -categorical? Justify both answers.

11.3^{*} **Decidability.** Let \mathcal{L} be the logical language with one unary function symbol f, let β be $\forall x [f(f(x)) = x]$, let γ be $\forall x, y [x = f(x) \land y = f(y) \rightarrow x = y]$ and let $T = \{\alpha : \alpha \text{ is a sentence and } \{\beta, \gamma\} \models \alpha\}$. Show that T is decidable.

11.4 Groups. Make a finitely axiomatisable theory T such that (a) every model of T is a group, (b) T has both finite and infinite models and (c) T is decidable.

11.5 Boolean Basis. Let \mathcal{L} be a logical language with the extra symbols < and P and consider the theory T of all sentences implied by the set Y consisting of $\forall x \forall y [x < y \lor x = y \lor y < x], \forall x [\neg x < x], \forall x \forall y \forall z [x < y \land y < z \rightarrow x < z], \forall x \exists y \exists z [y < x \land x < z], \forall x \forall y \exists z [x < y \rightarrow x < z \land z < y], \forall x \forall y \exists x \forall y \exists z [x < y \rightarrow x < z \land z < y], \forall x \forall y \exists x \exists y \exists z [y < x \land x < z], \forall x \forall y \exists z [x < y \rightarrow x < z \land z < y], \forall x \forall y \exists x \exists y \exists z [y < x \land x < z], \forall x \forall y \exists z [x < y \rightarrow x < z \land z < y], \forall x \forall y [Py \land x < y \rightarrow Px].$ Determine a finite set X of sentences which is a Boolean basis for T. That is, X has to satisfy that given any two structures \mathcal{A} and \mathcal{B} of T, either \mathcal{A} and \mathcal{B} are elementary equivalent or there is a sentence α in X such that exactly one of \mathcal{A} and \mathcal{B} makes α true.