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Question 1 [6 marks] MA4207 – Solutions

For five Boolean input-variables x1, x2, x3, x4, x5, let N(x1, x2, x3, x4, x5) be the numerical value
of x1x2x3x4x5 viewed as a binary number, for example, N(0, 1, 0, 1, 1) is eleven. Construct a
formula F (x1, x2, x3, x4, x5) using and (∧), or (∨), implication (→), equivalence (↔), not (¬),
logical constants 0, 1 which does the following:

• If N(x1, x2, x3, x4, x5) is a prime number then F (x1, x2, x3, x4, x5) = 1;

• If N(x1, x2, x3, x4, x5) is a square number then F (x1, x2, x3, x4, x5) = 0.

There is no requirement of what value the formula takes on other inputs and one can choose
these values such that the formula becomes easier to write down. For example, F (0, 1, 0, 1, 1)
should be 1 and F (0, 0, 0, 0, 1) should be 0; F (0, 0, 1, 1, 0) is not specified and can be chosen
freely.

Solution. The formula needs to evaluate with 1 the following numbers: 00010 (2), 00011 (3),
00101 (5), 00111 (7), 01011 (11), 01101 (13), 10001 (17), 10011 (19), 10111 (23), 11101 (29),
11111 (31). The formula needs to evaluate with 0 at the following numbers: 00000 (0), 00001
(1), 00100 (4), 01001 (9), 10000 (16), 11001 (25). One sees that most prime numbers satisfy
that x4 = 1 or both x3 = 1 and x5 = 1 while no square number has this feature. The only
prime number not ending on 1x or 1y1 is 10001 (17). As no square number is of the form
10xy1, one can test this pattern for 17. Hence a valid formula is x4∨ (x3∧x5)∨ (x1∧¬x2∧x5).
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Question 2 [6 marks] MA4207 – Solutions

Assume that f(a, b, c) = 1 iff the values of all three inputs a, b, c are equal, that is, f(a, b, c)
could be written as (a↔ b)∧ (a↔ c). Which of the sets {f, 0} and {f, 1} are complete? Here
a set F of Boolean functions is complete iff all Boolean functions can be expressed using F ;
the constants 0, 1 are the logical constants. For example, one can express a ↔ b as f(a, a, b)
and one can also consider nested expressions like f(a, b, f(a, a, b)). However, all the connectives
and constants used should be members of F . Explain your answer.

Solution. The set {f, 1} is not a complete set of Boolean functions. The reason is that
whenever all inputs are 1, every application of f or of the constant 1 to some of the inputs
gives the output 1 and so also nested expressions of f and 1 give only functions which map the
an input of only 1s to 1. Thus, the constant 0 and the negation ¬ cannot be expressed.

The set {f, 0} is logically complete. The function a 7→ f(a, 0, 0) maps 0 to 1 and 1 to 0, thus
the negation ¬ can be expressed using f and 0. The constant 1 is given as f(0, 0, 0). The
function a, b 7→ f(a, b, 1) is 1 iff both inputs are 1, thus the and function ∧ can be expressed by
a∧b = f(a, b, 1). Furthermore, the or ∨ can be expressed using ¬ and ∧, thus can be expressed
using f , 0 and 1. It follows that the set {f, 0} is a complete set of Boolean functions.
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Question 3 [6 marks] MA4207 – Solutions

Let the logical language contain besides the equality = also an equivalence relation ≡. Let the
spectrum of a formula α be the set of all n ∈ {1, 2, . . .} for which there is a model (A,≡,=) of
n elements such that

(A,≡,=) |= {α, ∀x [x ≡ x],∀x ∀y [x ≡ y → y ≡ x], ∀x ∀y ∀z [x ≡ y → y ≡ z → x ≡ z]},

that is, a model (A,≡,=) of n elements which satisfies α and satisfies the axioms of an equiv-
alence relation. Construct a formula α such that its spectrum are the numbers of the form
3n+ 1 and 3n+ 2, that is, the spectrum of α should be {1, 2, 4, 5, 7, 8, 10, 11, 13, 14, . . .}.

Solution. The idea is to construct a formula which says the following:

1. There is an equivalence class with one or two members where x1 is one member and x2
the other member (they can be equal);

2. For every y1 there are y2 and y3 such that y1, y2, y3 are equivalent and every further y4
equivalent to y1 is equal to one of y1, y2, y3;

3. If y1 represents an equivalence class different from x1 then y1, y2, y3 are distinct.

These conditions say the following: 1. There is one equivalence class of one or two members
represented by x1; 2. Every equivalence class has at most three members; 3. Every equivalence
class different from the one of x1 has at least three members. So, in the case that the model is
finite, its number of elements is a multiple of three plus 1 or 2, depending on whether x1 = x2
or x1 6= x2. The formula is silent about this question. Here the formula α:

• α is ∃x1, x2 ∀x3, y1 ∃y2, y3 ∀y4 [β1 ∧ β2 ∧ β3];

• β1 is (x1 ≡ x2) ∧ (x3 ≡ x1 → x1 = x3 ∨ x2 = x3);

• β2 is (y2 ≡ y1 ∧ y3 ≡ y1) ∧ (y4 ≡ y1 → y4 = y1 ∨ y4 = y2 ∨ y4 = y3);

• β3 is (y1 6≡ x1 → y1 6= y2 ∧ y1 6= y3 ∧ y2 6= y3).
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Question 4 [6 marks] MA4207 – Solutions

Consider the following finite graph:

1 - 2 - 3 - 4

| |

5 - 6 - 7 8

Which of the nodes in the finite graph are definable and which are not? Explain your answers.

Solution. One can express in a formula that a node has exactly k or at least k neighbours.
For example the node 2 is the unique node with three or more neighbours:

φ2(x)⇔ ∃y1, y2, y3 [y1 6= y2 ∧ y1 6= y3 ∧ y2 6= y3 ∧ E(x, y1) ∧ E(x, y2) ∧ E(x, y3)].

Similarly the nodes 1 and 8 are definable since they are the unique nodes with 1 and 0 neigh-
bours, respectively. The node 7 is definable as the node which has two different ways to connect
to node 2 by a three-node path:

φ7(x) ⇔ ∃z1, z2, z3, z4, z5 [φ2(z1) ∧ E(z1, z2) ∧ E(z2, z3) ∧ E(z3, x) ∧ E(z1, z4) ∧
E(z4, z5) ∧ E(z5, x) ∧ (z2 6= z4) ∧ (z1 6= z3) ∧ (z1 6= z5)].

The nodes 3, 4, 5, 6 are not definable since one can construct a graph isomorphism f from the
graph to itself via the table

x 1 2 3 4 5 6 7 8
f(x) 1 2 5 6 3 4 7 8

witnessing that the nodes 3 and 5 and the nodes 4 and 6 can be exchanged with each other.
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Question 5 [6 marks] MA4207 – Solutions

Let a logical language with addition + and constants 0, 1, c be given and assume that

Sn = {∀x0 [0 + x0 = x0], ∀x0 ∀x1 [x0 + x1 = 1→ x0 = 1 ∨ x1 = 1], 0 6= 1, αn}

where

• α0 is ∀x0 [(x0 = 0)→ (x0 6= c)],

• α1 is ∀x0 ∀x1 [(x0 = 0)→ (x1 = x0 ∨ x1 = x0 + 1)→ (x1 6= c)],

• αn, for any n ∈ N, is ∀x0 ∀x1 . . . ∀xn [(x0 = 0) → (x1 = x0 ∨ x1 = x0 + 1) → (x2 =
x1 ∨ x2 = x1 + 1)→ . . .→ (xn = xn−1 ∨ xn = xn−1 + 1)→ (xn 6= c)].

(a) Is every model of Sn+1 a model of Sn?
(b) Is there for every set Sn a model with domain N and + being the usual addition in N?
(c) Is there a model with domain N and + being the usual addition in N satisfying

⋃
n Sn (the

union of all Sn)?
Explain your answers.

Solution. The answer to (a) is “yes”, as αn+1 excludes more possible values of c then αn.
Indeed, when m denotes the sum of m 1s for m ≥ 2, so 2 = 1 + 1 and 3 = (1 + 1) + 1 and
4 = ((1 + 1) + 1) + 1, then the formula αn says that c is different from 0, 1, . . . , n.

The answer to (b) is “yes” by taking the model (N,+, 0, 1, c) with c = n+1. The reason is that
the first axioms in Sn just enforce that 0 and 1 are the usual values of these constants and, the
last formula says that for all choices of the variables where x0 = 0 and xm+1 ∈ {xm, xm + 1},
it follows that c 6= xn; as for this condition it can be that xm ∈ {0, 1, . . . ,m}, it then says that
c is none of the values 0, 1, . . . , n and so c = n+ 1 is a legitimate choice.

The answer to (c) is “no” as the axioms enforce that 0 and 1 take the usual values in N and
each αn enforces that c 6= n; as the union of all Sn contains all αn, c cannot be any n ∈ N.
Hence a model as required does not exist.

This answer is consistent with the compactness theorem, as that only states that there is
some model for every consistent set of formulas; it does, however, not say that this model is
of a specific form (like having the domain N and the operation + inherited from the natural
numbers).
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Question 6 [6 marks] MA4207 – Solutions

Construct a formula φ(x) using only bounded quantifiers, constants from N, +, ∗ and <
such that φ(x) is true iff x is a prime number or the power of a prime number; x is the
only free variable in φ. For example, φ(2), φ(3), φ(4), φ(5), φ(7), φ(8), φ(9) should be true and
φ(0), φ(1), φ(6) should be false. Explain how your formula works and why it is correct.

Solution. The formula φ(x) is

∃p ≤ x ∀y < x ∀z < x ∃v < x ∃w < x [p > 1 ∧ x = y ∗ z → y = p ∗ v ∧ z = p ∗ w].

The formula says the following: There is a number p > 1 such that whenever x has a non-trivial
factorisation (both proper factors of x) then p divides both factors. Indeed, if x is a prime
number then x is such a p itself, as x has no non-trivial factorisation. If x is a proper power
of a prime p, then p is a factor of every non-trivial factor of x and that is expressed by this
formula: p > 1 so that p is not 1 and p divides both factors v, w for any non-trivial factorisation
of x which exists. If x has two different prime factors p, q then p fails to divide both y, z in
the case that one of the factors y, z is q. Note that the existence of p implies that x is at least
2, independently of whether any further property on p is postulated (by x having non-trivial
factors) or not.
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Question 7 [6 marks] MA4207 – Solutions

Recall that in the deductive calculus, Λ contains the following formulas:

1. α when α is obtained by taking a tautology in sentential logic and replacing all atoms
by well-formed formulas in a consistent way (the same atom needs always be replaced by
the same formula);

2. ∀x (α) → (α)xt for all well-formed formulas α, variables x and terms t where the substi-
tution (α)xt is permitted;

3. ∀x(α→ β)→ ∀x(α)→ ∀x(β);

4. α→ ∀x(α) for all well-formed formulas α and variables x where x does not occur free in
α;

5. x = x for every variable x;

6. x = y → α→ β for all variables x, y and all atomic formulas α and all β derived from α;

7. ∀x(α) whenever α is in Λ by any of the steps 1-7.

Answer the following questions:

(a) What does it mean that a substitution is permitted? Give an example for a permitted and
also for a non-permitted substitution.

(b) What is an atomic formula and what is precisely meant with “β is derived from α” in the
calculus? Note that the statement in the textbook uses some other word than “derived”, it is
your task to give a formal answer of what wording should be used in place of “derived” and
provide an example of an axiom of type 6.

Solution. For (a), permitted is defined inductively: if α is atomic then every substitution is
permitted; if (α)xt and (β)xt are permitted so are (¬α)xt and (α→ β)xt ; if αt

x is permitted and y
does not occur in t and y is different from x then (∀y (α))xt is permitted; if αt

x is permitted so is
(∀x (α))xt and this substitution does not change the formula at all. An example for a permitted
substitution is (∀y (y · y 6= x))xz and a non-permitted one is (∀y (y · y 6= x))xy .

For (b), an atomic formula consists of the equality of two terms or a predicate over some terms.
The formula β is derived from α by replacing some occurrences of variables x by occurrences
of the variable y. An example for this axiom is x = y → (x+ x = 0)→ (x+ y = 0).

8



Question 8 [6 marks] MA4207 – Solutions

Explain what the Generalisation Theorem and the Deduction Theorem say. Give a formal
proof for the statement

∅ ` ∀x [f(x) = 0]→ ∀y [f(y) = 0].

The logical language used contains one function symbol f and one constant 0 and the equality
(=). In the proof, you can besides the formulas from Λ and the Modus Ponens also use the
Generalisation Theorem and the two directions of the Deduction Theorem.

Solution. The Generalisation Theorem says the following: If Γ is a set of formulas not
containing the free variable y and if one can show that Γ ` α then one can also show that
Γ ` ∀y [α].

The Deduction Theorem says the following: If Γ is a set of formulas then Γ ` α → β iff
Γ ∪ {α} ` β. One can use the Deduction Theorem in both directions of this equivalence.

The proof is the following.

1. {∀x [f(x) = 0]} ` ∀x [f(x) = 0] (Copying formula)

2. {∀x [f(x) = 0]} ` ∀x [f(x) = 0]→ f(y) = 0 (Axiom)

3. {∀x [f(x) = 0]} ` f(y) = 0 (Modus Ponens)

4. {∀x [f(x) = 0]} ` ∀y [f(y) = 0] (Generalisation Theorem)

5. ∅ ` ∀x [f(x) = 0]→ ∀y [f(y) = 0] (Deduction Theorem)

9



Question 9 [6 marks] MA4207 – Solutions

Assume that the logical language contains one function symbol f and that

Γ = {∀x [x = f(f(x))], ∀x ∀y [x = y → f(x) = f(y)]}.

Give a formal proof for the following statement:

Γ ` ∀x [f(x) = f(f(f(x)))].

You can use the axioms from Λ, the formulas in Γ, the Modus Ponens and the Generalisation
Theorem for making the proof.

Solution.

1. Γ ` ∀x [x = f(f(x))] (from Γ)

2. Γ ` ∀x [x = f(f(x))]→ f(x) = f(f(f(x))) (Axiom, this substitution is permitted as the
formula x = f(f(x)) does not contain any quantifier)

3. Γ ` f(x) = f(f(f(x))) (Modus Ponens)

4. Γ ` ∀x [f(x) = f(f(f(x)))] (Generalisation Theorem, x is not free in Γ)
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Question 10 [6 marks] MA4207 – Solutions

Assume that the logical language contains one operator ◦ and a constant e and the axioms

Γ = {∀x [x ◦ (x ◦ x) = e], ∀v ∀w [v = w → w = v]}.

Give a formal proof for the following statement:

Γ ` ∀x ∀y [y = x ◦ x→ x ◦ y = e].

You can use the axioms from Λ, the formulas in Γ, the Modus Ponens, the Deduction Theorem
(both directions) and the Generalisation Theorem for making the proof.

Solution.

1. Γ ` z = y → x ◦ z = e→ x ◦ y = e (Axiom)

2. Γ ` ∀z [z = y → x ◦ z = e→ x ◦ y = e] (Generalisation Theorem)

3. Γ ` ∀z [z = y → x ◦ z = e → x ◦ y = e] → (x ◦ x = y → x ◦ (x ◦ x) = e → x ◦ y = e)
(Axiom)

4. Γ ` x ◦ x = y → x ◦ (x ◦ x) = e→ x ◦ y = e (Modus Ponens)

5. Γ ∪ {x ◦ x = y} ` x ◦ (x ◦ x) = e→ x ◦ y = e (Deduction Theorem)

6. Γ ∪ {x ◦ x = y} ` ∀x [x ◦ (x ◦ x) = e] (from Γ)

7. Γ ∪ {x ◦ x = y} ` ∀x [x ◦ (x ◦ x) = e]→ x ◦ (x ◦ x) = e (Axiom)

8. Γ ∪ {x ◦ x = y} ` x ◦ (x ◦ x) = e (Modus Ponens)

9. Γ ∪ {x ◦ x = y} ` x ◦ y = e (Modus Ponens)

10. Γ ` x ◦ x = y → x ◦ y = e (Deduction Theorem)

11. Γ ` ∀v ∀w [v = w → w = v] (from Γ)

12. Γ ` ∀v ∀w [v = w → w = v]→ ∀w [y = w → w = y] (Axiom)

13. Γ ` ∀w [y = w → w = y] (Modus Ponens)

14. Γ ` ∀w [y = w → w = y]→ y = x ◦ x→ x ◦ x = y (Axiom)

15. Γ ` y = x ◦ x→ x ◦ x = y (Modus Ponens)

16. Γ ` (y = x ◦x→ x ◦x = y)→ (x ◦x = y → x ◦ y = e)→ (y = x ◦x→ x ◦ y = e) (Axiom
stating (α→ β)→ (β → γ)→ (α→ γ))

17. Γ ` (y = x ◦ x→ x ◦ y = e) (Modus Ponens twice)

18. Γ ` ∀x ∀y [y = x ◦ x→ x ◦ y = e] (Generalisation Theorem twice)
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