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This file contains all homeworks for MA4207.

Assignments for Week 2
Homework 2.1
Cantor’s function x, y 7→ (x+ y) · (x+ y + 1)/2 + y is a bijection from N×N onto N.
Construct a bijection from Z× Z onto Z.

Homework 2.2
Prove that there is no set X such that its powerset {Y : Y ⊆ X} has five elements.

Homework 2.3
Show that a power set has always more elements than the given set, that is, fill out
the missing details at the following proof-sketch. Recall that Card(A) ≤ Card(B) iff
there is a one-one function from A to B and show that Card(P(A)) 6≤ Card(A).

Proof-Sketch: The ∅ has 0 and P(∅) has one element, namely ∅, hence one cannot have
a one-one mapping from P(∅) to ∅. Now assume that A is not empty and f : A→ P(A)
is a function. Show that there is a set B ⊆ A which is not in the range of f . Then
consider any function g : P(A)→ A and prove that this function cannot be one-one, as
otherwise a surjective f from A to P(A) would exist. Hence Card(P(A)) 6≤ Card(A).

Homework 2.4
Use Homework 2.3 to prove that there is no set X such that Card(P(X)) = ℵ0. The
fact that every set X is either finite or satisfies ℵ0 ≤ Card(X) can be used in the
proof.

Homework 2.5
Determine the cardinality of the set {X ⊆ Y : Card(X) = 3} for each of the following
sets Y : (a) Y = {0, 1}; (b) Y = {0, 1, 2, 3, 4}; (c) Y = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
(d) Y = N.

Homework 2.6
Consider the set D = {q : q is a rational number with 0 ≤ q < 1 such that its
denominator is a power of 2}. Construct a bijection from N to D explicitly.

Homework 2.7
A set X is well-ordered iff every non-empty subset Y ⊆ X contains a minimal element,
that is, an element z ∈ Y with z < u for all u ∈ Y − {z}. A set X is strongly well-
ordered iff every non-empty subset Y ⊆ X contains a minimal element and a maximal
element. Determine for which cardinals κ there is a strongly well-ordered set X with
Card(X) = κ.

Homework 2.8
Consider the following sets X and Y and show that they satisfy Card(X) = Card(Y )
by constructing explicitly a bijection g from X to Y . Here

X = {f : dom(f) = N and ran(f) ⊆ N} and
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Y = {f : dom(f) = N and ran(f) ⊆ N and ∀n [f(n) < f(n+ 1)]}

and one has to define which function g(f) is for each f ∈ X.

Homework 2.9
Use the Theorem of Schröder and Bernstein to show that the following two sets V
and W have the same cardinality:

V = {f : dom(f) = N and ran(f) = N} and

W = P(N).

Homework 2.10
Which of the following sets is a function is a valid pair-function on the natural num-
bers: Note that a valid pair-function must satisfy for all a, b, c, d ∈ N that 〈a, b〉 = 〈c, d〉
iff a = c and b = d. Furthermore, say which of these functions is a bijection from
N× N to N. The candidate functions are the following ones:

1. a, b 7→ 2a · 3b;

2. a, b 7→ (a+ b)3 + b3;

3. a, b 7→ (a+ b)2 − (a− b)2;

4. a, b 7→ (0 + 1 + 2 + . . .+ (a+ b)) + a;

5. a, b 7→ 2a·b + b.

6. a, b 7→ 2(a+1)·(b+1) + b.

Homework 2.11
Consider the set D = {q : q is a rational number with 0 ≤ q < 1 such that its
denominator is of the form 2i · 3j for some i, j ∈ N}. Construct a bijection from N to
D explicitly.

Homework 2.12
Let f0, f1, . . . be a sequence of functions from N to N. Construct a function g which
dominates all these functions, that is, which satisfies for each fk that ∃x ∈ N ∀y ∈ N
[fk(x+ y) ≤ g(x+ y)].

Homework 2.13
Can a corresponding result also be proven for the set M of all finite and countable
ordinals? Here note that any countable set of members of M has an upper bound in
M. So the question is now whether for a sequence fk of functions from M to M with
k running over all members of M, whether there is a function g from M to M such
that g(x) ≥ fk(x) for all k ≤ x. Such a function would dominate all fk.

Homework 2.14
Recall that two ordinals x, y with x < y satisfy that x ∈ y when y is viewed as a set.
Furthermore, note that for all sets x, y, if x ∈ y then y /∈ x. Use these to prove that
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ordinals are linearly ordered and that the ordering < on the ordinals coincides with
the element-relation ∈.

Homework 2.15
An ordered set (X,<) is called well-ordered iff every nonempty subset of it has a
mimimum. Use Zorn’s Lemma to prove that every set X of ordinals is well-ordered.
For this, consider the mapping f : x 7→ {y ∈ X : y ≥ x} and show that for each
nonempty subset Z of X the range Y of f on Z has a maximal element f(u) for some
u ∈ Z. Then show that this u is a mimimum of Z.

Homework 2.16
Let M be the set of at most countable ordinals from Homework 2.13. Consider all
functions of the form f : M → M with x < y → f(y) ≤ f(x) for all x, y ∈ M. What
is the cardinal of this function set. For this result, one can use that in well-ordered
sets, every strictly descending sequence is finite and that all sets of ordinals are well-
ordered by the natural ordering on the ordinals.

Homework 2.17
Let H be all ordinals whose cardinal is strictly below ℵω. Prove that there is a
countable set of ordinals in H such that this set has no common upper bound in H.
For proving this, use that the cardinal ℵω is a limit of the cardinals ℵk with k ∈ N.

Homework 2.18
There is an operation called ordinal addition such that for all ordinals x, y, z with
x < y < z it holds that z + x < z + y. Here it is important that z comes first, as for
ordinal addition, the order matters and 0 +ω = 1 +ω. Write these two statements in
first-order logic with variables quantifying over ordinals and + referring to the ordinal
addition and <,= meaning the less than and equal relation on ordinals.

Homework 2.19
Use this fact to prove the following statements: There is a one-one mapping from the
set of finite ordinals into the set of countable ordinals where ω is the least countable
ordinal; furthermore, there is also a one-one mapping from the set of countable ordinals
into the set of all ordinals with cardinal ℵ1.
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Assignments for Week 3
Homework 3.1
Let f(n) be the maximum number of negation symbols in a well-formed formula which
does not contain any subformula of the form (¬(¬α)) and which contains at most n
atoms. Here (¬(A1 ∨ (¬(A2 ∨ (¬A1))))) has 3 atoms and n is 3, as repeated atoms
are counted again. Determine the value f(n) in dependence of n.

Homework 3.2
Prove by induction that a well-formed formula of length n contains less than n/3
connectives and at most (n+ 3)/4 atoms.

Homework 3.3
Use the truth-table method to prove that the following formulas are equivalent:

• ((¬A1) ∨ (¬A2));

• (¬(A1 ∧ A2));

• ((A1 ∨ A2)↔ (A1 ⊕ A2)).

Homework 3.4
Use the truth-table method to check whether the following statement is correct:

{(A1 ∨ A2), (A2 ∨ A3), (A1 ∨ A3)} |= ((A1 ∧ A2) ∨ A3).

Homework 3.5
Use the truth-table method to check whether the following statement is correct:

{(A1 → A2), (A2 → A3), (A3 → A4)} |= ((A1 → A3) ∧ (A2 → A4))

Homework 3.6
Use the truth-table method to check whether the following statement is correct:

{(A1 → A2), (A2 → A3), (A3 → A4)} |= (A4 → A1)

Homework 3.7
List out the truth-table for the formula (((A1 ⊕ A2) ∧ (¬A3))⊕ (A1 ∨ A3)).

Homework 3.8
List out the truth-table for the formula ((A1 ⊕ A3) ∨ ((A1 ⊕ A2) ∧ (A2 ⊕ A3))).

Homework 3.9
Consider the following formulas:

φ1 = (((A1 ∨ A2) ∨ A3) ∧ ((A4 ∨ A5) ∨ A6));

φ2 = (((A1 ∨ A2) ∧ (A3 ∨ A4)) ∧ (A5 ∨ A6));

φ3 = (((((A1 ⊕ A2)⊕ A3)⊕ A4)⊕ A5)⊕ A6).
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There are 26 = 64 ways to assign the truth-values to the sentence symbols (or atoms)
A1, . . . , A6. Determine for each of the formulas φ1, φ2, φ3, how many of these assign-
ments make the formula true and how many of these assignments make the formula
false.

Homework 3.10
For the formulas from Homework 3.9, is the statement

{φ1, φ2, φ3} |= (((((A1 ∧ A2) ∧ A3) ∧ A4) ∧ A5) ∧ A6)

true or false? Prove your answer.

Homework 3.11
For the formulas from Homework 3.9, is the statement

{φ1, φ2, φ3} |= (((((A1 ∨ A2) ∨ A3) ∨ A4) ∨ A5) ∨ A6)

true or false? Prove your answer.

Homework 3.12
Using the connectives ∨,∧,→,↔,⊕,¬, construct a formula using atoms A1, A2, A3, A4

which says that at least two and at most three of these atoms are true.

Homework 3.13
Using the connectives ∨,∧,→, construct a formula using atoms A1, A2, A3, A4, A5, A6

which says that either all six atoms are false or all six atoms are true.

Homework 3.14
Use the truth-table method to prove the associativity of↔, that is, prove that (A1 ↔
(A2 ↔ A3)) and ((A1 ↔ A2)↔ A3) are the same. Furthermore, check whether there
is a truth-assignment ν with ν((A1 ↔ (A2 ↔ A3))) = 1 and ν(A1) 6= ν(A2).

Homework 3.15
Use the truth-table method to check whether (A1⊕(A2⊕A3)) and (A1 ↔ (A2 ↔ A3))
are equivalent.

Homework 3.16
Make the truth-tables of ∧, ⊕ and ¬ for {0, u, 1}-valued logic where the value u stands
for an unknown value of 0 and 1 and where the output u is taken iff one cannot derive
from the inputs what the output is. Note that two inputs u need not to represent the
same of 0 and 1.

Homework 3.17
Make the truth-tables of →, ↔ and ∨ for the {0, u, 1}-valued logic from 3.16.

Homework 3.18
Assume that B = {∅} and D = {A : A ⊆ N} and consider infinitely many constructor
functions fk(A) = {k} ∪ {x + k + 1 : x ∈ A} with k ∈ N. What is C∗ in this set-up?
Are the constructor functions one-one and disjoint in range?
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Assignments for Week 4
Homework 4.1
Let atom(φ) be the set of atoms used in φ, so atom(((A1∨A2)∧A2)) = {A1, A2} and
atom((0 ∨ 1)) = ∅. Let WFF be the set of well-formed formulas. Let

C1 = {φ ∈ WFF : ∀ν [if ν(A) = 1 for some A ∈ atom(φ) then ν(φ) = 1]}.

For which of the connectives ¬,∧,∨,→,↔,⊕ is C1 closed under the connective? Here
one says that C is closed under the connective ⊕ if all formulas φ, ψ ∈ C satisfy that
(φ⊕ ψ) ∈ C. Similarly for other connectives.

Homework 4.2
Let atom(φ) and WFF be defined as in Homework 4.1. Let

C2 = {φ ∈ WFF : ∀ν [if ν(A) = 0 for at most one A ∈ atom(φ) then ν(φ) = 1]}.

For which of the connectives ¬,∧,∨,→,↔,⊕ is C2 closed under the connective?

Homework 4.3
Let C3 = {φ ∈ WFF : every A ∈ atom(φ) occurs in φ exactly once and 0, 1 do not
occur in φ}. Prove by induction that C3 does not contain any tautology and also
not contain any antitautology. Here a tautology is a formula which is always true
(independent of the choice of the truth-values of the atoms) and an antitautology is
a formula which is always false.

Homework 4.4
Define on WFF by recursion the functions atom (φ 7→ atom(φ)) and maxatom (φ 7→
max {k : Ak ∈ atom(φ)}), where the atoms A1, A2, . . . can be used and max ∅ = 0.
So maxatom((A1 ∨ (A4 ∧ A5))) = 5 and maxatom((0 ∨ 1)) = 0.

Homework 4.5
Define on WFF by recursion the function numcon(φ) as the number of connectives
∧,∨,→,↔,⊕ occurring in φ. Furthermore define the function numneg(φ) as the
number of negations occurring in φ. Determine the best-possible constants c,m, n
such that

|φ| ≤ c · numcon(φ) + n · numneg(φ) +m

for all WFF φ.

Homework 4.6
Let C6 = {φ ∈ WFF : every A ∈ atom(φ) occurs in φ exactly once}; note that
formulas in C6 might have occurrences of the constants 0 and 1. Define by recursion
a function F from C6 into the rational numbers between 0 and 1 which returns for
each formula φ ∈ C6 the truth-probability n/2m where n is the number of rows in the
truth-table of φ evaluated to 1 and m is the number of atoms used in the formula so
that 2m is the overall number of rows in the truth-table of φ. For example, F (1) = 1,
F ((A1 ⊕ (A2 ∨ A3))) = 1/2 and F (((A2 ∨ A5) ∧ (A3 ∨ 0))) = 3/8.

6



Homework 4.7
Let C7 = {φ ∈ WFF : φ can use the constants 0, 1 and the only connectives in φ are
∧ and ∨}. Prove by induction that a formula φ ∈ C7 is a tautology iff ν(φ) = 1 for
the truth-assignment ν with ν(Ak) = 0 for all k.

Homework 4.8
Let C8 = {φ ∈ WFF : φ can use the constants 0, 1 and the only connectives in φ are
∧ and ∨}. Prove by induction that a formula φ ∈ C8 is an antitautology iff ν(φ) = 0
for the truth-assignment v with ν(Ak) = 1 for all k.

Homework 4.9
Let U be a finite set of atoms and C9 = {φ ∈ WFF : atom(φ) ⊆ U}. Prove that
there is a finite set F of formulas such that for every formula φ ∈ C9 there is a ψ ∈ F
with (ψ ↔ φ) being a tautology.

Homework 4.10
The following formulas have brackets omitted according to the rule that the binding
strengths of the connectives is ordered as ¬,∧,∨,⊕,→,↔. Insert back the needed
brackets for getting a member of WFF.

1. A1 ∧ ¬A2 ∨ A3 → A4 ∧ ¬A5;

2. A1 ∨ ¬A2 ∧ ¬A3 ↔ A4 → A5;

3. ¬¬A1 ∨ ¬A2.

Homework 4.11
Is there a formula using the connectives ⊕ and ¬ but no other connectives where the
value of the formula depends on the placement of brackets?

Homework 4.12
Let ν(A1) = 1, ν(A2) = 1, ν(A3) = 0. The below formulas are given in Polish
notation. Write them as WFF and evaluate them according to ν:

1. ¬ ↔ ⊕A1A2A3;

2. ∧ ∨ ¬ ∨ A1A2A3A1;

3. ⊕ ∧ A1A2 ∧ A2A3.

Homework 4.13
Write the following formula in Polish notation: ¬((A1∨¬A2)∧(A2∨¬A3)∧(A3∨¬A1)).

Homework 4.14
Consider the formula φ in 9 atomsA1, . . . , A9 and consider the set S of all (Ai⊕Aj⊕Ak)
with Ai ∈ {A1, A2, A3}, Aj ∈ {A4, A5, A6} and Ak ∈ {A7, A8, A9}. Now let φ1 be
the conjunction of all formulas in S; that is, if S = {ψ1, ψ2, . . . , ψn} then φ1 =
ψ1 ∧ ψ2 ∧ . . . ∧ ψn when the brackets are omitted. Determine how many assignments
of these atoms make the formula true and how many make it false.
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Homework 4.15
Let φ2 to be taken the disjunction of the formulas in set S from Homework 4.14. De-
termine how many assignments of these atoms make the formula true and how many
make it false.

Homework 4.16
The following formulas have brackets omitted according to the rule that the binding
strengths of the connectives is ordered as ¬,∧,∨,⊕,→,↔. Insert back the needed
brackets for getting a member of WFF and evaluate the formulas for the truth-
assignment ν which sets all atoms to 1.

1. A1 ∨ ¬A2 ∧ A3 ↔ A4 → ¬A5 ∨ A3 ∧ A6 ⊕ A7;

2. A1 → A2 → A3 → A4 → ¬A5;

3. ¬¬¬A1 ⊕ A2 ⊕ A3.

Homework 4.17. The following formulas have some brackets omitted. Insert them
back according to the rule that the binding strengths of the connectives is ordered as
¬,∧,∨,⊕,→,↔. Evaluate them with A1 = 1, A2 = 0, A3 = 1, A4 = 0.

1. A1 ∧ A2 ⊕ A3 ∨ A4;

2. ¬(¬A1 ∨ ¬A2) ∧ A3 ∨ A4;

3. A1 ∨ A2 ⊕ A1 ∨ A3 ⊕ A2 ∨ A3 ⊕ A3 ∨ A4.

Homework 4.18. The following formulas have some brackets omitted. Insert them
back according to the rule that the binding strengths of the connectives is ordered as
¬,∧,∨,⊕,→,↔. Reinsert the operators and either find an satisfying assignment or
prove that such does not exist.

1. A1 ∧ ¬A1 ∨ A2 ∧ ¬A3 ∨ A3 ∧ ¬A2;

2. A1 ∧ ¬A2 ⊕ A2 ∧ ¬A3 ⊕ A3 ∧ ¬A1.

Homework 4.19. The following formulas have some brackets omitted. Find a way
to reinsert brackets such that they become tautologies and explain why this works.

1. A1 ⊕ ¬A1 ∧ A2 ⊕ ¬A2;

2. A1 ∨ A2 ∨ A3 ⊕ ¬A1 ∨ A2 ∨ A3;

3. ¬A1 ↔ A2 ⊕ A2 ↔ A1.
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Assignments for Week 5
Homework 5.1
Consider six-valued logic with values {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} ordered in the same
way as rational numbers and define that x∧y is the minimum and x∨y is the maximum
of the inputs; furthermore, ¬x is 1.0− x (with the usual numerical operation). Now,
for any formula α, let min(α) = min{ν(α) : ν is a six-valued truth-assignment of the
atoms}. Similarly one defines max(α). Which are the possible values which min(α)
and max(α) can take where α ranges over all formulas obtained by connecting atoms
using ∧,∨,¬?

Homework 5.2
If one uses the connectives ∧,∨,¬,⊕ for the six-valued logic from Homework 5.1 with
x⊕ y being defined as min{x+ y, 2− x− y}, what are the possible values of min(α)
and max(α), which are defined as in Homework 5.1.

Homework 5.3
For the six-valued logic from Homework 5.1 and 5.2, say that two formulas α, β
are equivalent iff they for all six-valued truth-assignments ν to the atoms satisfy
ν(α) = ν(β). Check whether the following equivalences of formulas hold in the six-
valued logic:

1. (A1 ∧ A2) ≡ (A2 ∧ A1);

2. (A1 ∧ (A2 ∨ A3)) ≡ ((A1 ∧ A2) ∨ (A1 ∧ A3));

3. (A1 ∧ (A2 ⊕ A3)) ≡ ((A1 ∧ A2)⊕ (A1 ∧ A3)).

Homework 5.4
For the six-valued logic from Homework 5.1 and 5.2, let x ↔ y be calculated by
1 − max{x − y, y − x}. Using the equivalence definition from Homework 5.3, check
whether the following formulas are equivalent:

1. (A1 ↔ A2) ≡ ¬(A1 ⊕ A2);

2. (A1 ↔ A2) ≡ (A1 ⊕ ¬A2);

3. ¬(A1 ∧ A2)↔ (¬A1 ∨ ¬A2) ≡ 1.0;

4. ((A1 ↔ A2)↔ A3) ≡ (A1 ↔ (A2 ↔ A3)).

Homework 5.5
Construct a circuit for A1 ⊕ A2 ⊕ A3 with the gates ∧,∨,¬; these gates can have
multiple inputs.

Homework 5.6
Construct a circuit for A1 ⊕ A2 ⊕ A3 using nand and nor and not gates, which can
have multiple inputs.

9



Homework 5.7
Assume that a company uses only chips which output 0 when all inputs are 0 –
as all-0-inputs and outputs are considered as an “error-information” and every useful
information is coded by input-vectors which are not everywhere 0. Now a vendor offers
to produce the chips as specified using only “exclusive-or-gates” (⊕) and “inclusive-
or-gates” (∨) at a very competitive price. The company boss finds it suspicious and
asks the company’s technician: Can this work? Provide the correct answer and prove
why it can work or why it cannot work.

Homework 5.8
Recall that maj(x, y, z) is 1 iff at least two of the inputs x, y, z are 1. Let C8 consist of
all formulas which are atoms or which are formed from other formulas α, β, γ ∈ C8 by
taking maj(α, β, γ) or ¬α. Prove by induction that each Boolean function Bn

α formed
from an α ∈ C8 satisfies Bn

α(x1, . . . , xn) = ¬Bn
α(¬x1, . . . ,¬xn) for x1, . . . , xn ∈ {0, 1}.

Homework 5.9
How many Boolean functions can be formed by using input variables x1, . . . , xn and
the constants and connectives from {0, 1,∧}.
Homework 5.10
How many Boolean functions can be formed using input variables x1, . . . , xn and the
constants and connectives from {0, 1,¬,⊕}.
Homework 5.11
Assume that α can use some of the atoms A1, . . . , A5, the truth-values 0 and 1 and
up to two connectives ⊕. How many functions of the form B5

α can be formed using
such α?

Homework 5.12
Assume that α can use some of the atoms A1, . . . , A4, the truth-values 0 and 1 and
at most one connective ∧ and at most one connective ∨. How many functions of the
form B4

α can be formed using such α?

Homework 5.13
Use as few of “and” (∧) and “inclusive or” (∨) as possible in order to make a formula
α with four atoms A1, A2, A3, A4 such that the following conditions hold:

• If at least three of the atoms A1, A2, A3, A4 are true then α is true;

• If at most one of the atoms A1, A2, A3, A4 are true then α is false;

• If exactly two of the atoms A1, A2, A3, A4 are true then there is no constraint
on which value α takes.

Use the last condition in order to optimise the number of connectives in the formula.

Homework 5.14
Recall that maj(x, y, z) is 1 iff at least two of the inputs x, y, z are 1. Is there an
n ∈ {1, 2, 3, 4} for which the set {maj,Bn

A1⊕A2⊕...⊕An
} complete? For those n where
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it is incomplete, can it be made complete by adding the logical constants 0, 1 to the
set of connectives? If so, which of these are needed?
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Assignments for Week 6
Homework 6.1
Which of the following statements are true? Prove your answers.
(a) {α, β} |= c ∨ d ⇔ {α, β} |= c or {α, β} |= d.
(b) {α, β} |= c ∧ d ⇔ {α, β} |= c and {α, β} |= d.
(c) {α, β} |= α⊕ β ⇔ α ∧ β is not satisfiable.
Here a formula α is satisfiable iff there is a choice of truth-values of the atoms such
that α becomes true.

Homework 6.2
Which of the following statements are true? Prove your answers.
(a) S |= α ⇔ S ∪ {α} is satisfiable.
(b) S |= α ⇔ S ∪ {¬α} is not satisfiable.
(c) S |= α→ β ⇔ S ∪ {¬α} |= ¬β.
Here a set S of formulas is satisfiable iff there is a choice of truth-values of the atoms
such that all formulas in S are true.

Homework 6.3
Make an infinite set S of formulas such that every subset of two formulas is satisfiable
but no subset of three or more formulas is.

Homework 6.4
Is the set {↔,¬,⊕, 0, 1} of connectives and constants complete? Do the subsets
{↔, 1} and {↔, 0} have the same expressive power or less expressive power than
{↔,¬,⊕, 0, 1}?
Homework 6.5
Make a formula in A1, A2, A3, A4 with as few of the connectives ∧ and ∨ as possible,
but which might use as many ¬ as needed such that the following constraints are
satisfied: If none or all four of the atoms are 1 then the output is 0 and if one or three
of the atoms are 1 then the output is 1; there is no requirement on what happens if
exactly two atoms are 1. Use Enderton’s Square Method.

Homework 6.6
Make a formula in A1, A2, A3, A4 with as few of the connectives ∧ and ∨ as possible,
but which might use as many ¬ as needed such that the following constraints are
satisfied: If none or three of the atoms are 1 then the output is 0 and if one or all
four of the atoms are 1 then the output is 1; there is no requirment on what happens
if exactly two atoms are 1. Use Enderton’s Square Method.

Homework 6.7
For switching circuits based on relays and with the possibility to use both normal and
negated inputs, construct a circuit which uses as few input-invocations as possible in
order to compute the majority-function in three variables.

Homework 6.8
Consider the three-valued fuzzy logic with truth-values from Q = {0, 1/2, 1}. Can the
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set of {∧,∨,¬,⊕,↔,→} plus the three truth-values be used to generate all functions
from Q2 → Q?

Homework 6.9
Consider fuzzy logic with truth-values from some finite Q satisfying the constraints
from Chapter 1.5. Find a set containing only three connectives which is, together
with the truth-values, as powerful as the set {∧,∨,¬,⊕,↔,→} with respect to the
ability to generate functions from Q2 → Q.

Homework 6.10
Consider fuzzy logic with Q = {r ∈ R : 0 ≤ r ≤ 1}. Provide some examples of
functions from Q to Q which are not equal to B1

α for some α generated by rational
truth-values and the connectives of fuzzy logic in Chapter 1.5.

Homework 6.11-6.13
Corollary 17A says that if S |= α then there is a finite subset S ′ of S such that S ′ |= α.
This proof does not directly translate to fuzzy logic and indeed, if one defines S |= α
in fuzzy logic in the wrong way, then it is false. For the following homeworks, consider
Q = {r ∈ R : 0 ≤ r ≤ 1} and S = {q → A1 : q ∈ Q and 0 ≤ q < 1} and α = A1.

Homework 6.11
Assume that one defines S |= α as “All Q-valued truth-assignments ν satisfy that if
ν(β) = 1 for all β ∈ S then ν(α) = 1” and show that then S |= α but no finite subset
S ′ of S satisfies S ′ |= α.

Homework 6.12
Assume that one defines S |= α as “All Q-valued truth-assignments ν and all ε > 0
satisfy that there is β ∈ S ∪ {1} with ν(β) ≤ ν(α) + ε” and show that then S |= α
but no finite subset S ′ of S satisfies S ′ |= α.

Homework 6.13
Assume that one defines S |= α as “All Q-valued truth-assignments ν and all q ∈ Q
satisfy that if ν(β) ≥ q for all β ∈ S then ν(α) ≥ q” and show that then S |= α but
no finite subset S ′ of S satisfies S ′ |= α.
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Assignments for Week 7
Homework 7.1
Recall that a set is recursively enumerable iff it is empty or is the range of a function
computed by an effective procedure (also called recursive function). Consider now
three X, Y, Z be effectively enumerable sets which all contain 0 and which are the
ranges of functions FX , FY , FZ which are given by effective procedures. Make recursive
functions G,H such that the range of G is X ∪ Y ∪ Z and the range of H is (X ∩
Y ) ∪ (X ∩ Z) ∪ (Y ∩ Z) = {u : u is in at least two of the sets X, Y, Z}.
Homework 7.2
Prove that the following set S is decidable: S is the set of all n such that there are
infinitely many natural numbers m for which both m and m+ n are powers of 2.

Homework 7.3
Prove that the following set S is decidable: S contains all numbers x for which there
are infinitely many pairs y, z of prime numbers satisfying that y < z ≤ y + x.

Homework 7.4
A binary tree T is a set of binary strings such that whenever στ ∈ T then σ ∈ T
(where στ is the concatenation of σ and τ). König’s Lemma says that every infinite
binary tree contains an infinite branch. Now let A1, A2, . . . be the atoms and let
S = {α1, α2, . . .} be a set of formulas. Now let T be a binary tree which on level n
contains all those σ ∈ {0, 1}n which satisfy for all formulas β ∈ {α1, α2, . . . , αn}, if no
atom Ak with k > n occurs in β then every ν with ν(Ak) = σ(k) makes β true. Prove
the following: If T is infinite then T has an infinite branch and each infinite branch
defines a ν with ν |= S; if T is finite then there is a first level n on which T has no
nodes and {α1, α2, . . . , αn} is not satisfiable.

Homework 7.5
Let S = {α : α is a well-formed formula and for all ν, ν(α) = 1 iff more than a half
of the atoms Ak ∈ atom(α) satisfy ν(Ak) = 1}. Prove that S is decidable.

Homework 7.6
Let ν be computed by an effective procedure mapping each k ∈ N to the truth-value
assigned to atom Ak. Let S = {α ∈ WFF : ν(α) = 1}. Which of the following
options is correct?
(a) S is decidable; (b) S is recursively enumerable but not decidable; (c) S is not
recursively enumerable.

Homework 7.7
Assume that you know that addition, subtraction and multiplication are effectively
computable. Use now recursion in one variable to show that (a) the integer division
n,m 7→ max{k : k ·m ≤ n} and (b) n 7→

(
2n
n

)
are effectively computable functions.

Note that the recursion can use case-distinctions; for example, the inductive definition
of the remainder f(a, b) of a by b is f(0, b) = 0 and if f(a, b)+1 < b then f(a+1, b) =
f(a, b) + 1 else f(a+ 1, b) = 0.
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Homework 7.8
Prove that if S is a satisfiable set of formulas then WFF − S is not a satisfiable set
of formulas.

Homework 7.9
Assume that S1, S2, S3 are satisfiable sets of formulas. What about the set T =
(S1 ∪ S2) ∩ (S1 ∪ S3) ∩ (S2 ∪ S3)? Prove that T is satisfiable or give an example of
S1, S2, S3 where the resulting T is not satisfiable.

Homework 7.10
Let S = {α ∈ WFF : ν(α) = 1} for some ν and T = {α : (α∨A1), (α∨ (¬A1)) ∈ S}.
Is T satisfiable? Is S = T?

Homework 7.11
Call a set S of formulas almost-zero-satisfiable (azs) iff there is a ν with ν(Ak) = 0
for almost all atoms and ν(α) = 1 for all α ∈ S. Does the notion “azs” satisfy the
compactness theorem? That is, for any infinite set S ⊆ WFF , if every finite subset
is almost-zero-satisfiable, is then S itself also almost-zero-satisfiable?

Homework 7.12
Are there infinite sets S, T of wff such that every finite subset T ′ of T there is a finite
subset S ′ of S such that S ′ |= α for all α ∈ T ′ but it does not hold that S |= T , that
is, there is some ν which is true on all members of S but not all members of T .

Homework 7.13
Assume that there are infinitely many logical atoms. Is there a set S of formulas such
that for all ν mapping atoms to {0, 1}, ν |= S iff there are exactly three atoms A,B,C
with ν(A) = 1, ν(B) = 1, ν(C) = 1?
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Assignments for Week 8
Homework 8.1
Let Ap(x) say “x is an apple”, Ba(x) say “x is a banana”, Cb(x) say “x is a cranberry”
and Cu(x) say “x is a currant”. Furthermore, let Y e(x) say “x is yellow”, Re(x) say
“x is red” and Bl(x) say “x is black”. Now translate the following English sentences
into logic:

1. There are yellow apples and red apples.

2. All bananas are yellow.

3. Cranberries are always red.

4. There are red currants and black currants and every currant has one of these
two colours.

Homework 8.2
Given the notation from Homework 8.1, translate the following formulas into normal
English language sentences:

∀x [Ap(x)→ ¬Ba(x)];

∃x [Bl(x) ∧ ¬Ap(x) ∧ ¬Ba(x)];

∀x∀y [Re(x) ∧Bl(y)→ x 6= y];

∀x∃y [(Cu(x) ∧Re(x))→ (Cu(y) ∧Bl(y))].

Homework 8.3
Assume that there is a set X of five fruits satisfying the following formulas.

∀x [Ap(x) ∨Ba(x) ∨ Cu(x)];

∀x [(¬Ap(x) ∧ ¬Ba(x)) ∨ (¬Ap(x) ∧ ¬Cu(x)) ∨ (¬Ba(x) ∧ ¬Cu(x))];

∀x [Bl(x) ∨Re(x) ∨ Y e(x)];

∀x [(¬Bl(x) ∧ ¬Re(x)) ∨ (¬Bl(x) ∧ ¬Y e(x)) ∨ (¬Re(x) ∧ ¬Y e(x))];

∀x [Ap(x)→ ¬Bl(x)];

∀x [Ba(x)→ Y e(x)];

∀x [Cu(x)→ ¬Y e(x)];

∃u∃v ∃w ∃x∃y [Re(u) ∧ v 6= w ∧ Y e(v) ∧ Y e(w) ∧ x 6= y ∧Bl(x) ∧Bl(y)].

Calculate the number of models (up to isomorphism) which satisfy these formulas
with five elements.

Homework 8.4
Use the formulas from Homework 8.3, but assume that X has 6 elements. Calculate
the number of models (up to isomorphism) which satisfy these formulas with six
elements.
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Homework 8.5
Use the formulas from Homework 8.3, but assume that X has at most 4 elements.
Calculate the number of models (up to isomorphism) which satisfy these formulas
with up to four elements.

Homework 8.6
Assume that equality is in the logical language, but no predicate or function. Make a
set S of formulas which says that the number of elements of a structure satisfying S
is either a prime number or infinite. This set S is infinite.

Homework 8.7
Assume that a structure X with one function symbol f satisfies

∀x [f(x) 6= x ∧ f(f(x)) = x].

What can be said about the number of elements in the base set X?

Homework 8.8
Make a formula using the language of natural numbers with addition and order which
says that there are infinitely many numbers which are not multiples of any of 2, 3 and
5. This formula should not use multiplication.

Homework 8.9
Consider the structure (N,+,−, ·, <,=, 0, 1, 2, . . .) and the corresponding first-order
logical language of arithmetic with constants for every natural number. Make formulas
which express the following:

1. Each number is either 0 or 1 or the multiple of a prime number;

2. There are infinitely many prime numbers of the form 5n+ 1.

Homework 8.10
Consider the structure (N,+,−, ·, <,=, 0, 1, 2, . . .) and the corresponding first-order
logical language of arithmetic with constants for every natural number. Make formulas
which express the following:

1. Every even number other than 0 and 2 is the sum of two prime numbers;

2. There are infinitely many numbers x such that x− 1 and x+ 1 are both prime
numbers.

Homework 8.11
Consider the structure (Z,+,−, ·, <,=, 0,−1, 1,−2, 2, . . .) and the corresponding first-
order logical language of arithmetic with constants for every integer. Make formulas
which express the following:

1. The number 23 is not the sum of three squares;

2. A number is the sum of four squares if it is greater or equal 0.
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Homework 8.12
For first-order logic, assume that the logical language has only equality and variables
and quantifiers and the logical connectives. The formula ∃x, y, z [x 6= y∧x 6= z∧y 6= z]
can only be satisfied by a structure with at least three elements. Is there, in this logical
language, a formula α which can only be satisfied by structures with infinitely many
elements? Is there a set S of formulas such that S is only satisfied by structures with
infinitely many elements?

Homework 8.13
Let (F,+,−, ·, f,=, 0, 1, 2) be the finite field with the three elements 0, 1, 2 and let
f : F → F be any function. Which of the following statements are true for this
structure (independently of how f is chosen)?

1. ∀x, y [(x+ y) · (x+ y) = (x · x) + (y · y)− (x · y)];

2. ∀x, y [(x+ y) · (x+ y) · (x+ y) = (x · x · x) + (y · y · y)];

3. ∀x, y [(x+ y) · (x+ y) · (x+ y) · (x+ y) = (x · x · x · x) + (y · y · y · y)];

4. ∃a, b, c ∀x [f(x) = a · x · (x− 1) + b · x · (x− 2) + c · (x− 1) · (x− 2)];

5. ∀x [x · x · x 6= 2].
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Assignments for Week 9
Homework 9.1
Let (A,+, ·) and (B,+, ·) be the remainder rings modulo a and b, respectively, a, b ∈
{2, 3, 4, 5, 6}. For which a, b is there a homomorphism f from (A,+, ·) to (B,+, ·) such
that any two terms t1, t2 satisfy (A,+, ·), s |= t1 = t2 iff (B,+, ·), s′ |= f(t1) = f(t2),
where s′(vk) = f(s(vk)) for all variables vk.

Homework 9.2
Choose values for a, b from Homework 9.1 and a formula φ and a function f such that
f is a homomorphism and the formula φ is true in (A,+, ·) but not in (B,+, ·).
Homework 9.3
Consider the model ({0, 1, . . . , 9},+, ·) with addition and multiplication modulo 10,
so 5 + 7 = 2 and 5 · 7 = 5. Which are the sets defined by the following formulas:

1. x ∈ A⇔ ∃y [x = y · y];

2. x ∈ B ⇔ ∀y [x · y = 0 ∨ x · y = 3 ∨ x · y = 5];

3. x ∈ C ⇔ ∀y [x 6= y · y · y · y].

Homework 9.4
Is the set {2, 4, 6, 8} definable in the model of arithmetic modulo 10? Here the formula
can use the operations +, · and the constants 0, 1 and equality = and connectives and
quantifiers.

Homework 9.5
Is every function in the model {0, 1, . . . , 9} with addition and multiplication and all
constants explicitly definable by a term? If so, give a proof; if not, explain why.

Homework 9.6
Let Z · {i}+Z be the set of all complex integer numbers. Show that this set together
with + and · is a ring. Prove that the basis element i is not definable by using an
isomorphism which maps i to some other element.

Homework 9.7
Recall that a structure (A, ◦, e) is a group iff it satisfies ∀x, y, z [x◦(y◦z) = (x◦y)◦z],
∀x [x ◦ e = x ∧ e ◦ x = x], ∀x∃y [x ◦ y = e ∧ y ◦ x = e].
Write down formally the axioms for an Abelian group, a ring with 1 and a commutative
ring with 1, respectively.

Homework 9.8
Assume that (A,+, ·, 0, 1) is a finite ring with 0 6= 1. Consider the formulas

x = 0 ⇔ ∀y [x+ y = y] and

x = 1 ⇔ ∀y [x · y = y ∧ y · x = y].

Are then all members of A definable with formulas like this? If yes then prove how
this is done else provide a finite ring where some elements are not definable.
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Homework 9.9
Let (R,+, ·, <, 0, 1) be the ordered field of the real numbers with the constants 0 and
1. Prove that all rational numbers and all real roots of polynomials are definable.
Provide then examples of formulas φ1, φ2, φ3, φ4 such that xk is the unique element
satisfying φk where the formulas φk say the following:

1. x1 = 2/3;

2. x2 is the positive square-root of 3;

3. x3 is the largest number satisfying x103 − 4x53 + 2 = 0;

4. x4 is the smallest number satisfying 3x64 − 6x44 + 3x24 = 0.

Homework 9.10
Consider a structure (A, f, 0, 1,=) with 0, 1 ∈ A being constants and f a function
from A to A. Make three formulas in the language of this structure which express the
following conditions:

1. The first formula says that f has the range {0, 1};

2. The second formula says that f is the inverse of itself;

3. The third formula says that every value in the range of f is the image of exactly
two values.

Homework 9.11
Let (A,PA), (B,PB) be two structures with A = {0} and B = {1, 2}. choose the
predicate PB such that there is no strong homomorphism from B to A (independently
of what PA is) while there is for each possible choice of PA a strong homomorphism
from (A,PA) to (B,PB).

Homework 9.12
Let (Z, Succ, Even) be a structure with Even(x) being true iff x is even and Succ
being the successor function. Let f be a function from the structure to itself. Prove
that if f is a homomorphism then f is a strong homomorphism.

Homework 9.13
Consider the structure (Z, Neigh, Even) where Even(x) is true iff x is even and
Neigh(x, y) is true iff x = y + 1 or x = y− 1. Construct a function g from Z to itself
which is a homomorphism but not a strong homomorphism.

Homework 9.14
Assume that (A,+, a, b, c, d) is an n-dimensional vector space for some n over the field
({0, 1, 2},+, ·) with three elements; here for the skalar multiplication, x ·0 = x+x+x,
x ·1 = x and x ·2 = x+x, so that the multiplication with each fixed skalar is definable.
Find the largest dimension n so that all elements in the vector space (A,+, a, b, c, d)
are definable when one chooses the right values for a, b, c, d and explain how the
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formulas to define the elements look like; note that an isomorphism of the structure
itself has to map a to a, b to b, c to c and d to d.

Homework 9.15
Assume that a structure (X,+) satisfies the below axioms:

1. ∀x∀y ∀z [x+ (y + z) = (x+ y) + z];

2. ∀x∀y [x+ y = y + x];

3. ∀x∀y [x+ x = y + y];

4. ∀x [x+ x+ x = x].

Assume furthermore, that the structure has four elements 0, a, b, c and that 0 is the
element with 0 = x + x for all x ∈ X. Prove (informally, not in the deductive
calculus) that the structure satisfies a + b = c and show that a, b, c are not definable
by constructing an isomorphism h with h(a) 6= a, h(b) 6= b and h(c) 6= c.
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Assignments for Week 10
Homework 10.1
This homework considers undirected graphs without self-loops. Consider the following
two graphs:

(a) 0 - 1 - 2 (b) 0 1 - 2

| / | /

3 3

(a) Prove that in graph (a) nodes 0 and 1 are definable and nodes 2 and 3 are not.
(b) Prove that in graph (b) the node 0 is definable and nodes 1, 2 and 3 are not.
(c) For which n is there a graph of 6 nodes such that exactly n out of these 6 nodes
are definable?

Homework 10.2
Let the logical language contain a function symbol f for a function with one input.
Show that Λ proves the formulas

¬(f(x) = f(y))→ ¬(f(y) = f(x)), f(x) = f(y)→ (f(y) = f(z)→ f(x) = f(z))

which is similar to some proofs in the lecture notes.

Homework 10.3
For the following formulas α and terms t, either write what αzt is or write that a
substitution is not permitted. The formulas are ∃x [¬(x = z+1)], ∀z [x = z], f(x·z) =
f(0) and the terms are x, 0, z + z. Do not forget to make brackets where needed.

Homework 10.4
For the following formulas α and terms t, either write what αzt is or write that a
substitution is not permitted. The formulas are ∃x∀y [x = y · z], ∀x ∃y [z = x + y],
∀u [z · z + 1 6= u · u + 2] and the terms are x + y, 0, v · w. Do not forget to make
brackets where needed.

Homework 10.5
Use the Deduction Theorem to show the following:
If Γ ` α→ β → γ → δ then Γ ` γ → α→ β → δ.
Which other interchanges of α, β, γ, δ are permitted and which not?

Homework 10.6
Prove the statement from Homework 10.5 using only tautologies and modus ponens.

Homework 10.7
Let the logical language have a predicate P and constant c. Prove formally that

{∀x∀y [P (x)→ P (y)]} ` P (c)→ ∀y [P (y)]

using the axioms of Λ, the Deduction Theorem and the Generalisation Theorem.
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Homework 10.8
Let (A,+, 0) be a structure with constant 0 and binary operation +. Make a formal
proof for

{∀x [x+ x = 0]} ` ∀x [(x+ x) + (x+ x) = 0]

using axioms from Λ and the Generalisation Theorem.

Homework 10.9
Let (A,+, 0) be a structure with constant 0 and binary operation +. Make a formal
proof for

{∀x ∀y [x+ y = y + x]} ` ∀u [u+ (u+ u) = (u+ u) + u]

using the axioms of Λ and the Generalisation Theorem.

Homework 10.10
For (A,+, 0) as in Homework 10.9, make a formal proof for

{∀x ∀y ∀z [(x+ y) + z = x+ (y + z)]} ` ∀u [u+ (u+ u) = (u+ u) + u]

using the axioms of Λ and the Generalisation Theorem.

Homework 10.11
Is the statement

{∀x ∀y [x+ y = y + x],∀x∀y ∀z [(x+ y) + z = x+ (y + z)]} |= ∀x∀y ∃z [x+ z = y]

true? If the statement is true then make a formal proof else provide a model satisfying
the left but not the right side of |=.

Homework 10.12
Is the statement

{∀x∀y ∃z [x+ z = y],∀x ∀y ∀z [(x+ y) + z = x+ (y + z)]} |= ∀x ∀y ∃z [z + x = y]

true? If the statement is true then make a formal proof else provide a model satisfying
the left but not the right side of |=.
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Assignments for Week 11
Homework 11.1
Assume that α, β, γ are well-formed formulas. Give a formal proof of the statement

{β, γ} |= α→ β

which only uses the formulas from Λ and the Modus Ponens.

Homework 11.2
Assume that {α, β} tautologically implies γ. The below derivation is incorrect. Say
what the fault is and replace it by a corrected one:

1. {α, β} ` α→ β → γ (Axiom Group 1)

2. {α, β} ` β (Copy)

3. {α, β} ` β → α→ β (Axiom Group 1)

4. {α, β} ` α→ β (Modus Ponens)

5. {α, β} ` γ (Modus Ponens)

For the following exercises, P,Q are predicates and a, b, c are constants.

Homework 11.3
Make a formal proof for

{∀x [P (x)→ Q(c)],∀x [¬P (x)→ Q(c)]} ` Q(c).

Homework 11.4
Make a formal proof for {∀x [P (x)],∃y [¬P (y)]} ` Q(z).

Homework 11.5
Make a formal proof for ∅ ` ∀x∀y [P (x)→ Q(y)]→ P (a)→ Q(b).

Homework 11.6
Is the statement ∅ ` P (x)→ ∀y [P (y)] correct? Explain your answer.

Homework 11.7
Is the statement ∅ ` P (x)→ ∀y [P (x)] correct? Explain your answer.

Homework 11.8
Is the statement ∅ ` P (x)→ ∃y [P (y)] correct? Explain your answer.

Homework 11.9
Let (G, ◦, f, e) be a structure and Γ contain the following axioms:

• ∀x, y, z [(x ◦ y) ◦ z = x ◦ (y ◦ z)];

• ∀x, y [x ◦ y = y ◦ x];

• ∀x [x ◦ e = x];
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• ∀x [x ◦ f(x) = e];

• ∀x, y, z [x ◦ y = x ◦ z → y = z];

So (G, ◦) is an Abelian group with neutral element e and inversion f . Prove informally
the following results:

• ∀v, w [f(v) = f(w)→ v = w];

• ∀v, w [v ◦ w = e→ f(v) = w];

• ∀v, w [f(v ◦ w) = f(w) ◦ f(v)].

Homework 11.10
Consider all structures (A, ◦) where A has two elements and satisfies the axioms

∀x [x ◦ x = x] and ∀x∀y [x ◦ y = y ◦ x].

Show that all these structures are isomorphic.

Homework 11.11
Assume that (N,+, <, 0, 1, P ) is a structure where N is the set of natural numbers and
+, <, 0, 1 have the usual meaning on N. Let the powers of 2 be the set {1, 2, 4, 8, 16, . . .}
and make a formula α such that (N,+, <, 0, 1, P ) |= α iff ∀x [Px↔ x is a power of 2].

Note that such a formula only implicitly defines the powers of 2 and not explicitly;
therefore this formula α does not say that the powers are definable from addition and
order in N.

Homework 11.12
Make a formula α which says that f : A→ A is a one-to-one function but not an onto
function. Provide a model (A, f,=) which satisfies α. Can A be finite?
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Assignments for Week 12
Homework 12.1
Let α, β, γ be any well-formed formulas. Which of the below formulas are valid,
independent of what formulas for α, β, γ are chosen? If yes, give a formal proof, if
not, find a counter example by chosing the right values for α, β, γ.

1. ∀x [α→ β]→ ∀x [¬β]→ ∀x [¬α];

2. ∀x∀y [α→ β]→ ∀x ∀y [β → γ]→ ∀x∀y [γ → α];

3. ∀x [α→ β]→ ∀x [α→ ¬β]→ ∀x [¬α].

Homework 12.2
Assume that x, y are different variables. Which of the below statements are valid for
all choices of α:

• ∀x [αxy → α];

• ∀x [α→ αxy ].

Either provide a proof that the formula is valid or a counter example (one choice of
α and the corresponding structure and default) where the formula is false.

Homework 12.3
Assume that the logical language contains the predicate symbols P and Q. Make for-
mal proofs for the following facts. You can use the Deduction and the Generalisation
Theorems and use axioms of the first group in order to deal with connectives other
than ¬ and →.

1. {P (y)} ` ∀x [x = y → P (x)];

2. {∀x [x = y → Q(x)],∀z [Q(z)→ P (z)]} ` P (y);

3. {∀x [P (x)],∀x [Q(x)]} ` ∀x [P (x) ∧Q(x)].

Homework 12.4
Prove the following statement, perhaps by first proving that {∀y [¬(y = f(x))]} is
inconsistent and then using that therefore ¬∀y [¬(y = f(x))] can be proven from ∅:

∅ ` ∀x∃y [y = f(x)].

Homework 12.5
If the following sentence is valid then prove it else provide a structure where it is false:

∀x ∃y [f(f(x)) = y ∧ f(f(y)) = x].

Homework 12.6
If the following sentence is valid then prove it else provide a structure where it is false:

∃y ∀x [y = f(x)]→ ∃y ∀x [y 6= f(x)].
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Homework 12.7
Let the logical language contain an unary function f and constants a, b and equality.
If the following sentence is valid then prove it else provide a structure where it is false:

f(a) 6= f(b)→ ∀x ∃y [f(x) 6= f(y)].

Homework 12.8
Let S, T be any sets of sentences and let the logical language contain = and one
unary function symbol f , but no constants. Furthermore, assume that the theories
generated by S, T are both 6-categorical, that is, each of these two theories has up to
isomorphism one model of size 6. Is the following true: S∪T is also 6-categorical and
the model is the same as those of S and T alone, respectively. Prove your answer.

Homework 12.9
Let S, T be any sets of sentences. Is the following true: If all infinite structures are
models of S and all infinite structures are models of T then all infinite structures are
models of S ∪ T?

Homework 12.10
Is the set

{∀x ∀y ∃z [x ◦ z = y],∀x∀y ∃z′ [z′ ◦ x = y],
∃x∃y ∃z [x ◦ z = y ∧ z ◦ x 6= y],∀x∀y ∀z [x ◦ (y ◦ z) = (x ◦ y) ◦ z]}

a consistent set of formulas? In other words, is there a structure (A, ◦) such that ◦
is associative and for each x, y one can find from each side elements z, z′ such that
x ◦ z = y and z′ ◦ x = y; however, it might be that for some x, y, z with x ◦ z = y, one
has to take a different z′ for achieving z′ ◦ x = y.

Homework 12.11
Consider the finite structure with domain {0, 1, . . . , p − 1} and multiplication and
addition modulo p, besides the usage of +, · the logical language also permits −
and the constants 0, 1, . . . , p − 1. Make in a programming language of your choice a
computer program which evaluates to 0 (false) or 1 (true) depending on whether the
statement

∀x∃y ∃z [x = y · y + z · z]

is true in the structure and use the program to determine for which of p = 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12 the formula is true, that is, for which of these modulo rings is every
number the sum of two squares.
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Assignments for Week 13
Homework 13.1
Are the following sets of sentences effectively enumerable:

1. {α ∈ T : every group satisfies α}; 2. {α ∈ T : every Abelian group satisfies α}?

Here T is the set of all sentences in the logical language with one operation ◦ and one
constant e and one function f to denote the group operation, neutral element and
inversion, respectively.

Homework 13.2
Let the logical language contain exactly one predicate P and no function symbols;
the predicate P is unary (one input only). Recall that a sentence is a formula with no
free variables. Make a sentence α such that, for each n, there are, up to isomorphism,
exactly n− 1 models of α with n elements.

Homework 13.3
Let the logical language contain the predicates P0, P1, . . . and let Γ for all n,m with
m < n contain the following formulas:

∃x ∀y [Pn(x) ∧ (Pn(y)→ y = x)], ∀x [¬Pn(x) ∨ ¬Pm(x)].

How many models of finite cardinality, of cardinality ℵ0 and or cardinality ℵ1 does Γ
have? Here isomorphic models should not be double counted.

Homework 13.4
Two structures are elementarily equivalent iff they satisfy the same sentences. Is there
a structure which is elementarily equivalent to the real numbers with addition and
multiplication, but not isomorphic to it? Explain your answer.

Homework 13.5
Assume that two sets of sentences Γ and ∆ do not have any structure in common,
that is, any structure of Γ fails to satisfy all formulas in ∆ and every structure of
∆ fails to satisfy all formulas of Γ, but both sets Γ and ∆ are consistent. Is there a
single sentence α such that all structures of Γ satisfy α and none of ∆ does?

Homework 13.6
Let a structure Z = (Z, . . . ,−2, P−2,−1, P−1, 0, P0, 1, P1, 2, P2, . . .) contain all integers
and constants for all integers so that if cn is the constant for n and Pn the predicate
for n then Pn(x) is true in the model iff x ≤ cn. Note that ≤ itself is not part of the
logical language. Up to isomorphism, how many countable models are there which
are elementarily equivalent to Z? 0 or 1 or . . . or countably infinite or uncountably
infinite models?

Homework 13.7
Let a structure Q contain the domain Q and for each rational number q a constant cq
and a predicate Pq such that Pq(x) is true iff x ≤ q. Note that ≤ itself is not part of
the logical language. Up to isomorphism, how many countable models are there which
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are elementarily equivalent to Q? 0 or 1 or . . . or countably infinite or uncountably
infinite models?

Homework 13.8
Recall that a theory is ℵ0-categorical iff it has an infinite model and every two count-
able infinite models are isomorphic. Let the logical language have only one unary
predicate P and equality =. Show that every complete theory of this logical language
either has only a finite model or has an infinite model and is ℵ0-categorical.

Homework 13.9
Let Mod(S) denote the set of models of S. Show the following for sets S, T of sen-
tences:

1. If S ⊆ T then Mod(T ) ⊆Mod(S);

2. Mod(S ∪ T ) ⊆Mod(S) ∩Mod(T );

3. If Mod(S) = Mod(T ) then Mod(S) = Mod(S ∪ T ).

Homework 13.10
Is there a sentence α such that α has a model with κ members in the domain iff κ = n2

for some n ∈ {1, 2, 3, . . .} or κ ≥ ℵ0, where the underlying logical language has one
unary predicate P and one binary operation ◦ (α can use these).

Homework 13.11
Let (G, ◦, e) be a group with 8 elements. Show that every group (H, •, d) which is
elementarily equivalent to (G, ◦, e) is also isomorphic to (G, ◦, e).
Homework 13.12
Provide an example of an infinite group (G, ◦, e) such that every group which is
elementarily equivalent to (G, ◦, e) and has the same number of elements as (G, ◦, e)
is also isomorphic to (G, ◦, e). Hint: Use an Abelian group also satisfying some torsion
axiom, say ∀x [x◦x◦x = e]. The number of repetitions of x in the torsion rule should
be a prime number.

Homework 13.13
Let the logical language have one unary predicate P and equality. Furthermore,
assume that a theory T has for each n an axiom which says that at least n elements
x satisfy P (x) and another n elements satisfy ¬P (x). Show that this theory is not
ℵ1-categorical and determine the number of models of cardinality ℵ1 it has – note that
one can split a set of cardinality ℵ1 into two sets of cardinality κ, λ iff max{κ, λ} = ℵ1.
The cardinals up to ℵ1 are 0, 1, 2, . . . ,ℵ0,ℵ1.
Homework 13.14
Assume that a model A has the domain of rational numbers Q and infinitely many
constants ck = −2−k, d = 0 and ek = 2−k. The countable models elementarily
equivalent to this structure are dense linear orders with the ck all strictly below d
and going strictly upwards and the ek all being strictly above d and going strictly
downwards. Up to isomorphism, how many countable models are there which are
elementarily equivalent to A? Provide of each of these models one isomorphic copy
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by saying what the values if ck, d and ek are.

Homework 13.15
Prove formally, using the Axioms of Λ, Modus Ponens and copying from the set of
preconditions and the Generalisation Theorem the following:

{∃x [P (x)],∀y[Q(y)]} ` ∀z [P (z)→ Q(z)]
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Selflearning Assignments with Solutions
Homework 14.1
Give an example for a set S of formulas in sentential logic such that

• for all α, β ∈ S, the formulas (α ∨ β), (α ∧ β), (α → β), (α ↔ β) and ¬¬α are
also in S;

• for all α, either α ∈ S or ¬α in S but not both.

Solution. Let ν be such that ν(A) = 1 for all atoms A. Now let

S = {α : ν(α) = 1}

and one can see that due to the definition of ν, it is always true that exactly one of
α,¬α are in S. Furthermore, if α, β are in S then ν makes both of them true and it
follows that ν also makes the formulas (α ∨ β), (α ∧ β), (α → β), (α ↔ β) and ¬¬α
true, thus they are also in S.

Homework 14.2
How many Boolean functions of the form Bn

α can be built where α uses the atoms
A1, . . . , An and combines them either with ∧ or with →? Other connectives and
logical constants are not allowed. List out the numbers of functions for n = 1, 2, 3.

Solution. The number of functions is 22n−1. Note that 1→ 1 and 1∧1 both evaluate
to 1. Thus if A1, . . . , An are all 1 then the output is 1. If at least one of them is 0, then
A1∧A2∧. . .∧An has the value 0 and one can use this as a replacement for the constant
0; furthermore, ¬α is then realisable by the formulas F (α) = (α→ (A1∧A2∧. . .∧An)).
If at least one of the atoms is 0 then F (α) has the value ¬α else α has the value 1. It
follows that one can translate a formula β using only ∧ and ¬ – and every Boolean
function in n variables can be represented by such a formula – and then one replaces
in this formula all subformulas ¬α by F (α) until one gets a formula γ which only
contains → and ∧ and atoms. Now it holds that

Bn
γ = F n

β∨(A1∧A2∧...∧An)

and therefore the given Boolean function is only changed to 1 in the case that all
inputs are 1. For all other input-vectors, the original value is maintained. Thus one
can choose 2n−1 values freely and make the corresponding β and the number of such
{0, 1}-valued functions is 22n−1. For n = 1, 2, 3, 4 these values are 2, 8, 128, 32768. For
n = 1, the two functions are the identity-function B1

A1
and the constant-1-function

B1
A1→A1

.

Homework 14.3
Prove by induction that for every formula using only ⊕, ↔ and ¬ as connectives,
which is built from the atoms A1, A2, . . . , An, either all possible assignments of these
n values or half of them or none of them evaluates the formula to true.

Solution. What one is proving by induction is the following statement: Given a
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formula α using the above indicated connectives, one defines Depend(α) to be the set
of all atoms A such that there are ν, µ assigning values to the atoms different only
on Ak with ν(Ak) 6= µ(Ak). One shows now by induction the following statement for
formulas α of the given type:

(∗) If ν, µ differ exactly on Ak and Ak ∈ Depend(α) then ν(α) = ¬µ(α).

To see (∗), first note that for constants, the sets Depends(0) and Depends(1) are
empty and thus the statement is true; furthermore, if α = Ak then Depend(Ak) = Ak
and it is obvious that if ν, µ differ on Ak then ν(Ak) = ¬µ(Ak). Now for an induction,
consider α, β which are satisfying (∗):

1. Consider γ = ¬α. One let Depend(γ) = Depend(α) and considers any ν, µ
which differ only in one atom Ak: If Ak ∈ Depend(α) then ν(γ) = ¬ν(α) =
¬¬µ(α) = ¬µ(γ); If Ak /∈ Depend(α) then ν(γ) = ¬ν(α) = ¬µ(α) = µ(γ). So
for ν, µ only differing in Ak, ν(γ) = ¬µ(γ) iff Ak ∈ Depend(γ).

2. Consider γ = α⊕β. One letDepend(γ) be the symmetric difference ofDepend(α)
and Depend(β), that is, contain exactly those atoms which are in exactly one of
the sets Depend(α) and Depend(β). Consider any ν, µ which differ only in one
atom Ak: If Ak ∈ Depend(γ) then Ak is exactly in one of the sets Depend(α)
and Depend(β), without loss of generality say in the first. Now ν(α) and µ(α)
differ while ν(β) and µ(β) are the same. It follows that one of ν(α⊕β), µ(α⊕β)
is 0 ⊕ c while the other one is 1 ⊕ c, where c ∈ {0, 1}. Hence ν(γ) = ¬µ(γ).
If Ak /∈ Depend(γ) by Ak /∈ Depend(α), Ak /∈ Depend(β) then ν(α) = µ(α),
ν(β) = µ(β) and ν(γ) = ν(α ⊕ β) = µ(α ⊕ β) = µ(γ). If Ak /∈ Depend(γ)
by Ak ∈ Depend(α), Ak ∈ Depend(β) then ν(α) = ¬µ(α), ν(β) = ¬µ(β) and
ν(γ) = ν(α⊕ β) = µ(¬α⊕¬β) = µ(α⊕ β) = µ(γ). So for ν, µ only differing in
Ak, ν(γ) = ¬µ(γ) iff Ak ∈ Depend(γ).

3. If γ = α ↔ β then again Depend(γ) is the symmetric difference of Depend(α)
and Depend(β). The proof in this case is the same as in the case of ⊕; alterna-
tively, one could also replace α↔ β by ¬(α⊕β) and do the two prior inductive
steps.

Thus the induction gives that for each formula α there are two cases: EitherDepend(α)
= ∅ and then the truth-table of α assigns in all rows the same value or Depend(α)
contains at least one atom Ak and if one puts this atom Ak into the last column of
the truth-table and on can group the rows in pairs of rows where the truth-entries
differ only for Ak and thus one of these rows carries the value 0 while the other one
carries the value 1; hence half of the rows has a 0 and half has a 1. Here an example
for Ah ⊕ ¬(Ak ⊕ Ah):

Ah Ak Ah ⊕ ¬(Ak ⊕ Ah)
0 0 1
0 1 0
1 0 1
1 1 0
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Homework 14.4
Make a formal proof that

∀x ∀y [α→ β]→ ∀y ∀x [¬β → ¬α]

is a valid formula.

Solution. Recall that tautologies in sentential logic can be made to axioms in first-
order logic by replacing the atoms by logical symbols; furthermore, any formula of
the form ∀x [γ]→ γ is an axiom. Thus one can make the following proof.

1. {∀x ∀y [α→ β]} ` ∀x ∀y [α→ β] (Copy);

2. {∀x ∀y [α→ β]} ` ∀x ∀y [α→ β]→ ∀y [α→ β] (Axiom Group 2);

3. {∀x ∀y [α→ β]} ` ∀y [α→ β] (Modus Ponens);

4. {∀x ∀y [α→ β]} ` ∀y [α→ β]→ α→ β (Axiom Group 2);

5. {∀x ∀y [α→ β]} ` α→ β (Modus Ponens);

6. {∀x ∀y [α→ β]} ` (α→ β)→ (¬β → ¬α) (Axiom Group 1);

7. {∀x ∀y [α→ β]} ` ¬β → ¬α (Modus Ponens);

8. {∀x ∀y [α→ β]} ` ∀x [¬β → ¬α] (Generalisation Theorem);

9. {∀x ∀y [α→ β]} ` ∀y ∀x [¬β → ¬α] (Generalisation Theorem);

10. ∅ ` ∀x∀y [α→ β]→ ∀y ∀x [¬β → ¬α] (Deduction Theorem).

Homework 14.5
Is the statement

{Px→ Py} ` ∀z [Px→ Pz]

correct? If so, make a formal proof, if not, make a model with default values of the
variables for which it is false.

Solution. This statement is not correct. Assume that a model is given with variable
defaults, that the model has at least the values 0, 1, that P (x) is equivalent to x = 0
and that x, y have the default value 0. Then Px→ Py is true and Px→ P1 is false;
in particular ∀z [Px→ Pz] is false.

Homework 14.6
Which of the following statements can be proven? If so, then give the formal prove,
else explain why one cannot do it.

(a) {x = 0} ` ∀x [x = 0];

(b) {∀y [y = 0]} ` ∀x [x = 0];
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(c) {∀y ∀x [x = y]} ` ∀x [x = 0].

Solution. Statement (a) does not hold. The reason is that one can consider the
model (N, 0) and then one sees, that a variable assignment can make x = 0 true
while the conclusion that all values in the model equal to 0 is false. Note that the
Generalisation Theorem can only be applied if the variable x does not occur free in
the precondition.

Statement (b) can be proven along the same lines as one can prove the Principle of
Alphabetical Variants, indeed, it follows from this principle directly. A formal proof,
using only Axioms and the Generalisation Theorem, is the following:

1. {∀y [y = 0]} ` ∀y [y = 0] (Copy);

2. {∀y [y = 0]} ` ∀y [y = 0]→ x = 0 (Axiom 2);

3. {∀y [y = 0]} ` x = 0 (Modus Ponens);

4. {∀y [y = 0]} ` ∀x [x = 0] (Generalisation Theorem).

Here the Generalisation Theorem can be applied, as the variable x does not occur,
actually does not occur at all, in the preconditions.

Statement (c) can also be proven and the proof is even easier, as one only needs
axioms from Λ:

1. {∀y ∀x [x = y]} ` ∀y ∀x [x = y] (Copy);

2. {∀y ∀x [x = y]} ` ∀y ∀x [x = y]→ ∀x [x = 0] (Axiom 2);

3. {∀y ∀x [x = y]} ` ∀x [x = 0] (Modus Ponens).

Note that in formal proofs, the axioms from Λ and the copying from the preconditions
and the usage of Modus Ponens are always allowed.

Homework 14.7
Choose a logical language and a theory T in this language such that

• T is finite axiomatisable;

• T is ℵ0-categorical and ℵ1-categorical;

• T has a finite model of m elements iff m = 3n for some n.

Furthermore, is T complete? Explain your answer.

Solution. The idea is to use the language of Abelian groups where an element three
times added to itself gives 0. These structures are equivalent to vector spaces over F3

and it is known from linear algebra that each two such vector spaces are isomorphic iff
they are vector spaces over the same field and their bases have the same cardinality.
Note that scalar multiplication over F3 with 0 gives the constant 0 function and with
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1 gives the identity function and with 2 gives the sum of an element with itself. Thus
one can define scalar multiplication by cases and does not need to incorporate it into
the logical language. So the only symbols added into the language are 0 (neutral
element) and + (addition modulo 3 in a vector space). The axioms postulated are
now the following ones:

1. ∀x∀y ∀z [(x+ y) + z = x+ (y + z)];

2. ∀x∀y [x+ y = y + x];

3. ∀x [x+ 0 = x];

4. ∀x [x+ (x+ x) = 0].

Now, if κ is an infinite cardinal then, by results of linear algebra, a vector space over
F3 has a basis of cardinality κ iff the vector space itself has cardinality κ; thus every
such vector space and, therefore, also every structure satisfying the above axioms
is κ-categorical; in particular these structures are ℵ0-categorical and ℵ1-categorical.
Furthermore, the finite vector spaces of dimension n have all 3n elements and every
finite vector space has a finite basis (dimension). It is not needed for this homework
to reprove the facts known from basic lectures like linear algebra.

Homework 14.8 Consider the logical language containing one unary function f and
the set

S = {∀x∀y [x 6= y → f(x) 6= f(y)], ∀x [x 6= f(x)], ∀x∃y [f(y) = x]}

and let Th(S) be the set of all sentences which can be proven from S. Check whether
the Th(S) is 5-categorical, that is, whether all models of cardinality 5 of Th(S) are
isomormphic. Provide all models for κ = 5 and check to which κ this generalises.

Solution. The answer is that Th(S) is not 5-categorical. There are two models, (a)
the model of a 5-cycle and (b) the model of a 2-cycle plus a 3-cycle. So if one calls
the elements 0, 1, 2, 3, 4 and makes tables of f in the two models, the tables are the
following:

Inputs 0 1 2 3 4
f in Model (a) 1 2 3 4 0
f in Model (b) 1 0 3 4 2

For other small κ, note that the theory is not 1-categorical, as it has no model of size
1. The theory is 2-categorical and 3-categorical, as these sizes permit only one cycle
and that cycle is of length κ. The theory is not κ-categorical for any κ ≥ 4, as one
can make, for finite κ, (a) one κ-cycle and (b) one cycle of length 2 and one of length
κ− 2 and for κ ≥ 6 one can also further models. For infinite κ, it is not κ-categorical
as one can make, for any n ≥ 2, a model consisting of κ n-cycles.

Homework 14.9
Assume that the logical language contains one unary function f and equality =.
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Provide two sentences α and β such that the theories Th({α}) and Th({β}) are κ-
categorical for all κ ≥ 1 and such that Th({α, β}) is complete and therefore either
κ-categorical for exactly one finite κ or κ-categorical for exactly the infinite κ.

Solution.
The idea is to choose a finite κ such that the models of α and β coincide for exactly
this κ and not for any other κ. Here one chooses κ = 1, as that is most easy to handle.
Now the formulas are as follows: α is ∀x ∀y [f(x) = f(y)]; β is ∀x [f(x) = x]. So α
requires that the function is constant and β requires that it is the identity. This can be
combined if and only if the domain has exactly one element. Note that for Th({α}),
two models of the same size are isomorphic, the isomorphism maps the elements in
the two ranges to each other, as they are unique, and maps the other elements in a
one-one way to each other. For two models of Th({β}) of the same size, any bijection
is an isomorphism, as the image of the identity-function is again the identity-function.
Th({α, β}) has the unique model ({0}, f,=) with f(0) = 0 (up to isomorphism) and
therefore Th({α, β}) is complete. That all elements are equal in any model of {α, β}
can be seen by the fact that given x, y, β implies that x = f(x) and y = f(y) and α
implies that f(x) = f(y) and thus x = y, so any two elements of the model are the
same.

Please review also the old exams on the course homepage and other material available
and read the course notes.
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