Midterm Examination MA 4207: Mathematical Logic

Thursday 17 March 2016, Duration 45 minutes
Matriculation Number:

Rules

This test carries 28 marks and consists of 5 questions. Each questions carries 5 or 6 marks; full marks for a correct solution; a partial solution can give a partial credit.

Question 1 [5 marks].

Let \oplus be the connective "exclusive or" and \wedge be the connective "and". Consider the formula

$$
\phi=A_{1} \oplus A_{2} \oplus A_{3} \oplus A_{4} \oplus A_{5} \oplus\left(A_{1} \wedge A_{2} \wedge A_{3} \wedge A_{4}\right) \oplus\left(A_{1} \wedge A_{2} \wedge A_{3} \wedge A_{5}\right)
$$

and determine how many entries in the truth-table of ϕ are evaluated to 1 and how many are evaluated to 0 . The variables considered in the truth-table are A_{1}, A_{2}, A_{3}, A_{4}, A_{5}. Explain your answer.

Solution. The first part $A_{1} \oplus A_{2} \oplus A_{3} \oplus A_{4} \oplus A_{5}$ is 1 iff an odd number of the variables is 1 and this is the case in 16 out of 32 entries. The second part $\left(A_{1} \wedge A_{2} \wedge A_{3} \wedge A_{4}\right) \oplus$ $\left(A_{1} \wedge A_{2} \wedge A_{3} \wedge A_{5}\right)$ is 1 only on two entries, namely ($1,1,1,1,0$) and ($1,1,1,0,1$). Both are evaluated to 0 by the first part. Hence they give two additional 1s. Thus the overall number of 1s is Eighteen (18) and the number of 0s is Fourteen (14).

Question 2 [5 marks].

Let A_{0}, A_{1}, \ldots be the list of all atoms, $\alpha_{0}=\left(A_{0} \leftrightarrow A_{1}\right)$ and, for $n=1,2, \ldots$, $\alpha_{n}=\left(\alpha_{n-1} \wedge\left(A_{n} \leftrightarrow A_{n+1}\right)\right) \vee\left(\neg \alpha_{n-1} \wedge\left(A_{n} \oplus A_{n+1}\right)\right)$. Let $S=\left\{\alpha_{n}: n \in \mathbb{N}\right\}$. How many v satisfy $v \models S$? Explain your answer.

Here v is a function which assigns to every atom A_{n} a truth-value $v\left(A_{n}\right)$ and two truth-assignments v, w are the same iff $v\left(A_{n}\right)=w\left(A_{n}\right)$ for all $n \in \mathbb{N}$. Furthermore, $v \models S$ denotes that $\bar{v}\left(\alpha_{n}\right)=1$ for all $n \in \mathbb{N}$; the function \bar{v} is the extension of v from atoms to all formulas in sentential logic.
Solution. The answer is Two (2). The assignments satisfying this have to satisfy $v\left(A_{n}\right)=v\left(A_{0}\right)$ for all n. So assume that $v \models S$. Then $v \models \alpha_{0}$ and thus $v\left(A_{1}\right)=v\left(A_{0}\right)$. Furthermore, as $v \models \alpha_{n-1}$, one has that $\bar{v}\left(\alpha_{n}\right)=1$ iff $\bar{v}\left(\alpha_{n-1} \wedge\left(A_{n} \leftrightarrow A_{n+1}\right)\right)=1$ iff $\bar{v}\left(A_{n} \leftrightarrow A_{n+1}\right)=1$ iff $v\left(A_{n}\right)=v\left(A_{n+1}\right)$. As $\bar{v}\left(\alpha_{n}\right)=1$, this gives, by induction, that $v\left(A_{n+1}\right)=v\left(A_{n}\right)=v\left(A_{0}\right)$. Although the set S enforces that $v\left(A_{n}\right)$ is the same for all n, it does not enforce whether this common value is 0 or 1 . So there are two possibilities and thus two truth-assignments v which make all formulas in S true.

Question 3 [6 marks].

Formalise the below statements on the structure $(\mathbb{Q},+,-, \cdot,<, f, 0,1)$ in first order logic, where \mathbb{Q} is the set of rational numbers and,,$+- \cdot$ are the usual operations and $<$ the usual order on the rational numbers. The function $f: \mathbb{Q} \rightarrow \mathbb{Q}$ maps rational numbers to rational numbers.

1. every value $f(x)$ is the sum of two squares of rational numbers;
2. f is the polynomial of degree 3 with rational coefficients;
3. f is a strictly monotonically increasing function;
4. $\lim _{x \rightarrow \infty} f(x)$ exists and is a rational number;
5. $\lim _{x \rightarrow \infty} f(x)$ exists and is a real, not necessarily rational number;
6. $\lim \sup _{x \rightarrow-\infty} f(x)$ is $+\infty$ and $\lim \inf _{x \rightarrow-\infty} f(x)$ is $-\infty$.

Solution. In the following, quantifiers range over rational numbers:

1. $\forall x \exists y \exists z[f(x)=y \cdot y+z \cdot z]$;
2. $\exists a \exists b \exists c \exists d \forall x[f(x)=a+x \cdot(b+x \cdot(c+x \cdot d))]$;
3. $\forall x \forall y[x<y \rightarrow f(x)<f(y)]$;
4. $\exists z \forall r \exists x \forall y[(r>0 \wedge y>x) \rightarrow((f(y)-z) \cdot(f(y)-z)<r)]$;
5. $\forall r \exists x \forall y \forall z[(r>0 \wedge y>x \wedge z>x) \rightarrow((f(y)-f(z)) \cdot(f(y)-f(z))<r)]$;
6. $\forall r \forall x \exists y \exists z[y<x \wedge z<x \wedge f(y)<-r \wedge r<f(z)]$.

Note that addition, multiplication, order and the usage of f are allowed; except for f, the meaning of all other symbols is fixed by the model of rational numbers.

Question 4 [6 marks].

Let $\left(\mathbb{R}^{3},+, P\right)$ be the set of three-dimensional real vectors where $P(x, y, z)$ is true iff x, y, z are linearly dependent, that is, if there exist $(a, b, c) \neq(0,0,0)$ for which $a \cdot x+b \cdot y+c \cdot z$ is the null-vector. Is there a strong homomorphism f from $\left(\mathbb{R}^{3},+, P\right)$ to itself which is not one-one? If so, construct such an f; if not, explain why f does not exist.

Note that for the given structure, a strong homomorphism f must satisfy for all x, y, z that $f(x+y)$ is equal to $f(x)+f(y)$ and that $P(x, y, z)$ holds iff $P(f(x), f(y), f(z))$ holds.

Solution. The answer is no, that is, such an f does not exist. So consider any homomorphism f from $\left(\mathbb{R}^{3},+, P\right)$ to itself and assume that this homomorphism is not one-one. The task is to show that it is not a strong homomorphism. As f is not one-one, there are two distinct vectors x, y with $f(x)=f(y)$. Though the scalar multiplication is not part of the structure, the homomorphism has still to satisfy that $f(v)+f(w)=f(v+w)$ for all vectors v, w. Thus the image of the null-vector must be the null-vector. Letting $w=-x$ and $v=x, y$, one obtains that $f(x-x)=f(x)+f(-x)=f(y)+f(-x)=f(y-x)$ and thus $f(y-x)$ is the nullvector. As $y-x$ is not the null-vector, there are two further vectors v, w such that $x-y, v, w$ are linearly independent, that is, $P(y-x, v, w)$ is not satisfied. However, $f(y-x), f(v), f(w)$ is linearly dependent as $1 \cdot f(y-x)+0 \cdot f(v)+0 \cdot f(w)$ is the null-vector; thus $P(f(y-x), f(v), f(w))$ is satisfied and the homomorphism f cannot be a strong homomorphism.

Question 5 [6 marks].

Let $\Gamma=\{\forall x \forall y[f(x)=y \rightarrow f(y)=x], \forall x[f(x) \neq x]\}$. The following proof is for $\forall x[f(f(x))=x]$. Go through the proof and state which of the following rules are used: Copying axioms from Λ, copying formulas from Γ, Modus Ponens, Generalisation Theorem, Deduction Theorem, Reductio ad Absurdum, Contraposition. When axioms from Λ are copied, say which group (1-6) applies and whether universal quantifiers have been added to the axiom. If a step is faulty, indicate it as "Error" and say in a few words what is wrong.

1. $\Gamma \vdash \forall x \forall y[f(x)=y \rightarrow f(y)=x]$;
2. $\Gamma \vdash \forall x \forall y[f(x)=y \rightarrow f(y)=x] \rightarrow \forall y[f(x)=y \rightarrow f(y)=x]$;
3. $\Gamma \vdash \forall y[f(x)=y \rightarrow f(y)=x]$;
4. $\Gamma \vdash \forall y[f(x)=y \rightarrow f(y)=x] \rightarrow(f(x)=f(x) \rightarrow f(f(x))=x)$;
5. $\Gamma \vdash f(x)=f(x) \rightarrow f(f(x))=x$;
6. $\Gamma \vdash \forall y[y=y]$;
7. $\Gamma \vdash \forall y[y=y] \rightarrow f(x)=f(x)$;
8. $\Gamma \vdash f(x)=f(x)$;
9. $\Gamma \vdash f(f(x))=x$;
10. $\Gamma \vdash \forall x[f(f(x))=x]$.

Solution. The solution is as follows.

1. $\Gamma \vdash \forall x \forall y[f(x)=y \rightarrow f(y)=x]$;

Copying the first formula from Γ;
2. $\Gamma \vdash \forall x \forall y[f(x)=y \rightarrow f(y)=x] \rightarrow \forall y[f(x)=y \rightarrow f(y)=x]$;

Copying axiom from Λ (Axiom group 2);
3. $\Gamma \vdash \forall y[f(x)=y \rightarrow f(y)=x]$;

Modus Ponens;
4. $\Gamma \vdash \forall y[f(x)=y \rightarrow f(y)=x] \rightarrow(f(x)=f(x) \rightarrow f(f(x))=x)$;

Copying axiom from Λ (Axiom group 2);
5. $\Gamma \vdash f(x)=f(x) \rightarrow f(f(x))=x$;

Modus Ponens;
6. $\Gamma \vdash \forall y[y=y]$;

Copying axiom from Λ (quantified version of Axiom group 5);
7. $\Gamma \vdash \forall y[y=y] \rightarrow f(x)=f(x)$;

Copying axiom from Λ (Axiom group 2);
8. $\Gamma \vdash f(x)=f(x)$;

Modus Ponens;
9. $\Gamma \vdash f(f(x))=x$;

Modus Ponens;
10. $\Gamma \vdash \forall x[f(f(x))=x]$;

Generalisation Theorem.
There are no errors in the derivation.

