HANDOUT Singapore Logic Seminar, 03-21-2021

Speaker: Lars Kristiansen

This talk is based on material published in [1, 2, 3, 4] and some unpublished material.

Do we need, or do we not need, unbounded search in order to convert one representation of an irrational number into another representation?

÷

Do we need, or do we not need, unbounded search in order to convert a Cauchy sequence for α into the Dedekind cut of α ?

Do we need, or do we not need, unbounded search in order to convert the Dedekind cut of α into a Cauchy sequence for α ?

... the base-2 expansion of α into the base-10 expansion of α ?

... the base-10 expansion of α into the base-2 expansion of α ?

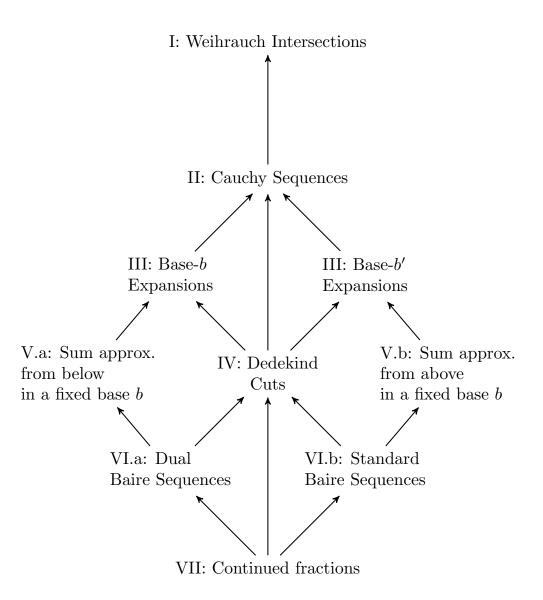
... the continued fraction of α into the base-17 expansion of α ?

... the Dedekind cut of α into the the continued fraction of α ?

÷

A computation that does not apply unbounded search is called a *subrecursive* computation. Primitive recursive computations and (Kalmar) elementary computations are typical examples of subrecursive computations. A representation R_1 (of irrational numbers) is *subrecursive in* a representation R_2 if the R_1 -representation of α can be subrecursively computed in the R_2 -representation of α . Two representations R_1 and R_2 are *equivalent* when R_1 is subrecursive in R_2 and R_2 is subrecursive in R_1 .

Overview of subrecursive reducibility among (equivalence classes of) representations:



I: Representations Equivalent to Weihrauch Intervals

Let α be an irrational number in the interval (0, 1).

Weihrauch Intervals

A function $I_{\cdot}: \mathbb{N} \to \mathbb{Q} \times \mathbb{Q}$ is a Weihrauch intersection of α if

$$\{\alpha\} = \bigcap_n I_n^O$$

where I_n^O denotes the open interval given by the the pair I(n).

Comments: This is a representation from Weihrauch's book [19].

Nested Weihrauch Intervals

A nested Weihrauch intersection $I : \mathbb{N} \to \mathbb{Q} \times \mathbb{Q}$ is a Weihrauch intersection such that I_{n+1}^O is a strict subinterval of I_n^O .

Complete Topological Names

Let $f : \mathbb{N} \to \mathbb{Q} \times \mathbb{Q}$ be such that (1) for any open interval I with rational endpoints and $\alpha \in I$ exits n such that $f(n) = (r_1, r_2) = I$ and (2) if $x \notin I$, we have $f(n) \neq I$ for all n. So $\{f(i)\}_{i \in \mathbb{N}}$ is a sequence whose elements are exactly the open intervals with rational endpoints that contains α , and we have $\{\alpha\} = \bigcap_i f(i)$. Then we say that f is a *complete topological name* for α .

Comments: This is a representation from Weihrauch's book [19].

II: Representations Equivalent to Cauchy Sequences

Let α be an irrational number in the interval (0, 1).

Cauchy Sequences

The function $C : \mathbb{N} \to \mathbb{Q}$ is a *Cauchy sequence* for α if

$$|\alpha - C(n)| < \frac{1}{2^n}.$$

Strictly Increasing Cauchy Sequences

The function $C : \mathbb{N} \to \mathbb{Q}$ is a strictly increasing Cauchy sequence for α if (i) C is a Cauchy sequence for α and (ii) C(n) < C(n+1).

Base-*b* Cauchy Sequences

Let $b \in \mathbb{N} \setminus \{0, 1\}$. The function $f : \mathbb{N} \to \mathbb{N}$ is a base-b Cauchy sequence for α if

$$C(n) := \frac{f(n)}{b^n}$$

is a Cauchy sequence for α .

Comments: Friedman & Ko [8] use base-2 Cauchy sequences. They call them "converging sequences of dyadic rational numbers". *Increasing base-b Cauchy sequences* will not be equivalent to base-*b* Cauchy sequences.

Fuzzy (Dedekind) Cuts

The function $D: \mathbb{N} \times (\mathbb{N} \setminus \{0\}) \to \{0, 1\}$ is a *fuzzy Dedekind cut* for α if

$$D(m,n) = 0 \Rightarrow \alpha < \frac{m+1}{n}$$
 and $D(m,n) = 1 \Rightarrow \frac{m-1}{n} < \alpha$.

Signed Digit Expansions

The function $S : (\mathbb{N} \setminus \{0,1\}) \to \{-1,0,1\}$ is a signed digit expansion of α if S(0) = 0 and

$$\alpha = \sum_{i=1}^{\infty} \frac{S(i)}{2^i}$$

Comments: This seems to be a pretty standard representation, see Berger et al. [7].

III: Equivalence Classes of Base-b Expansions

Let α be an irrational number in the interval (0, 1).

The function $f : \mathbb{N} \to \{0, \dots, b-1\}$ is the base-b expansion of α if E(0) = 0 and

$$\alpha = \sum_{i=1}^{\infty} \frac{f(i)}{b^i} \, .$$

We use E_b^{α} to denote the base-*b* expansion of α .

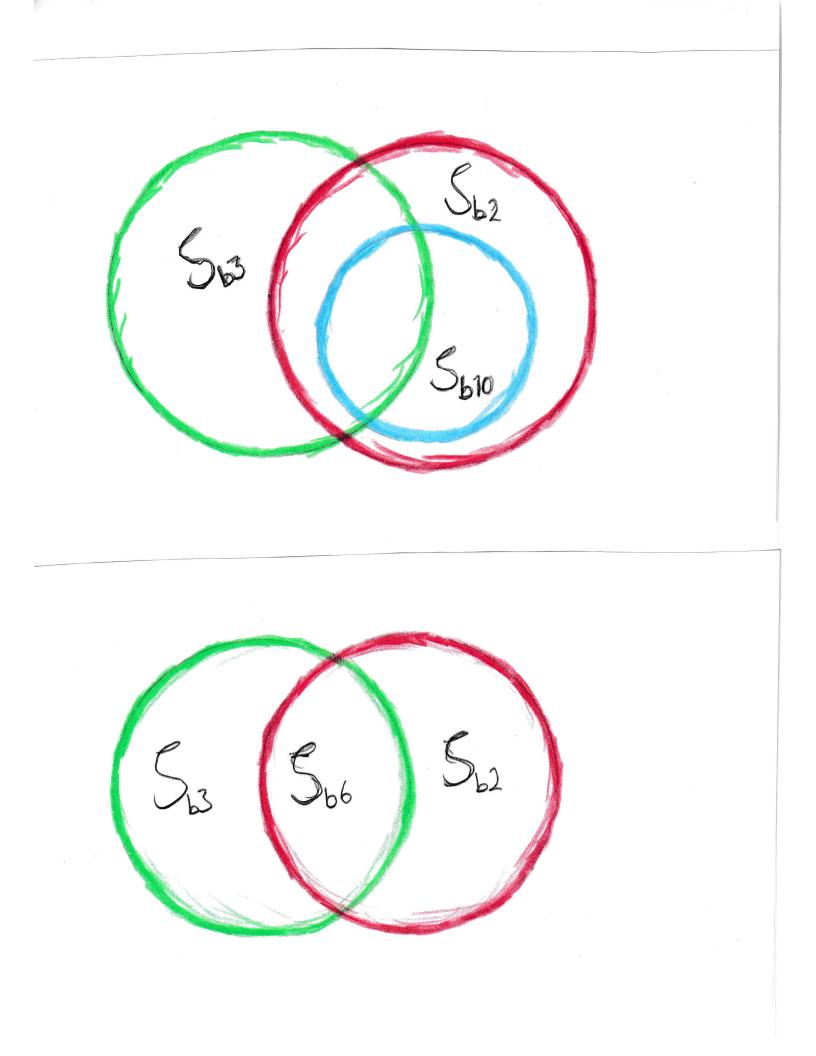
The next theorem implies that there is is a lot of degrees between between the degree of the Cauchy sequences and the degree of the Dedekind cuts.

Theorem 1 The base-b expansion is subrecursive in the base-b' expansion if and only if every prime that divides b also divides b'.

Comments: Every prime that divides b will also divides b' if and only if every rational number that has a finite base-b expansion also has a finite base-b' expansion.

We may also consider Venn diagrams. In the Venn diagrams AT THE NEXT PAGE we use the notation:

- S may be any subrecursive class closed under elementary operation
- S_{bn} is the class of irrational numbers that have a base-*n* expansion in S.



IV: Representations Equivalent to Dedekind Cuts

Let α be an irrational number in the interval (0, 1).

Dedekind Cuts

The function $D: \mathbb{Q} \to \{0, 1\}$ is the *Dedekind cut* of α if

$$D(q) = \begin{cases} 0 & \text{if } q < \alpha \\ 1 & \text{if } \alpha < q. \end{cases}$$

General Base Expansions

The function $E : (\mathbb{N} \setminus \{0,1\}) \times \mathbb{N} \to \{0,\ldots,b-1\}$ is the general base expansion of α if $E(b,n) = E_b^{\alpha}(n)$ (the base-*b* expansion E_b^{α} is defined above above).

Beatty Sequences

The function $B : (\mathbb{N} \setminus \{0\}) \to \mathbb{N}$ is the *Beatty sequence* of α if

$$\frac{B(n)}{n} < \alpha < \frac{B(n)+1}{n}$$

Comments: The name *Beatty sequence* has its origin in the publication [5]. Apparently, what is now known as Beatty sequences was used earlier by Bernard Bolzano [6], whence this representation could also be called *Bolzano measures*.

Hurwitz Characteristics

For any string $\tau \in \{L, R\}^*$, we define the *interval addressed by* τ inductively over the structure of τ : The empty sequence addresses the interval (0/1, 1/1). Furthermore

$$au L$$
 addresses $\left(\begin{array}{c} \frac{a}{b}, \frac{a+c}{b+d} \end{array} \right)$ and $au R$ addresses $\left(\begin{array}{c} \frac{a+c}{b+d}, \frac{c}{d} \end{array} \right)$

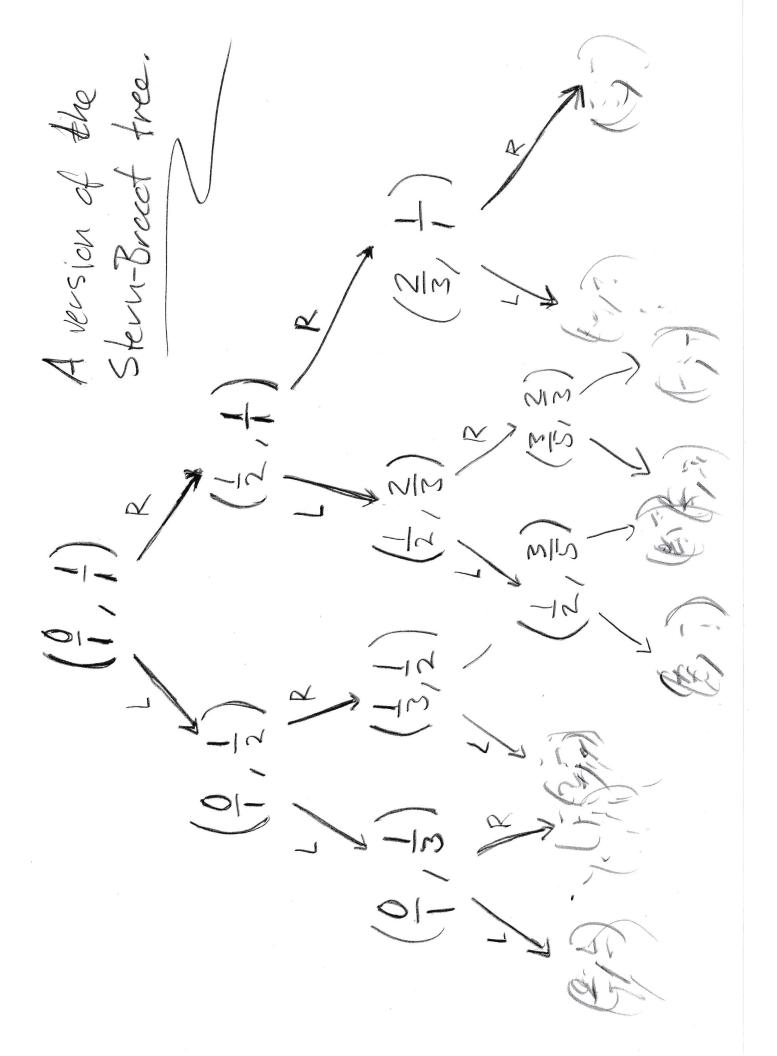
if τ addresses (a/b, c/d).

The infinite sequence Σ over the alphabet $\{L, R\}$ addresses α if any finite prefix of Σ addresses an interval that contains α .

Let Σ^{α} address α . The function $H : (\mathbb{N} \setminus \{0\}) \to \{0,1\}$ is the *Hurwitz charac*teristic of α if

$$H(n) = \begin{cases} 0 & \text{if the } n \text{'th element of } \Sigma^{\alpha} \text{ is } L \\ 1 & \text{if the } n \text{'th element of } \Sigma^{\alpha} \text{ is } R. \end{cases}$$

Comments: Hurwitz characteristics were known in the 19th century, see Hurwitz [10]. For more on Hurwitz characteristics (as representation of irrationals) see Lehman [14] and Kristiansen & Simonsen [4]. A Hurwitz characteristic yields a branch in the Stern-Brocot tree, see the figure AT THE NEXT PAGE.



V: Equivalence Classes of Sum Approximations

Let α be an irrational number in the interval (0, 1).

Let $0.D_1D_2...$ be the base-*b* expansion of α (and recall that $E_b^{\alpha}(i) = D_i$). If D is a base-*b* digit, then \overline{D} denotes the *complement digit* of D, that is, $\overline{D} = (b-1) - D$.

The base-b sum approximation from below of α is the function $\hat{A}_b^{\alpha} : \mathbb{N} \to \mathbb{Q}$ defined by $\hat{A}_b^{\alpha}(0) = 0$ and

$$\hat{A}^{\alpha}_b(n+1) = \frac{E^{\alpha}_b(m)}{b^m}$$

where m is the least m such that

$$\sum_{i=0}^n \hat{A}^\alpha_b(i) < 0.\mathsf{D}_1 \dots \mathsf{D}_m \; .$$

The base-b sum approximation from above of α is the function $\check{A}^{\alpha}_{b}: \mathbb{N} \to \mathbb{Q}$ defined by $\check{A}^{\alpha}_{b}(0) = 0$ and

$$\check{A}^{\alpha}_{b}(n+1) = \frac{\overline{E^{\alpha}_{b}(m)}}{b^{m}}$$

where m is the least m such that

$$1 - \sum_{i=0}^{n} \check{A}^{\alpha}_{b}(n) > 1 - 0.\overline{\mathsf{D}}_{1} \dots \overline{\mathsf{D}}_{m} .$$

Observe that we have

$$\sum_{i=0}^{\infty} E_b^{\alpha}(n) = \sum_{n=0}^{\infty} \hat{A}_b^{\alpha}(n) = 1 - \sum_{n=0}^{\infty} \check{A}_b^{\alpha}(n) .$$

Example: Let the base-10 expansion of α start with the digits 0.3000604.... Then we have

$$\hat{A}_b^{\alpha}(1) = 3 \times 10^{-1}$$
 $\hat{A}_b^{\alpha}(2) = 6 \times 10^{-5}$ $\hat{A}_b^{\alpha}(3) = 4 \times 10^{-7}$

and

$$\check{A}^{\alpha}_{b}(1) = 6 \times 10^{-1} \qquad \check{A}^{\alpha}_{b}(2) = 9 \times 10^{-2} \qquad \check{A}^{\alpha}_{b}(3) = 9 \times 10^{-3} .$$

Exercise: Assume that the base-*b* expansion of α contains very long sequences of zeros. Describe the base-*b* sum approximation from below of α . Describe the base-*b* sum approximation from above of α .

We say that a representation R_1 is *incomparable* to a representation R_2 if (i) R_1 is not subrecurisve in R_2 and (ii) R_2 is not subrecurisve in R_1 . The next theorems show that there is a lot of degrees that are incomparable to the degree of the Dedekind cut.

Theorem 2 Let b be an arbitrary base (so $b \ge 2$). Then

- the base-b sum approximation from below is incomparable to the base-b sum approximation from above
- the base-b sum approximation from below is incomparable to the Dedekind cut
- the base-b sum approximation from above is incomparable to the Dedekind cut.

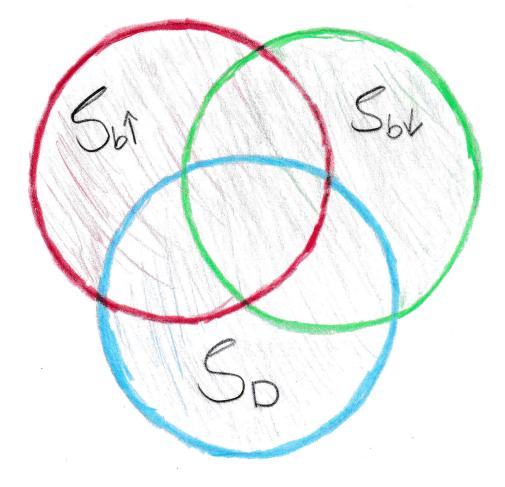
Theorem 3 The base-b sum approximation from below of α is subrecursive in the base-b' sum approximation from below of α if and only if every prime that divides b also divides b'.

Theorem 4 The base-b sum approximation from above of α is subrecursive in the base-b' sum approximation from above of α if and only if every prime that divides b also divides b'.

Comments: Observe the similarities between the two preceding theorems and Theorem 1.

The Venn diagram AT THE NEXT PAGE gives a little bit more informative than Theorem 2. In the diagram we use the notation:

- S may be any subrecursive class close under elementary operations
- \mathcal{S}_D is the class of irrational numbers that have a Dedekind cut in \mathcal{S}
- $S_{b\uparrow}$ is the class of irrational numbers that have base-*b* sum approximation from below in S
- $S_{b\downarrow}$ is the class of irrational numbers that have base-*b* sum approximation from above in S



VI: Representations Equivalent to (Standard and Dual) Baire Sequences

Let α be an irrational number in the interval (0, 1).

Standard Baire Sequences

Let $f: \mathbb{N} \to \mathbb{N}$ be any function, and let $n \in \mathbb{N}$. We define the interval I_f^n by $I_f^0 = (0/1, 1/1)$ and

$$I_f^{n+1} = \left(\frac{a+f(n)c}{b+f(n)d} , \frac{a+f(n)c+c}{b+f(n)d+d} \right)$$

if $I_f^n = (a/b, c/d)$. The function $B : \mathbb{N} \to \mathbb{N}$ is the standard Baire representation of α if we have $\alpha \in I_B^n$ for every n.

Dual Baire Sequences

We define the interval J_f^n by $J_f^0 = (0/1, 1/1)$ and

$$J_f^{n+1} = \left(\frac{a+f(n)a+c}{b+f(n)b+d} , \frac{f(n)a+c}{f(n)b+d} \right)$$

if $J_f^n = (a/b, c/d)$. The function $A : \mathbb{N} \to \mathbb{N}$ is the dual Baire representation of α if we have $\alpha \in J_A^n$ for every n.

General Sum Approximations from Below

The general sum approximation from below of α is the function

$$\hat{G}^{\alpha}: ((\mathbb{N} \setminus \{0,1\}) \times \mathbb{N}) \to \mathbb{Q}$$

given by

$$\hat{G}^{\alpha}(b,x) = \hat{A}^{\alpha}_{b}(x)$$

where \hat{A}^{α}_{b} is the base-*b* sum approximation from below of α (see definition above).

General Sum Approximations from Above

The general sum approximation from above of α is the function

$$\dot{G}^{\alpha}: ((\mathbb{N} \setminus \{0,1\}) \times \mathbb{N}) \to \mathbb{Q}$$

given by

$$\check{G}^{\alpha}(b,x) = \check{A}^{\alpha}_b(x)$$

where \check{A}^{α}_{b} is the base-*b* sum approximation from above of α (see definition above).

Left Best Approximations

Let a and b be relatively prime natural numbers with b > 0. The fraction a/b is a *left best approximant* of α if we have $c/d \le a/b < \alpha$ or $\alpha < c/d$ for any natural numbers c, d with $0 < d \le b$. A *left best approximation* of α is a sequence of fractions $\{a_i/b_i\}_{i\in\mathbb{N}}$ such that

$$(0/1) = (a_0/b_0) < (a_1/b_1) < (a_2/b_2) < \dots$$

and each a_i/b_i is a left best approximant of α .

Right Best Approximations

Let a and b be relatively prime natural numbers with b > 0. The fraction a/b is a right best approximant of α if we have $\alpha < a/b \leq c/d$ or $c/d < \alpha$ for any natural numbers c, d with $0 < d \leq b$. A right best approximation of α is a sequence of fractions $\{a_i/b_i\}_{i\in\mathbb{N}}$ such that

$$(1/1) = (a_0/b_0) > (a_1/b_1) > (a_2/b_2) > \dots$$

and each a_i/b_i is a right best approximant of α .

Theorem 5 The representations

- Dual Baire Sequences
- Left Best Approximations
- General Sum Approximations from Below

are equivalent. The representations

- Standard Baire Sequences
- Right Best Approximations
- General Sum Approximations from Above

are equivalent. Moreover, any representation in the first equivalence class is incomparable to any representation in the second equivalence class.

VII: Representations Equivalent to Continued Fractions

Let α be an irrational number in the interval (0, 1).

Comments: Continued fractions are well known from the literature. The continued fraction $[0; a_1, a_2, ...]$ of α is the unique sequence of positive integers such that

$$\alpha = 0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_2 + \dots}}}$$

Continued Fractions

The function $f : (\mathbb{N} \setminus \{0\}) \to (\mathbb{N} \setminus \{0\})$ is the *continued fraction* of $\alpha \in (0, 1)$ if $\alpha = [0; f(1), f(2), f(2), \dots].$

Trace Functions

A function $T: [0,1] \cap \mathbb{Q} \to (0,1) \cap \mathbb{Q}$ is a *trace function* for the α if

$$|\alpha - q| > |\alpha - T(q)| .$$

Contractors

A function $F: [0,1] \cap \mathbb{Q} \to (0,1) \cap \mathbb{Q}$ is a *contractor* if we have

$$F(q) \neq q$$
 and $|F(q_1) - F(q_2)| < |q_1 - q_2|$.

Moreover, F is a contractor for α if F is a trace function for α .

Comments: It is easy to prove that any contractor is a trace function for some irrational number.

The Venn diagram at THE NEXT PAGE shows how continued fractions relate to standard and dual Baire sequences.

The irredicuals that have a continued fraction in S are exactly those that have both a standard and a duel Bive sequence in S. Baire sequence with a standard Let S be any sub recursive class Trrahouals N Z closed under Finitive recursion. with a continued haction in S. Inationals clual Baire sequence in S. Inationals with a

Some References

This talk is based on material published in [1, 2, 3, 4] and some unpublished material.

Subjects related to this talk been studied over the last seven decades. In a very early paper on computable analysis, Specker [17] proves that

$$\mathcal{S}_D \subset \mathcal{S}_{10E} \subset \mathcal{S}_C$$

where S is the class of primitive recursive functions, S_{10E} is the set of irrationals that have a primitive recursive decimal expansion, S_D is the set of irrationals that have a primitive recursive Dedekind cut and S_C is the set of irrationals that have a primitive recursive Cauchy sequence (Specker sequences were introduced in the same paper). In addition to Specker's paper there are works by Mostowski [15], Lehman [14], Ko [11, 12], Labhalla & Lombardi [13], Weihrauch [18], Skordev et al. [16], Georgiev [9] and quite a few more.

References

- Kristiansen, L.: On Subrecursive Representability of Irrational Numbers, Computability 6 (2017), 249-276.
- [2] Kristiansen, L.: On subrecursive representability of irrational numbers, part II. Computability 8 (2019), 43-65.
- [3] Georgiev, I., Kristiansen, L. and Stephan, F.: Computable Irrational Numbers with Representations of Surprising Complexity. Ann. Pure Appl. Logic 172 (2021), 102893.
- [4] Kristiansen, L. and Simonsen, J. G.: On the Complexity of Conversion Between Classic Real Number Representations. M. Anselmo et al. (Eds.): CiE 2020, LNCS 12098, pp. 75-86, 2020.
- [5] Beatty S. et al.: Problems for Solutions. The American Mathematical Monthly 33 (1926), p. 159 (1 page)
- [6] Bolzano, B.: Pure Theory of Numbers. In the "Mathematical Works of Bernard Bolzano" edited and translated by Steve Russ, pp. 355-428, Oxford University Press, 2004.
- [7] Berger, Miyamote, Schwichtenberg and Tsuiki: Logic for Gray-Code Computation. In "Concepts of Proof in Mathematics, Philosophy, and Computer Science" Ed. by Probst, Dieter/Schuster, Peter., Series: Ontos Mathematical Logic 6

- [8] Friedman, H. and Ko, K.: Computational Complexity of Real Functions. Theoretical Computer Science 20 (1982), 323-352.
- [9] Georgiev, I.: Continued fractions of primitive recursive real numbers. Mathematical Logic Quarterly 61 (2015), 288-306.
- [10] Hurwitz, A.: Uber die angenäherte Darstellung der Irrationalzahlen durch rationale Brüche. Mathematische Annalen 39 (1891), 279284
- [11] Ko, K.: On the definitions of some complexity classes of real numbers. Mathematical Systems Theory 16 (1983), 95-109.
- [12] Ko, K.: On the continued fraction representation of computable real numbers. Theoretical Computer Science 47 (1986), 299-313.
- [13] Labhalla, S. and Lombardi, H.: Real numbers, continued fractions and complexity classes. Annals of Pure and Applied Logic 50 (1990), 1-28.
- [14] Lehman, R. S.: On Primitive Recursive Real Numbers. Fundamenta Mathematica 49 (1961), 105-118.
- [15] Mostowski, A.: On computable sequences. Fundamenta Mathematica 44 (1957), 37–51.
- [16] Skordev, D., Weiermann, A. and Georgiev, I.: *M²-Computable Real Numbers.* Journal of Logic and Computation **22**, Issue 4 (2008), 899-925.
- [17] Specker, E.: Nicht Konstruktiv Beweisbare Satze der Analysis. J. Symbolic Logic Volume 14, Issue 3 (1949), 145-158.
- [18] Weihrauch, K.: The Degrees of Discontinuity of Some Translators Between Representations of Real Numbers. Informatik Berichte 129, Fern Universität Hagen, 1992.
- [19] Weihrauch, K.: Computable Analysis. Springer Verlag, 2002.