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Question 1 [6 Marks]
Recall that in Fuzzy Logic, one defines the truth-values of logical connectives as follows:

1. ν(q) = q for q ∈ Q;

2. ν(α ∧ β) = min{ν(α), ν(β)};

3. ν(α ∨ β) = max{ν(α), ν(β)};

4. ν(¬α) = 1− ν(α);

5. ν(α⊕ β) = min{ν(α) + ν(β), 2− ν(α)− ν(β)}.

Here Q = {0, 1/2, 1} is the permitted set of truth-values. Fill out the truth-table for the
formula

α = ((A1 ∧ (A2 ⊕ (¬A2))) ∨ (A2 ∧ (A1 ∨ (¬A1))))

given in the below table:

A1 A2 α
0 0
0 1/2
0 1

1/2 0
1/2 1/2
1/2 1
1 0
1 1/2
1 1

Solution. The truth-table is as follows:

A1 A2 α
0 0 0
0 1/2 1/2
0 1 1

1/2 0 1/2
1/2 1/2 1/2
1/2 1 1/2
1 0 1
1 1/2 1
1 1 1
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Question 2 [6 Marks]
In a circuit, each gate can supply its output to arbitrarily many gates on a higher level, but
and-gates and or-gates can have only two and not-gates only one input. Construct a circuit
with at most six and-gates, three or-gates and six not-gates, which computes the function

x1, x2, x3, x4 7→ x1 ⊕ x2 ⊕ x3 ⊕ x4.

Solution. The solution is given in the following ascii graphic.

z = or(and(y1,not(y2)),and(not(y1),y2))

| |

y1 = or(and(x1,not(x2)),and(x2,not(x1))) y2 = or(and(x3,not(x4)),and(not(x3),x4))

| | | |

x1 x2 x3 x4

where the three subblocks each follow the inscribed formula in the same

way, so for the top block, it is

z

|

or

/ \

and and

/ | | \

not | | not

| | | |

y1 y2 y1 y2

Inputs are sometimes listed several times in order to indicate repetition

of their usage.
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Question 3 [6 Marks]
Consider the following set S of formulas in sentential logic:

S = {A2k+1 ∨ A2k+2,¬A2k+2 ∨ ¬A2k+3 : k ∈ N}.

Determine how many truth-assignments ν to the atoms exist which make all formulas in S true.
This number is either a number in N or ℵ0 (countable) or 2ℵ0 (cardinal of the real numbers).

Solution. The right value is ℵ0. For a proof, consider the truth-value function µ which has
µ(A2k+1) = 1 and µ(A2k+2) = 0 for all k. It is obvious that µ makes all formulas true in S.
Furthermore, if a further ν does the same, but is different from µ, there is a least index `
with µ(A`) 6= ν(A`). Now, ν(A`+1) must be µ(A`), as otherwise the formula which says that
one of A` and A`+1 have the truth-value µ(A`) is not satisfied and this formula is in S. Thus
ν(A`+1) 6= µA`

as well and this continues for all larger ` and so ν is equal to µ up to ` and
from then onwards different from µ. One can furthermore see, that for each ` such a ν exists
and makes all formulas in S true, thus the number of ν which make all formulas in S true is
countable.



Question 4 Page 5 Solutions MA4207

Question 4 [6 Marks]
Assume that a structure (A, ◦, e) of at least two elements with one constant e is given by
defining the binary operation ◦ as follows:

x ◦ y =

{
x if y = e;
y if y 6= e.

Now consider the following three formulas:

1. ∀x∀y ∀z [x ◦ (y ◦ z) = (x ◦ y) ◦ z];

2. ∀x [x ◦ e = x ∧ e ◦ x = x];

3. ∀x∀y ∃z [x ◦ z = y].

For each formula, (a) say in words what the formula says, (b) say whether the structure satisfies
the formula and (c) give a short reason for the answer in (b).

Solution. 1. The first formula says that the binary operation is associative and that thus
the structure is a semigroup. Indeed, one can see from the definition that x ◦ y is always the
right-most of these two elements which is not e; in the case that both are e, it is e. One can
furthermore see that, independently on how one puts brackets into x ◦ y ◦ z, if all of x, y, z are
e then x ◦ y ◦ z = e else x ◦ y ◦ z is the rightmost of these three elements which is not e: A
detailed case-distinction is the following: If z 6= e then (x◦y)◦z = z and x◦ (y ◦z) = x◦z = z;
if z = e and y 6= e then (x ◦ y) ◦ z = y ◦ z = y and x ◦ (y ◦ z) = x ◦ y = y; if y = e and z = e
then (x ◦ y) ◦ z = x ◦ y = x and x ◦ (y ◦ z) = x ◦ y = x. Thus the formula is satisfied.

2. The second formula says that e is the neutral element. Indeed, x ◦ e = x for all x and e ◦ x
depends on x being e or not; if x = e then the result is the first operand e which is correct
and if x 6= e then the result is the second operand which is x and which is also correct. So the
second formula is also satisfied and the structure is a monoid.

3. The third formula says that for all x, y there is a z such that x ◦ z = y. Indeed, for all y 6= e
this is correct, as x ◦ y = y by definition, so z = y can be taken. However, if x 6= e and y = e
then there is a problem: If z = e then x ◦ z = x 6= e and if z 6= e then x ◦ z = z 6= e. So the
statement is false for this structure and the structure is not a group.

Note that any structure satisfying all three axioms is a group and that all groups satisfy all
three axioms. To see this, one observes that the third axiom enforces that for every x there
is a x′ such that x ◦ x′ = e. Now for x′ there is a further x′′ such that x′ ◦ x′′ = e. If one
now looks at x ◦ (x′ ◦ x′′), it is x ◦ e and thus x; if one looks at (x ◦ x′) ◦ x′′, it is e ◦ x′′ and
thus x′′. By associativity, x = x′′. Thus x′ ◦ x = e and x′ is the inverse of x from both sides.
This observation is for information only, students are not required to observe that a structure
satisfies all three axioms iff it is a group.
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Question 5 [6 Marks]
Let a logical language contain equality and exactly one function symbol f , but neither constants
nor predicate symbols. Furthermore, let f be a unary function, that is, a function with one
input. Construct a formula α such that the following holds:

For each cardinal κ there is a structure (A, f) and a value assignment s with
(A, f), s |= α iff either κ = 3n+ 1 for some natural number n or κ ≥ ℵ0.

Explain why the formula α provided is correct.

Solution. One possibility to choose f is the following:

∃x∀y [(y = x↔ f(y) = y) ∧ f(f(f(y))) = y].

This formula says that one element is mapped by f to itself while all other elements are part of
some three-cycle consisting of elements z, f(z), f(f(z)) where f then maps f(f(z)) back to z.
Thus if κ is finite, then κ = 3n+ 1 for some n and it is easy to see that the formula is correct.
If κ is infinite, then 3κ+ 1 = κ by cardinal arithmetics and so the union of κ three-cycles and
a one-cycle has cardinality κ. Thus all infinite cardinals are also represented.
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Question 6 [6 Marks]
Let the logical language contain = and countably many constants c0, c1, . . . (for each k ∈ N
one ck) and let S = {ci 6= cj : i, j ∈ N ∧ i 6= j}, that is, S says that all constants are different.
Let T be the set of theorems of S, that is, the set of all sentences α such that S ` α. Answer
the following questions and give reasons for the answers.

1. Is S ℵ0-categorical?

2. Is S ℵ1-categorical?

3. Is T decidable?

Solution. 1. The set S is not ℵ0-categorical, as one can, for each n ≤ ℵ0, take An to be the
set consisting of the values of all constants and n further elements which are different from
all constants. If n,m ≤ ℵ0 are different cardinals, then An and Am are not isomorphic, as an
isomorphism must map the value of each constant ck in An to the value of the constant ck
in Am and then match bijectively the remaining n / m elements which are different from all
constants, what is impossible, as n 6= m (as cardinals).

2. The set S is ℵ1-categorical, as the only model of size ℵ1 consists of the values of the constants
plus ℵ1 many elements which are different from all constants.

3. All models of S are infinite, as there are infinitely many constants and the formulas in S
assert that they represent different values. Note that by the  Loś-Vaught Test, S is complete,
that is, for all sentences α, either S ` α or S ` ¬α. Furthermore, S is consistent, as S has
models. As S is clearly recursively enumerable and as the logical language is reasonable (only
equality and countably many constant symbols and nothing else), one can furthermore see,
that the set T of all sentences which can be deduced from S is recursively enumerable. For
every sentence α, one can enumerate T until either α or ¬α appears in T and one knows that
the other of these two formulas will never appear, thus T is even decidable.
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Question 7 [6 Marks]
Recall the axioms in Λ:

(1) Tautologies;

(2) Axioms of the form ∀x [α]→ αx
t where the substitution αx

t is permitted;

(3) Axioms of the form ∀x [α→ β]→ ∀x [α]→ ∀x [β];

(4) Axioms of the form α→ ∀x [α] where x does not occur free in α;

(5) Axioms of the form x = x;

(6) Axioms of the form x = y → α → β where α, β are primitive formulas and β is obtained
from α by exchanging some (but not necessarily all) x and y;

(7) Universally quantified versions of the above.

To explain these axioms, do the following:

1. Provide an example of a tautology formed of formulas α and β and write in a few words,
what a tautology formed from subformulas is;

2. Explain when a substitution is permitted and say whether (¬∀y [x = y])xy is permitted
and give reasons for the answer;

3. Say why is it in the fourth axiom required that x does not occur free in α.

Solution. 1. Tautologies in sentential logic are well-formed formulas which are true for every
truth-assignment ν to the atoms. Given now a tautology with atoms A1, . . . , Ak and any k
formulas γ1, . . . , γk, one can obtain a tautology for Axiom 1 from these subformulas γ1, . . . , γk
by consistently replacing each occurrence of an atom A` by γ`. In the case of two given
subformulas α, β, examples of tautologies built from these are α→ β → α and α→ ¬α→ β.

2. A substitution αx
t is permitted if at every place where x is replaced by t in the formula,

it does not happen that any of the variables occurring in t is inside the range of a quantifier
in that location. For example, in the formula (¬∀y [x = y])xy the x, when replaced by y,
falls into the range of ∀y. While the formula before the substitution was true in all models
with at least two elements (independent of the value of x), the new formula ¬∀y [y = y] is
never true, that is, unsatisfiable; thus the substitution would create an axiom which is not
valid: ∀x [¬∀y [x = y]] → ¬∀y [y = y]. To avoid non-valid axioms, one created the notion of
permitted substitutions and only those can be used in Axiom 2.

3. The requirement in the fourth axiom is needed so that the axiom is valid in all models.
Assume that α is true for some values of x but not all and x is free in α. If A, s |= α by s(x)
being one of the values for which α is true, then A, s 6|= ∀x [α] and therefore α→ ∀x [α] is not
a valid formula; a dependence of α on x can, however, only happen when x occurs free in α.
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Question 8 [6 Marks]
Let the logical language contain one predicate symbol P and one constant c. Use the axioms
from Λ and Modus Ponens and nothing else to prove the following:

{∀x ∀y [P (x)→ P (y)], P (z)} ` ∀y [P (y)].

Solution. Let S = {∀x∀y [P (x)→ P (y)], P (z)}.

1. S ` ∀x∀y [P (x)→ P (y)] (Copy);

2. S ` ∀x∀y [P (x)→ P (y)]→ ∀y [P (z)→ P (y)] (Axiom 2);

3. S ` ∀y [P (z)→ P (y)] (Modus Ponens);

4. S ` ∀y [P (z)→ P (y)]→ ∀y [P (z)]→ ∀y [P (y)] (Axiom 3);

5. S ` ∀y [P (z)]→ ∀y [P (y)] (Modus Ponens);

6. S ` P (z)→ ∀y [P (z)] (Axiom 4);

7. S ` P (z) (Copy);

8. S ` ∀y [P (z)] (Modus Ponens);

9. S ` ∀y [P (y)] (Modus Ponens).
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Question 9 [6 Marks]
Provide the statements of the Generalisation Theorem and Deduction Theorem. Then prove
the below formula using the following methods: the Generalisation Theorem, any direction of
the Deduction theorem, the axioms of Λ and Modus Ponens. The formula to be proven is a
version of the “Principle of alphabetic variants”:

∅ ` ∀x [¬(x+ 1 = 0)]→ ∀y [¬(y + 1 = 0)].

Here + is a binary operation and 0, 1 are constants.

Solution. In the following, let S be any set of wffs and let α, β be wffs. The Generalisation
Theorem says the following:

If a variable x does not occur freely in any formula in S and if S ` α then S ` ∀x [α].

The Deduction Theorem says the following:

S ∪ {α} ` β iff S ` α→ β.

Both directions of the Deduction Theorem can be used in proofs.

The derivation is the following:

1. ∅ ` ∀x [x+ 1 6= 0]→ y + 1 6= 0 (Axiom 2);

2. {∀x [x+ 1 6= 0]} ` y + 1 6= 0 (Deduction Theorem);

3. {∀x [x+ 1 6= 0]} ` ∀y [y + 1 6= 0] (Generalisation Theorem);

4. ∅ ` ∀x [x+ 1 6= 0]→ ∀y [y + 1 6= 0] (Deduction Theorem).
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Question 10 [6 Marks]
Consider the following statement:

¬∀x ∀y [P (x)→ P (y)]→ ¬∀x ∀y [x = y].

Here P is a unary predicates. Say informally what the formula means and then prove the
statement formally. The following methods are allowed: Using all axioms of Λ, Modus Ponens,
Deduction Theorem (any direction) and Generalisation Theorem.

Solution. Note that ¬(P (x) → P (y)) is P (x) ∧ ¬P (y) and by inserting double negations at
the right places and utilising the definition of ∃, the formula says

∃x ∃y [P (x) ∧ ¬P (y)]→ ∃x∃y [x 6= y].

In words: “If P does not take on all members of a structure the same truth-value then the
structure has at least two elements.” This is clearly a valid statement. Now a formal derivation
is given.

1. ∅ ` x = y → P (x)→ P (y) (Axiom 6);

2. ∅ ` ∀y [x = y → P (x)→ P (y)] (Generalisation Theorem);

3. ∅ ` ∀y [x = y → P (x)→ P (y)]→ ∀y [x = y]→ ∀y [P (x)→ P (y)] (Axiom 3);

4. ∅ ` ∀y [x = y]→ ∀y [P (x)→ P (y)] (Modus Ponens);

5. ∅ ` ∀x [∀y [x = y]→ ∀y [P (x)→ P (y)]] (Generalisation Theorem);

6. ∅ ` ∀x [∀y [x = y] → ∀y [P (x) → P (y)]] → ∀x ∀y [x = y] → ∀x ∀y [P (x) → P (y)]
(Axiom 3);

7. ∅ ` ∀x ∀y [x = y]→ ∀x∀y [P (x)→ P (y)] (Modus Ponens);

8. ∅ ` (∀x ∀y [x = y]→ ∀x ∀y [P (x)→ P (y)])→ (¬∀x ∀y [P (x)→ P (y)]→ ¬∀x ∀y [x = y])
(Axiom 1, Law of Contraposition);

9. ∅ ` ¬∀x ∀y [P (x)→ P (y)]→ ¬∀x ∀y [x = y] (Modus Ponens).


