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Question 1 [6 Marks]
Let C = {0, 1, A1, A2, A3, A1 ∧A2, A1 ∧A3, A2 ∧A3} where ∧ is the Boolean connective “and”.
Let D contain any formula which is either a member of C or consists of several members of C
connected by ∨, the Boolean connective “or”. Say that two members α, β ∈ D are essentially
equal iff B3

α and B3
β are equal as Boolean functions. Let E be obtained from D by omitting

essential duplicates, that is, E ⊆ D, E is as large as possible and E does not contain any
distinct α, β with B3

α = B3
β. Note that the size of E is equal to the number of Boolean

functions represented by the members of D.

What is the size of E?

Give a listing of the members of E; if α ∈ D then exactly one member β which is essentially
equal to α should go into D, but it does not matter which such β is selected.

Solution. Given any α ∈ D, one puts that β into E which is obtained from α by removing
all redundant terms in the disjunction. If the formula is α1 ∨ α2 ∨ . . . ∨ αn then there are
distinct αi, αj with {αi} |= αj, then one removes αi from the disjunction and the Boolean
function remains the same. In particular one omits from a disjunction containing 1 all terms
different from 1, from a disjunction containing a nonzero term the term 0 and from a disjunction
containing both Ai and Ai ∧Aj the term Ai ∧Aj. By this way one gets the following formulas
in E:

1. truth-constants and atoms: 0, 1, A1, A2, A3;

2. conjunctive terms only: A1 ∧ A2, A1 ∧ A3, A2 ∧ A3;

3. disjunction of two or three atoms: A1 ∨ A2, A1 ∨ A3, A2 ∨ A3, A1 ∨ A2 ∨ A3;

4. disjunction of a conjunction and an atom: A1∨ (A2∧A3), A2∨ (A1∧A3), A3∨ (A1∧A2);

5. disjunction of two conjunctions: (A1∧A2)∨ (A1∧A3), (A1∧A2)∨ (A2∧A3), (A1∧A3)∨
(A2 ∧ A3);

6. majority-function: (A1 ∧ A2) ∨ (A1 ∧ A3) ∨ (A2 ∧ A3).

This are in total 5 + 3 + 4 + 3 + 3 + 1 = 19 formulas and thus 19 Boolean functions. These are
all positive functions (made of disjunctions of conjunctions of truth-values and atoms) except
for the function B3

A1∧A2∧A3
.
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Question 2 [6 Marks]
Construct a Boolean formula α using two types of connectives, namely exclusive or (⊕) as well
as and (∧), such that α satisfies the following constraint: α is true iff one or two of the atoms
A1, A2, A3 are true. The number of ⊕ can be arbitrary, but the number of ∧ is limited to three.

Solution. The formula is

A1 ⊕ A2 ⊕ A3 ⊕ (A1 ∧ A2)⊕ (A1 ∧ A3)⊕ (A2 ∧ A3)

and if none or all of the atoms are true then either none or all six terms connected by ⊕ are
1 and therefore the output is 0; if exactly one atom is 1 then the conjunctions are all 0 and
one out of three atoms is 1 and the output is 1; if exactly two atoms are 1, say A1 and A2,
then two of the three atom-terms and one of the three conjunctions (namely A1 ∧ A2) are 1
and therefore, three out of six terms are 1 and the exclusive or then produces a 1 (as it is an
odd number of terms). This is, however, not the best solution which was found by one student
and which uses only one ∧:

(A1 ⊕ A2)⊕ ((A1 ⊕ A3) ∧ (A2 ⊕ A3)).

If A1 differs from A2 then A1⊕A2 is 1 while the two terms A1⊕A3 and A2⊕A3 differ so that
their conjunction is 0. As 1⊕ 0 = 1, the formula is statisfied. If A1 = A2 then the formula is
1 iff A3 differs from A1 and thus also from A2; so if A3 6= A1 then the formula is 0 ⊕ (1 ∧ 1)
which is 1 else the formula is 0⊕ (0 ∧ 0) which is 0.
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Question 3 [6 Marks]
Consider the following set S of formulas in fuzzy logic with values 0, 1/3, 2/3, 1:

S = {Ai → Aj : i, j ∈ N with 1 ≤ j < i}.

Here ν(A2 → A1) = min{1, 1 + ν(A1)− ν(A2)} and ν satisfies S iff for all α ∈ S, ν(α) = 1.

Which truth-assignments ν : {A1, A2, . . .} → {0, 1/3, 2/3, 1} satisfy S? Characterise these
truth-assignments.

Solution. A truth-assignment satisfies the set S iff ν is monotonically decreasing, that is, iff
ν(Ak+1) ≤ ν(Ak) for all k. If this is the case then whenever j < i then ν(Aj) ≥ ν(Ai) and
ν(Ai → Aj) = 1. So ν |= S. If this is not the case then there is a k with ν(Ak+1) > ν(Ak) and
ν(Ak+1 → Ak) = 1 + ν(Ak)− ν(Ak+1) < 1, so ν 6|= S.
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Question 4 [6 Marks]
Assume that a structure (Z, ◦, 0) is given by defining the binary operation ◦ as follows:

x ◦ y = (y + 1).

Here + and 0 and 1 are defined as usual on Z. Consider the following formulas:

1. ∀x∀y ∀z [x ◦ (y ◦ z) = (x ◦ y) ◦ z];

2. ∀y ∃x [x ◦ y = 0];

3. ∀x∃y [x ◦ y = 0].

For each formula, (a) say in words what the formula says, (b) say whether the structure satisfies
the formula and (c) give a short reason for the answer in (b).

Solution. 1. The first formula says that the binary operation is associative and that thus the
structure is a semigroup. The structure does not satisfy this: Given x, y, z, ((x ◦ y) ◦ z) =
(y + 1) ◦ z = z + 1, x ◦ (y ◦ z) = x ◦ (z + 1) = z + 2.

2. The second formula says that one can “invert” from the left in the sense that for every right
operand y one can find an x such that x ◦ y = 0. Here “invert” might be a bit rough terminol-
ogy, as this structure has no neutral element and 0 is an element like all others. Nevertheless,
if y = 1, then x ◦ y = y + 1 and therefore the second formula is not true.

3. The third formula says that one can “invert” from the right, again in a rough sense. Indeed,
for any z, if y = z − 1 then x ◦ y = z. This is in particular true for z = 0 and thus x ◦ −1 = 0.
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Question 5 [6 Marks]
Let a logical language contain the equality = and exactly two function symbols f, g, but neither
constants nor predicate symbols. Furthermore, let f, g be unary functions, that is, functions
with one input each. Consider the following two axioms:

1. ∀x∀y [f(x) 6= g(y)];

2. ∀x∀y [x 6= y → f(x) 6= f(y)].

Answer the following questions with respect to the following cardinals: κ = 1, 2, 3,ℵ0,ℵ1,ℵ2.
These are the first three nonzero cardinals plus the first three infinite cardinals.

(a) For which cardinals κ does there exist a model of size κ which makes both axioms true?

(b) For which cardinals κ does there exist a model of size κ which makes the first axiom true?

Provide reasons for both answers.

Solution. For (a), the cardinals are κ = ℵ0,ℵ1,ℵ2; more precisely all infinite cardinals. If X
is an infinite set, then one can choose f : X → X such that f is one-one but not surjective, so
there is one element a ∈ X − range(f). Now one let g(x) = a for all x and both axioms are
satisfied. For finite κ, the f, g do not exist, as the first axiom implies that f is not surjective
(the ranges of f and g are disjoint) and the second axioms implies that f is injective. Such a
functions f does not exist from a finite set X to itself.

For (b), the cardinals are 2, 3,ℵ0,ℵ1,ℵ2, more precisely, all cardinals κ with κ ≥ 2. The reason
is that one just requires that the ranges of f and g are disjoint and then, if there are two
different elements 0, 1 and perhaps some more, f could map every element to 0 and g every
element to 1. However, if the base set X has exactly one element, then this is in the range of
both f and g and therefore κ = 1 does not qualify.
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Question 6 [6 Marks]
Let the logical language contain the equality = and one relation ≡. Furthermore, let (N,=,≡)
be the model with N being the set of natural numbers and ≡ defined being as follows for any
m,n ∈ N:

m ≡ n⇔ ∃i, j, k [n+ 1 = 2k · (2i+ 1) ∧m+ 1 = 2k · (2j + 1)].

That is, m ≡ n holds exactly if, in the binary representation, the last nonzero bits of m + 1
and n + 1 are at the same position. Let T be the theory of this model, that is, the set of all
sentences made true by (N,≡,=). Note that T is axiomatisable.

(a) Is T ℵ0-categorical? Yes, No.
Explain the answer.

(b) Is T ℵ1-categorical? Yes, No.
Explain the answer.

(c) Provide an explicit and consistent list of axioms allowing to deduce all sentences in T .

Solution. (a) Any countable model consists of infinitely many equivalence classes of size ℵ0.
If (A,≡,=) and (B,≡,=) are such models, then one can first make a bijection between the
equivalence classes of A and B — this exists as both have countably many equivalence classes.
Furthermore, if F maps an equivalence class E of A to an equivalence class F (E) to B, then
both E and F (E) are countable and there is a bijection fE from E to F (E), these bijections fE
can then be unioned up to a bijection between (A,≡,=) and (B,≡,=). As any two countable
models are isomorphic, the structure is ℵ0-categorical and so is its theory.

(b) It is not ℵ1-categorical. Two models of size ℵ1 are (A,≡,=) where A consists of ℵ0 many
equivalence classes, each of size ℵ1, and (B,≡,=) where B consists of ℵ1 many equivalence
classes, each of size ℵ0. So both A and B have ℵ0 · ℵ1 = ℵ1 many elements. There is no
isomorphism from (A,≡,=) to (B,≡,=), as such an isomorphisms induces a bijection between
the equivalence classes and the first model has ℵ0 equivalence classes and the second has ℵ1
equivalence classes and sets of different cardinality cannot have a bijection among them.

(c) The following axioms allow to derive all members of T , as they have the following five
statements, where the last two are given for all n ∈ N.

1. ≡ is reflexive: ∀x [x ≡ x].

2. ≡ is symmetric: ∀x∀y [x ≡ y → y ≡ x].

3. ≡ is transitive: ∀x ∀y ∀z [x ≡ y → y ≡ z → x ≡ z].

4. Every equivalence class contains at least n+ 1 elements: ∀x1 ∀x2 . . . ∀xn ∃y [y ≡ x1 ∧ y 6=
x1 ∧ y 6= x2 ∧ . . . ∧ y 6= xn].

5. There are at least n + 1 different equivalence classes: ∀x1 ∀x2 . . . ∀xn ∃y [y 6≡ x1 ∧ y 6≡
x2 ∧ . . . ∧ y 6≡ xn].
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Question 7 [6 Marks]
Recall the axioms in Λ:

(1) Tautologies — that is, one takes a tautology from sentential logic (a formula which is true
whatever truth-value one chooses for the atoms) and then one replaces consistently each
atom Ak by some wff αk of first-order logic;

(2) Axioms of the form ∀x [α]→ αxt where the substitution αxt is permitted, that is, the term
t contains only variables which are free at all places where x occurs free in α;

(3) Axioms of the form ∀x [α→ β]→ ∀x [α]→ ∀x [β];

(4) Axioms of the form α→ ∀x [α] where x does not occur free in α;

(5) Axioms about equality to be described below;

(6) Axioms about equality to be described below;

(7) Universally quantified versions of the above.

Describe the axioms of type 5 and 6 and explain which variables and which type of formulas
can be used as building blocks for them and give for each of the two axioms an example.

Solution. The axioms of the fifth type are simple all equalities of the form x = x where x is
any variable. The axioms of the sixth type are of the form x = y → (α → β) where x, y are
variables and α, β are both atomic formulas and β is obtained from α by interchanging some
of the occurrences of the two variables.

Examples of the formulas are x = x and y = z → P (y) → P (z) where P is some unary
predicate.
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Question 8 [6 Marks]
Assume that the logical language contains a constant c, a unary function f and equality =.
Consider the following statement:

∃x [f(x) = f(c)].

Rewrite this statement using only a universal quantifier and then prove the resulting statement
formally, that is, show how the statement can be proven from the empty precondition using
the axioms from Λ and Modus Ponens.

Solution. The statement is to be written as

¬∀x [f(x) 6= f(c)]

and one uses that (A1 → ¬A2)→ (A2 → ¬A1) is a tautology in sentential logic.

1. ∅ ` ∀x [f(x) 6= f(c)]→ f(c) 6= f(c) (Axiom 2);

2. ∅ ` (∀x [f(x) 6= f(c)]→ f(c) 6= f(c))→ (f(c) = f(c)→ ¬∀x [f(x) 6= f(c)] (Axiom 1);

3. ∅ ` f(c) = f(c)→ ¬∀x [f(x) 6= f(c)] (Modus Ponens);

4. ∅ ` ∀y [y = y] (Axiom 5);

5. ∅ ` ∀y [y = y]→ f(c) = f(c) (Axiom 2);

6. ∅ ` f(c) = f(c) (Modus Ponens);

7. ∅ ` ¬∀x [f(x) 6= f(c)] (Modus Ponens);

8. ∅ ` ∃x [f(x) = f(c)] (Rewriting of Quantifier).
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Question 9 [6 Marks]
Let the logical language contain the unary predicates P and Q and let

S = {∀x ∀y [P (x)→ Q(y)],¬Q(z)}.

Prove formally the statement
S ` ¬P (z)

using Modus Ponens, the formulas in S and the axioms of Λ.

Solution. The proof is as follows:

1. S ` ∀x∀y [P (x)→ Q(y)] (Copy);

2. S ` ∀x∀y [P (x)→ Q(y)]→ ∀y [P (z)→ Q(y)] (Axiom 2);

3. S ` ∀y [P (z)→ Q(y)] (Modus Ponens);

4. S ` ∀y [P (z)→ Q(y)]→ P (z)→ Q(z) (Axiom 2);

5. S ` P (z)→ Q(z) (Modus Ponens);

6. S ` ¬Q(z)→ (P (z)→ Q(z))→ ¬P (z) (Axiom 1);

7. S ` ¬Q(z) (Copy);

8. S ` (P (z)→ Q(z))→ ¬P (z) (Modus Ponens);

9. S ` ¬P (z) (Modus Ponens).

Here the Axiom 1 above can be used, as the tautology is equivalent to ¬Q(z) ∧ (P (z) →
Q(z)) → ¬P (z), that is, if ¬Q(z) holds and P (z) → Q(z) holds, then due to ¬Q(z) both
preconditions can only be true when P (z) is false and thus ¬P (z) holds. Therefore this rule is
a tautology.
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Question 10 [6 Marks]
Let the logical language contain the equality = and two constants a, b. Let

S = {∀x [x 6= a→ x = b],¬∀x [x = b]}.

Give a formal proof for
S ` a 6= b

where this formal proof can use the Axioms of Λ, Modus Ponens, statements in S, the Gener-
alisation Theorem, the Deduction Theorem and the Principle of Contraposition.

Solution. The proof goes as follows:

1. {∀x [x 6= a→ x = b], a = b} ` ∀x [x 6= a→ x = b] (Copy);

2. {∀x [x 6= a→ x = b], a = b} ` ∀x [x 6= a→ x = b]→ (x 6= a→ x = b) (Axiom 2);

3. {∀x [x 6= a→ x = b], a = b} ` (x 6= a→ x = b) (Modus Ponens);

4. {∀x [x 6= a→ x = b], a = b} ` ∀u∀v ∀w [v = w → u = v → u = w] (Axiom 6,7);

5. {∀x [x 6= a → x = b], a = b} ` ∀u∀v ∀w [v = w → u = v → u = w] → ∀v ∀w [v = w →
x = v → x = w] (Axiom 2);

6. {∀x [x 6= a→ x = b], a = b} ` ∀v ∀w [v = w → x = v → x = w] (Modus Ponens);

7. {∀x [x 6= a → x = b], a = b} ` ∀v ∀w [v = w → x = v → x = w] → ∀w [a = w → x =
a→ x = w] (Axiom 2);

8. {∀x [x 6= a→ x = b], a = b} ` ∀w [a = w → x = a→ x = w] (Modus Ponens);

9. {∀x [x 6= a→ x = b], a = b} ` ∀w [a = w → x = a→ x = w]→ a = b→ x = a→ x = b
(Axiom 2);

10. {∀x [x 6= a→ x = b], a = b} ` a = b→ x = a→ x = b (Modus Ponens);

11. {∀x [x 6= a→ x = b], a = b} ` a = b (Copy);

12. {∀x [x 6= a→ x = b], a = b} ` x = a→ x = b (Modus Ponens);

13. {∀x [x 6= a→ x = b], a = b} ` (x = a→ x = b)→ (x 6= a→ x = b)→ x = b (Axiom 1);

14. {∀x [x 6= a→ x = b], a = b} ` (x 6= a→ x = b)→ x = b (Modus Ponens);

15. {∀x [x 6= a→ x = b], a = b} `→ x = b (Modus Ponens);

16. {∀x [x 6= a→ x = b], a = b} ` ∀x [x = b] (Generalisation Theorem);

17. {∀x [x 6= a→ x = b],¬(∀x [x = b])} ` a 6= b (Principle of Contraposition).


