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Do we need, or do we not need, unbounded search in order to convert
one representation of an irrational number into another representa-
tion?

...

Do we need, or do we not need, unbounded search in order to convert
a Cauchy sequence for α into the Dedekind cut of α?

Do we need, or do we not need, unbounded search in order to convert
the Dedekind cut of α into a Cauchy sequence for α?

. . . the base-2 expansion of α into the base-10 expansion of α?

. . . the base-10 expansion of α into the base-2 expansion of α?

. . . the continued fraction of α into the base-17 expansion of α?

. . . the Dedekind cut of α into the the continued fraction of α?

...

A computation that does not apply unbounded search is called a subrecursive
computation. Primitive recursive computations and (Kalmar) elementary com-
putations are typical examples of subrecursive computations. A representation
R1 (of irrational numbers) is subrecursive in a representation R2 if the R1-
representation of α can be subrecursively computed in the R2-representation of
α. Two representations R1 and R2 are equivalent when R1 is subrecursive in
R2 and R2 is subrecursive in R1.
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Overview of subrecursive reducibility among
(equivalence classes of) representations:

I: Weihrauch Intersections

II: Cauchy Sequences

III: Base-b
Expansions

III: Base-b′

Expansions

IV: Dedekind
Cuts

V.a: Sum approx.
from below
in a fixed base b

V.b: Sum approx.
from above
in a fixed base b

VI.a: Dual
Baire Sequences

VI.b: Standard
Baire Sequences

VII: Continued fractions
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I: Representations Equivalent to Weihrauch Intervals

Let α be an irrational number in the interval (0, 1).

Weihrauch Intervals

A function I· : N→ Q×Q is a Weihrauch intersection of α if

{ α } =
⋂
n

IOn

where IOn denotes the open interval given by the the pair I(n).

Comments: This is a representation from Weihrauch’s book [19].

Nested Weihrauch Intervals

A nested Weihrauch intersection I : N → Q × Q is a Weihrauch intersection
such that IOn+1 is a strict subinterval of IOn .

Complete Topological Names

Let f : N → Q × Q be such that (1) for any open interval I with rational
endpoints and α ∈ I exits n such that f(n) = (r1, r2) = I and (2) if x 6∈ I,
we have f(n) 6= I for all n. So {f(i)}i∈N is a sequence whose elements are
exactly the open intervals with rational endpoints that contains α, and we have
{α} =

⋂
i f(i). Then we say that f is a complete topological name for α.

Comments: This is a representation from Weihrauch’s book [19].
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II: Representations Equivalent to Cauchy Sequences

Let α be an irrational number in the interval (0, 1).

Cauchy Sequences

The function C : N→ Q is a Cauchy sequence for α if

|α− C(n)| < 1

2n
.

Strictly Increasing Cauchy Sequences

The function C : N → Q is a strictly increasing Cauchy sequence for α if (i) C
is a Cauchy sequence for α and (ii) C(n) < C(n+ 1).

Base-b Cauchy Sequences

Let b ∈ N \ {0, 1}. The function f : N→ N is a base-b Cauchy sequence for α if

C(n) :=
f(n)

bn

is a Cauchy sequence for α.

Comments: Friedman & Ko [8] use base-2 Cauchy sequences. They call them
“converging sequences of dyadic rational numbers”. Increasing base-b Cauchy
sequences will not be equivalent to base-b Cauchy sequences.

Fuzzy (Dedekind) Cuts

The function D : N× (N \ {0})→ {0, 1} is a fuzzy Dedekind cut for α if

D
(
m,n

)
= 0 ⇒ α <

m+ 1

n
and D

(
m,n

)
= 1 ⇒ m− 1

n
< α .

Signed Digit Expansions

The function S : (N \ {0, 1}) → {−1, 0, 1} is a signed digit expansion of α if
S(0) = 0 and

α =

∞∑
i=1

S(i)

2i
.

Comments: This seems to be a pretty standard representation, see Berger et
al. [7].

4



III: Equivalence Classes of Base-b Expansions

Let α be an irrational number in the interval (0, 1).

The function f : N→ {0, . . . , b− 1} is the base-b expansion of α if E(0) = 0 and

α =

∞∑
i=1

f(i)

bi
.

We use Eαb to denote the base-b expansion of α.

The next theorem implies that there is is a lot of degrees between between the
degree of the Cauchy sequences and the degree of the Dedekind cuts.

Theorem 1 The base-b expansion is subrecursive in the base-b′ expansion if
and only if every prime that divides b also divides b′.

Comments: Every prime that divides b will also divides b′ if and only if ev-
ery rational number that has a finite base-b expansion also has a finite base-b′

expansion.

We may also consider Venn diagrams. In the Venn diagrams AT THE NEXT
PAGE we use the notation:

• S may be any subrecursive class closed under elementary operation

• Sbn is the class of irrational numbers that have a base-n expansion in S.
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IV: Representations Equivalent to Dedekind Cuts

Let α be an irrational number in the interval (0, 1).

Dedekind Cuts

The function D : Q→ {0, 1} is the Dedekind cut of α if

D(q) =

{
0 if q < α

1 if α < q.

General Base Expansions

The function E : (N \ {0, 1})×N→ {0, . . . , b− 1} is the general base expansion
of α if E(b, n) = Eαb (n) (the base-b expansion Eαb is defined above above).

Beatty Sequences

The function B : (N \ {0})→ N is the Beatty sequence of α if

B(n)

n
< α <

B(n) + 1

n
.

Comments: The name Beatty sequence has its origin in the publication [5].
Apparently, what is now known as Beatty sequences was used earlier by Bernard
Bolzano [6], whence this representation could also be called Bolzano measures.

Hurwitz Characteristics

For any string τ ∈ {L,R}∗, we define the interval addressed by τ inductively
over the structure of τ : The empty sequence addresses the interval (0/1, 1/1).
Furthermore

τL addresses

(
a

b
,
a+ c

b+ d

)
and τR addresses

(
a+ c

b+ d
,
c

d

)
if τ addresses (a/b, c/d).

The infinite sequence Σ over the alphabet {L,R} addresses α if any finite prefix
of Σ addresses an interval that contains α.

Let Σα address α. The function H : (N \ {0}) → {0, 1} is the Hurwitz charac-
teristic of α if

H(n) =

{
0 if the n’th element of Σα is L

1 if the n’th element of Σα is R.

Comments: Hurwitz characteristics were known in the 19th century, see Hurwitz
[10]. For more on Hurwitz characteristics (as representation of irrationals) see
Lehman [14] and Kristiansen & Simonsen [4]. A Hurwitz characteristic yields a
branch in the Stern-Brocot tree, see the figure AT THE NEXT PAGE.
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V: Equivalence Classes of Sum Approximations

Let α be an irrational number in the interval (0, 1).

Let 0.D1D2 . . . be the base-b expansion of α (and recall that Eαb (i) = Di). If D is
a base-b digit, then D denotes the complement digit of D, that is, D = (b− 1)−D.

The base-b sum approximation from below of α is the function Âαb : N → Q
defined by Âαb (0) = 0 and

Âαb (n+ 1) =
Eαb (m)

bm

where m is the least m such that

n∑
i=0

Âαb (i) < 0.D1 . . . Dm .

The base-b sum approximation from above of α is the function Ǎαb : N → Q
defined by Ǎαb (0) = 0 and

Ǎαb (n+ 1) =
Eαb (m)

bm

where m is the least m such that

1 −
n∑
i=0

Ǎαb (n) > 1 − 0.D1 . . . Dm .

Observe that we have

∞∑
i=0

Eαb (n) =

∞∑
n=0

Âαb (n) = 1 −
∞∑
n=0

Ǎαb (n) .

Example: Let the base-10 expansion of α start with the digits 0.3000604 . . ..
Then we have

Âαb (1) = 3× 10−1 Âαb (2) = 6× 10−5 Âαb (3) = 4× 10−7

and

Ǎαb (1) = 6× 10−1 Ǎαb (2) = 9× 10−2 Ǎαb (3) = 9× 10−3 .
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Exercise: Assume that the base-b expansion of α contains very long sequences
of zeros. Describe the base-b sum approximation from below of α. Describe the
base-b sum approximation from above of α.

We say that a representation R1 is incomparable to a representation R2 if (i)
R1 is not subrecurisve in R2 and (ii) R2 is not subrecurisve in R1. The next
theorems show that there is a lot of degrees that are incomparable to the degree
of the Dedekind cut.

Theorem 2 Let b be an arbitrary base (so b ≥ 2). Then

• the base-b sum approximation from below is incomparable to the base-b
sum approximation from above

• the base-b sum approximation from below is incomparable to the Dedekind
cut

• the base-b sum approximation from above is incomparable to the Dedekind
cut.

Theorem 3 The base-b sum approximation from below of α is subrecursive in
the base-b′ sum approximation from below of α if and only if every prime that
divides b also divides b′.

Theorem 4 The base-b sum approximation from above of α is subrecursive in
the base-b′ sum approximation from above of α if and only if every prime that
divides b also divides b′.

Comments: Observe the similarities between the two preceding theorems and
Theorem 1.

The Venn diagram AT THE NEXT PAGE gives a little bit more informative
than Theorem 2. In the diagram we use the notation:

• S may be any subrecursive class close under elementary operations

• SD is the class of irrational numbers that have a Dedekind cut in S

• Sb↑ is the class of irrational numbers that have base-b sum approximation
from below in S

• Sb↓ is the class of irrational numbers that have base-b sum approximation
from above in S
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VI: Representations Equivalent to (Standard and Dual)
Baire Sequences

Let α be an irrational number in the interval (0, 1).

Standard Baire Sequences

Let f : N → N be any function, and let n ∈ N. We define the interval Inf by

I0f = (0/1, 1/1) and

In+1
f =

(
a+ f(n)c

b+ f(n)d
,
a+ f(n)c+ c

b+ f(n)d+ d

)
if Inf = (a/b, c/d). The function B : N→ N is the standard Baire representation
of α if we have α ∈ InB for every n.

Dual Baire Sequences

We define the interval Jnf by J0
f = (0/1, 1/1) and

Jn+1
f =

(
a+ f(n)a+ c

b+ f(n)b+ d
,
f(n)a+ c

f(n)b+ d

)
if Jnf = (a/b, c/d). The function A : N → N is the dual Baire representation of
α if we have α ∈ JnA for every n.

General Sum Approximations from Below

The general sum approximation from below of α is the function

Ĝα : ((N \ {0, 1})× N)→ Q

given by
Ĝα(b, x) = Âαb (x)

where Âαb is the base-b sum approximation from below of α (see definition
above).

General Sum Approximations from Above

The general sum approximation from above of α is the function

Ǧα : ((N \ {0, 1})× N)→ Q

given by
Ǧα(b, x) = Ǎαb (x)

where Ǎαb is the base-b sum approximation from above of α (see definition
above).

12



Left Best Approximations

Let a and b be relatively prime natural numbers with b > 0. The fraction a/b is
a left best approximant of α if we have c/d ≤ a/b < α or α < c/d for any natural
numbers c, d with 0 < d ≤ b. A left best approximation of α is a sequence of
fractions {ai/bi}i∈N such that

(0/1) = (a0/b0) < (a1/b1) < (a2/b2) < . . .

and each ai/bi is a left best approximant of α.

Right Best Approximations

Let a and b be relatively prime natural numbers with b > 0. The fraction a/b
is a right best approximant of α if we have α < a/b ≤ c/d or c/d < α for any
natural numbers c, d with 0 < d ≤ b. A right best approximation of α is a
sequence of fractions {ai/bi}i∈N such that

(1/1) = (a0/b0) > (a1/b1) > (a2/b2) > . . .

and each ai/bi is a right best approximant of α.

Theorem 5 The representations

• Dual Baire Sequences

• Left Best Approximations

• General Sum Approximations from Below

are equivalent. The representations

• Standard Baire Sequences

• Right Best Approximations

• General Sum Approximations from Above

are equivalent. Moreover, any representation in the first equivalence class is
incomparable to any representation in the second equivalence class.
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VII: Representations Equivalent to Continued Fractions

Let α be an irrational number in the interval (0, 1).

Comments: Continued fractions are well known from the literature. The con-
tinued fraction [ 0 ; a1, a2, . . . ] of α is the unique sequence of positive integers
such that

α = 0 +
1

a1 +
1

a2 +
1

a2 + . . .

Continued Fractions

The function f : (N \ {0})→ (N \ {0}) is the continued fraction of α ∈ (0, 1) if
α = [ 0 ; f(1), f(2), f(2), . . . ].

Trace Functions

A function T : [0, 1] ∩Q→ (0, 1) ∩Q is a trace function for the α if

|α− q| > |α− T (q)| .

Contractors

A function F : [0, 1] ∩Q→ (0, 1) ∩Q is a contractor if we have

F (q) 6= q and |F (q1)− F (q2)| < |q1 − q2| .

Moreover, F is a contractor for α if F is a trace function for α.

Comments: It is easy to prove that any contractor is a trace function for some
irrational number.

The Venn diagram at THE NEXT PAGE shows how continued fractions relate
to standard and dual Baire sequences.
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Some References

This talk is based on material published in [1, 2, 3, 4] and some unpublished
material.

Subjects related to this talk been studied over the last seven decades. In a very
early paper on computable analysis, Specker [17] proves that

SD ⊂ S10E ⊂ SC

where S is the class of primitive recursive functions, S10E is the set of irrationals
that have a primitive recursive decimal expansion, SD is the set of irrationals
that have a primitive recursive Dedekind cut and SC is the set of irrationals
that have a primitive recursive Cauchy sequence (Specker sequences were intro-
duced in the same paper). In addition to Specker’s paper there are works by
Mostowski [15], Lehman [14], Ko [11, 12], Labhalla & Lombardi [13], Weihrauch
[18], Skordev et al. [16], Georgiev [9] and quite a few more.
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