MA 5219 - Logic and Foundations of Mathematics 1

Course-Webpage http://www.comp.nus.edu.sg/~fstephan/mathlogic.html
Homework due in Week 13, Tuesday 12 November 2013.
Frank Stephan. Departments of Mathematics and Computer Science, 10 Lower Kent Ridge Road, S17\#07-04 and 13 Computing Drive, COM2\#03-11, National University of Singapore, Singapore 119076.
Email fstephan@comp.nus.edu.sg
Telephone office 65162759 and 65164246
Office hours Thursday 14.00-15.00h S17\#07-04
Hand in each homework which you want to be checked; 1 mark per each correct starred homework; up to 10 marks in total for homework - there will be more than 10 starred homeworks, so you have several chances to try.

13.1* Axioms of Integers.

Provide a finite set X of axioms for addition + , subtraction - and an ordering $<$ plus a set of terms of the form $0,1,1+1,1+1+1, \ldots$ and $-1,-1-1,-1-1-1, \ldots$ such that for any model of X it holds that a member a of the domain A of the model is either equal to a term \underline{z} of above form $(z \in \mathbb{Z})$ or satisfies $a<\underline{z}$ for all $z \in \mathbb{Z}$ or satisfies $a>\underline{z}$ for all $z \in \mathbb{Z}$.

13.2* Axioms Q1-Q5 of Successor and Addition.

Recall the axioms Q1-Q5 from page 234 (without multiplication):
Q1: $\forall x[\operatorname{Succ}(x) \neq 0]$;
Q2: $\forall x \forall y[\operatorname{Succ}(x)=\operatorname{Succ}(y) \rightarrow x=y]$;
Q3: $\forall x \exists y[x=0 \vee x=\operatorname{Succ}(y)]$;
Q4: $\forall x[x+0=x]$;
Q5: $\forall x \forall y[x+\operatorname{Succ}(y)=\operatorname{Succ}(x+y)]$.
Is there a model of Q1-Q5 such that addition is not commutative in this model, that is, is there a model with elements i, j satisfying $i+j \neq j+i$.
13.3* Primitive Recursive Functions. Recall that a function $f: \mathbb{N} \rightarrow \mathbb{N}$ is primitive recursive iff there is a computer program using if-then-else statements, forstatements (where the loop body does not modify any variables mentioned in the header of the loop-statement), functions (with the command "Return(..)" to return from a function with a value), addition, multiplication, division (downrounded), remainder, subtraction (with $2-5=0$ to avoid negative numbers) and order; furthermore none of the functions used should call itself directly or indirectly. Show that the following function are primitive recursive by giving the corresponding programs: (a) $n \mapsto 2^{n}$, (b) $n \mapsto \min \{m>n: m$ is prime $\}$, (c) $n \mapsto p_{n}$ where $p_{0}=2, p_{1}=3, p_{2}=5, p_{3}=7, \ldots$ and, in general, p_{n} is the n-th prime in ascending order, (d) $n, m \mapsto k$ where $n>0$ and k is the largest number such that $\left(p_{m}\right)^{k}$ divides n. For (b) and (c) note that for each $n>0$ there is a pirme number between n and $2 n$; this can be used to bound the for-loop.
13.4 Recursively enumerable sets. Show that for an infinite set $A \subseteq \mathbb{N}$, the following conditions (describing r.e. sets) are equivalent: A is the domain of a partialrecursive function; A is the range of a recursive function; A is the range of a primitiverecursive function; A is the range of a recursive one-one function.

