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Question 1 [3 Marks]
Construct a formula using the atoms A1, A2, A3, A4, A5 which outputs 0 in the case that at
most one atom is 1 and which outputs 1 in the case that at least three atoms are 1; the formula
should only use the connectives ∨ and ∧ and in total at most ten connectives should be used.
In order to save on brackets, it can be assumed that ∧ binds more than ∨, so A6 ∧A7 ∨A8 is,
when written as a wff, ((A6 ∧ A7) ∨ A8). Explain the formula.

Solution. Call A1, A5 neighbours and all Ak, Ak+1 neighbours. If one has three atoms out of
the five, then two of them are neighbours. So the idea is to make the disjunction over each
conjunction of a pair of neighbours. There are five pairs of neighbours which will be connected
by conjunctions and then the resulting terms will be connected by four disjunctions, giving
exactly nine connectives. Furthermore, no single atom being 1 can produce the output 1, as
the single atom is conjuncted with another atom being 0. On the other hand, if at least three
atoms are 1, then two of them are neighbours which are mapped to 1 by the conjunction and
the subsequent disjunctions will preserve the value. When written down in logic, the formula
looks as follows:

(A1 ∧ A2) ∨ (A2 ∧ A3) ∨ (A3 ∧ A4) ∨ (A4 ∧ A5) ∨ (A5 ∧ A1).

Now if one spaces out three atoms being 1, one has to use A1, A3, A5 in order to avoid the first
four conjunctive terms to be 1, but then the last one becomes 1. Thus if three or more atoms
are 1, the result is 1; if at most one atom is 1, the result is 0.
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Question 2 [3 Marks]
Consider the formula

α = (A1 ∧ A2 ∧ A3)⊕ (A4 ∨ A5 ∨ A6 ∨ A7)

and calculate how many tuples of the resulting function B8
α are mapped to 0 and how many

are mapped to 1. Explain the solution.

Solution. The correct solution is that 212 tuples are mapped to 1 and 44 tuples are mapped
to 0.

A formula of the form β ⊕ γ is mapped to 1 if either β is mapped to 1 and γ mapped to 0
or β is mapped to 0 and γ is mapped to 1. So let β be the conjunction of the first three atoms
and γ be the disjunction of the last four atoms. β maps one tuple to 1 and seven tuples to 0; γ
maps fifteen tuples to 1 and one to 0. Note that both operate on different sets of variables, so
when considering the first seven variables, one has that β ∧¬γ maps one tuple to 1 and ¬β ∧γ
maps 7 · 15 = 105 tuples to 1, giving 106 tuples in total. 128 − 106 = 22 tuples are mapped
to 0. However, there is an eighth variable taken into account for B8

α, this refers to the value of
A8 and has no effect on the value of B8

α; however, it doubles the number of tuples. Thus as a
result, 212 tuples are mapped to 1 and 44 tuples are mapped to 0.
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Question 3 [3 Marks]
Prove either verbally or by a truth-table method that the following formula is a tautology:

((((A1 ∧ A2) ∧ A3)→ A4)↔ (A1 → (A2 → (A3 → A4)))).

Solution. Let α, β refer to the two halves of the formula before and after the ↔.

If A4 is 1 then α, β are both of the form γ → 1 and such formulas are always true, so α ↔ β
is true and the formula is satisfied.

Now assume that A4 = 0. If at least one of A1, A2, A3 is 0 then α is 1, as it is of the
form 0 → 0. The formula β is either of the form δ → γ → (0 → 0) and true or of the form
δ → (0→ (1→ 0)) what is the same as δ → (0→ 0) and true or of the form 0→ (1→ (1→ 0))
what is 0→ (1→ 0) what is 0→ 0 what is 1, so again also β is true.

If A1, A2, A3 are 1 and A4 is 0, then α is of the form 1→ 0 and false, but also β is of the form
1 → (1 → (1 → 0)) what simplifies to 1 → (1 → 0) what again simplies to 1 → 0 and 0, so
both sides are 0 and 0↔ 0 is true.

Thus in all cases, α↔ β is true and thus the formula is a tautology.



Question 4 Page 5 Solutions MA4207

Question 4 [3 Marks]
Consider the following set S of formulas in fuzzy logic with values 0, 1/2, 1 and atoms A1, A2, . . .:

S = {Ak ↔ (A2k ⊕ A2k+1), A2k+1 → A2k, A2k → Ak : k = 1, 2, 3, . . .} ∪ {A1}.

Here

ν(α→ β) = min{1, 1 + ν(β)− ν(α)},
ν(α↔ β) = min{1 + ν(α)− ν(β), 1 + ν(β)− ν(α)},
ν(α⊕ β) = min{ν(α) + ν(β), 2− ν(β)− ν(α)}.

Which truth-assignments ν : {A1, A2, . . .} → {0, 1/2, 1} satisfy S, that is, satisfy ν(α) = 1 for
all α ∈ S? Describe (perhaps in dependence of a parameter) all the ν which make all formulas
in S to have the value 1.

Solution. As A2k → Ak, ν(A2k) ≤ ν(Ak). Furthermore ν(A2k+1) ≤ ν(A2k). If ν(Ak) = 0
then ν(A2k) = 0 and ν(A2k+1) = 0; if ν(Ak) = 1/2 then ν(A2k) = 1/2 and ν(A2k+1) = 0; if
ν(Ak) = 1 then either ν(A2k) = 1/2 and ν(A2k+1) = 1/2 or ν(A2k) = 1 and ν(A2k+1) = 0.
Thus one has the following solutions: ν0(A2i) = 1 and ν0(Ah) = 0 for all other h. If k > 0 then
νk(A2i) = 1 for all i < k, νk(A2k+j) = 1/2 and νk(A2k+j+2j) = 1/2 for all j and νk(Ah) = 0 for
all other h. So there are countably many ν which make all formulas in S true.
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Question 5 [4 Marks]
Assume that S is in first-order logic over the logical language with f , + and < consisting of
the following formulas:

1. ∀x∀y [x < y → f(x) < f(y)];

2. ∀x∀y [f(x+ y) = f(x) + f(y)].

Let Z be the integers and +, < have the usual meaning on the integers. Explain what each
of the formulas says and characterise the functions f : Z→ Z which satisfy the above axioms
and determine how many of these f exist (finitely, countably or uncountably many).

Solution. The first formula says that the function f is order-preserving, that is, if x is properly
smaller than y the same holds for f(x) compared to f(y). The second formula says that f is
a group homomorphism.

The function f must map 0 to 0, as f(0 + y) = f(0) + f(y) for all y. Furthermore, f(1) >
f(0) = 0. So f(1) is positive. Now one can show by induction that f(x) = x · f(1). Thus the
function f has to be the multiplication of the input with a positive integer constant.

It is also easy to see that all such functions satisfy both formulas: So let f(x) = c · x where
c ∈ {1, 2, 3, . . .}. If x < y then c · x < c · y, so the first formula is satisfied. Furthermore,
f(x+ y) = c · (x+ y) = c · x+ c · y = f(x) + f(y), so the second formula is satisfied.

In particular, as there are countably many positive integers c, there are countably many such
functions.
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Question 6 [3 Marks]
Let a logical language contain the equality = and one unary function symbols f and two con-
stants a, b. Furthermore, let f 1(x) abbreviate f(x), f 2(x) = f(f(x)) and fn+1(x) = f(fn(x)).
So if one says that f 3(x) 6= x is in S then this means that the formula f(f(f(x))) 6= x is in S.
Now consider the set S containing the following formulas:

1. ∀x∀y [f(x) = f(y)→ x = y];

2. ∀x∃y [x = f(y)];

3. for all n ≥ 1 the formula ∀x [x 6= fn(x)];

4. for all n ≥ 1 the formulas fn(a) 6= b and fn(b) 6= a;

5. a 6= b.

Provide a countable model for this structure where every element is definable (the constants
a, b can be used).

How many countable models do exist for this structure (up to isomorphism)? In particular, is
the structure ℵ0-categorical? Explain the answer.

Is the structure ℵ1-categorical? Explain the answer.

Solution. An explicit model is by taking the integers, letting a = 0, b = 1 and f(x) = x + 2.
0 and 1 are equal to the constants a, b and therefore definable in the model. For every n > 0,
the number x = −2n can be defined by the formula fn(x) = a, the number x = −2n + 1
can be defined by the formula fn(x) = b, the number x = +2n can be defined by the formula
x = fn(a) and the number x = +2n+ 1 can be defined by the formula x = fn(b).

There are countably many countable models. The above model consists of two Z-chains, one
given by the even and one given by the odd numbers. For every m > 2, one can with a, b being
0, 1, respectively, create a model with m Z-chains by having that f(x) = x+m. In these, only
the members of the chains through a and b are definable, the others not. Furthermore, there
is a model with countably infinitely many Z-chains. These are all models up to isormophism.
So there are ℵ0 many countable models up to isomorphism.

The structure is not ℵ0-categorical, as there are various countable models. However, it is ℵ1-
categorical, as the only model, up to isomorphism, is the collection of ℵ1 many Z-chains out of
which one contains the constant a and another one contains the constant b.
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Question 7 [4 Marks]
Given k, construct an Abelian semigroup having k + 1 definable elements and 3 nondefinable
elements.

Solution. Let A = {0, 1, . . . , k+3} and for x, y ∈ A, let x◦y = max{x, y, 3}. The associativity
and commutativity of the operation ◦ follows from that of the maximum-operation. So x◦y◦z =
max{3, x, y, z} independently of the order of x, y, z and one can see that bracketing does not
have any efect. 0, 1, 2 are not in the range of ◦ and for every x ∈ {0, 1, 2} and every y,
x ◦ y = y ◦ x = max{3, y}. So there is no property of ◦ which allows to distinguish these three
elements. However, the k + 1 numbers 3, 4, . . . , k, k + 1, k + 2, k + 3 are definable, as they are
ordered by x ≤ y ↔ x ◦ y = y and furthermore they are those numbers which are in the range
of ◦. More precisely, if y = 3 + z, y is that element for which there are exactly z different
elements below y in the range of ◦ with respect to the ordering defined above. This can be
formalised in a first-order formula. A more concrete way to define the elements inductively is
as follows. One defines 3 as the unique element x satisfying a formula ψ(x) given as

x ◦ x = x ∧ ∀y [x ◦ (y ◦ y) = y ◦ y].

If now an element x is defined using some formula ψ(x) and thus in the range of ◦, then the
next element x+ 1 is the unique element z defined by

∃x∀y [ψ(x)∧x 6= z∧x◦z = z∧ (x◦ (y ◦y) = y ◦y → x 6= y ◦y → z ◦ (y ◦y) = y ◦y)].

This allows to define all elements from 3 onwards by induction.
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Question 8 [3 Marks]
Let a logical language contain the constants c1, c2, . . . plus equality. Furthermore, consider the
following set S of formulas: S = {ci = cj → ci = ck : i < j < k}. How many models with 8
elements does S have? Explain the answer.

Solution. First one has to find the least j so that there is an i < j with ci = cj. Now ci = ck
for all k > j. Thus if there are two such pairs (i, j), (i′, j′) with ci = cj and i < j as well as
ci′ = cj′ and i′ < j′, then for all k > i + j + i′ + j′, ci = ck and ci′ = ck. Thus ci = ci′ and
all constants which are equal to some other constant are equal with each other. Furthermore,
it is possible that the constants do not cover all the 8 elements, say that only five of them are
equal to constants. So finite models are given by three parameters: (a) the least number j with
an i < j such that ci = cj; (b) the unique i ∈ {1, 2, . . . , j − 1} with ci = cj; (c) the number
of elements in the model which is at least j − 1. The latter is equal to 8 by the choice of the
question. Now one can choose any j ∈ {2, 3, 4, 5, 6, 7, 8, 9} and furthermore choose the unique
i ∈ {1, 2, . . . , j − 1} with ci = cj; there are 8 choices for j and subsequently j − 1 such choices
for i. So one has 1 + 2 + 3 + . . .+ 8 = 36 models.
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Question 9 [3 Marks]
Recall that the axiom set Λ of the proof calculus consists of six axiom groups plus the rule that
all axioms can be quantified. The following formulas are intended to be, perhaps quantified,
examples of Λ’s axioms groups 1–6, respectively. However, three are faulty. Identify these,
write what went wrong and provide a corrected example.

Group 1. ∀x ∀y [x = z ∧ y = z]→ ∀x ∀y [x 6= z ∧ y 6= z]→ ∀x ∀y [x = z ∧ y = z]

Group 2. ∀x ∀y [x+ y = z]→ ∀y [(y + y) + y = z]

Group 3. ∀x [P (x)→ Q(x)]→ ∀x [P (x)]→ ∀y [Q(y)]

Group 4. y = 37→ ∀x [y = 37]

Group 5. ∀x ∃y [x = y]

Group 6. ∀x ∀y [x = y → (R(x, y)→ R(y, y))]



Solution. Out of the six examples, those at 2, 3 and 5 are faulty.

1. ∀x ∀y [x = z ∧ y = z]→ ∀x ∀y [x 6= z ∧ y 6= z]→ ∀x ∀y [x = z ∧ y = z]:
This formula is a correct example. One can see it as a formula of the form A1 → A2 → A1

which is a tautology. Now one replaces A1 by ∀x ∀y [x = z ∧ y = z] and A2 by ∀x∀y [x 6=
z ∧ y 6= z] in order to get the given formula.

2. ∀x ∀y [x+ y = z]→ ∀y [(y + y) + y = z]:
This formula has the mistake that the quantified variable x from the precondition is
replaced by (y + y) what is a term within the range of the quantifier ∀y, this is not
permitted. A formula which is an Example of Axiom 2 is replacing x by some term only
using variables different from y: ∀x ∀y [x+ y = z]→ ∀y [(z + z) + y = z].

3. ∀x [P (x) → Q(x)] → ∀x [P (x)] → ∀y [Q(y)]: The principle form of this axiom is indeed
Axiom 3, but the last part is quantifying over the wrong variable, namely over y instead of
x. Though this formula is valid, it should be as follows: ∀x [P (x)→ Q(x)]→ ∀x [P (x)]→
∀x [Q(x)].

4. y = 37→ ∀x [y = 37]:
This formula of Axiom 4 is correct, note that Axiom 4 requires that the variable quantified
(here x) does not occur free in the formula. So it more or less says that one can add a
quantifier over an irrelevant variable without losing correctness.

5. ∀x∃y [x = y]:
The formulas by Axiom 5 are x = x and quantified versions thereof. Furthermore, all
quantifiers must be universal. So ∀x ∀y [x = x] and also ∀x∀y [y = y] would be correct.

6. ∀x∀y [x = y → (R(x, y)→ R(y, y))]:
This formula is correct. Axiom 6 says that if x = y then one can obtain the third term of
the chain implication from the second term by interchanging some of the equal variables;
here the first term must be an equality between variables and the second an atomic
formula, so a predicate or an equation of two terms.
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Question 10 [3 Marks]
Assume that the logical language contains a unary predicate P , a constant c and equality =.
Consider the following statement:

∃x [¬(P (x)→ P (c))]→ ∃x [x 6= c].

Rewrite the statement and prove it using the axioms of Λ and Modus Ponens only.

Solution. First the statement is rewritten as

¬∀x [(P (x)→ P (c))]→ ¬∀x [x = c].

Now one derives it as follows.

1. ∅ ` ∀y ∀x [x = y → P (x)→ P (y)] (Axiom 6);

2. ∅ ` ∀y ∀x [x = y → P (x)→ P (y)]→ ∀x [x = c→ P (x)→ P (c)] (Axiom 2);

3. ∅ ` ∀x [x = c→ P (x)→ P (c)] (Modus Ponens);

4. ∅ ` ∀x [x = c→ P (x)→ P (c)]→ ∀x [x = c]→ ∀x [P (x)→ P (c)] (Axiom 3);

5. ∅ ` ∀x [x = c]→ ∀x [P (x)→ P (c)] (Modus Ponens);

6. ∅ ` (∀x [x = c] → ∀x [P (x) → P (c)]) → (¬∀x [P (x) → P (c)] → ¬∀x [x = c]) (Axiom 1
version of Contraposition);

7. ∅ ` ¬∀x [P (x)→ P (c)]→ ¬∀x [x = c] (Modus Ponens);

8. ∅ ` ∃x [¬(P (x)→ P (c))]→ ∃x [x 6= c] (Rewriting by rules of Existential Quantifier).
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Question 11 [4 Marks]
Let f be a unary function symbol and a, b two constants. Now make a proof only using axioms
from Λ, copying from S = {∀x [f(x) = a → f(x) 6= b]} and Modus Ponens for the following
statement:

{∀x [f(x) = a→ f(x) 6= b]} ` ∀x [f(x) = b]→ ∀x [f(x) 6= a].

Solution. The proof is as follows, where α is the formula ∀x [f(x) = a→ f(x) 6= b].

1. {α} ` ∀x [(f(x) = a→ f(x) 6= b)→ (f(x) = b→ f(x) 6= a)] (Axioms 1,7, see below);

2. {α} ` ∀x [(f(x) = a → f(x) 6= b) → (f(x) = b → f(x) 6= a)] → ∀x [f(x) = a → f(x) 6=
b]→ ∀x [f(x) = b→ f(x) 6= a] (Axioms 3);

3. {α} ` ∀x [f(x) = a→ f(x) 6= b]→ ∀x [f(x) = b→ f(x) 6= a] (Modus Ponens);

4. {α} ` ∀x [f(x) = a→ f(x) 6= b] (Copy);

5. {α} ` ∀x [f(x) = b→ f(x) 6= a] (Modus Ponens);

6. {α} ` ∀x [f(x) = b→ f(x) 6= a]→ ∀x [f(x) = b]→ ∀x [f(x) 6= a] (Axiom 3);

7. {α} ` ∀x [f(x) = b]→ ∀x [f(x) 6= a] (Modus Ponens).

Here the tautology used in Axiom 1 in the first formula is (A1 → ¬A2) → (A2 → ¬A1) and
one replaces A1 by f(x) = a and A2 by f(x) = b. The so achieved formula is quantified by ∀x,
what is allowed by Axiom 7.
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Question 12 [4 Marks]
Let the logical language contain the equality = and a unary function f . Let

S = {∀x [f(f(x)) = x],∀x [f(f(f(x))) = x]}.

Give a formal proof for
S ` ∀x [x = f(x)]

where this formal proof can use the Axioms of Λ, Modus Ponens, statements in S, the Gener-
alisation Theorem and the Deduction Theorem.

Solution. The proof goes as follows:

1. S ` ∀x [f(f(x)) = x]→ f(f(f(x))) = f(x) (Axiom 2);

2. S ` ∀x [f(f(x)) = x] (Copy);

3. S ` f(f(f(x))) = f(x) (Modus Ponens);

4. S ` ∀y [y = x→ y = f(x)→ x = f(x)] (Axiom 6);

5. S ` ∀y [y = x→ y = f(x)→ x = f(x)]→ (f(f(f(x))) = x→ f(f(f(x))) = f(x)→ x =
f(x)) (Axiom 2);

6. S ` f(f(f(x))) = x→ f(f(f(x))) = f(x)→ x = f(x) (Modus Ponens);

7. S ` f(f(f(x))) = f(x)→ x = f(x) (Modus Ponens);

8. S ` ∀x [f(f(f(x))) = x] (Copy);

9. S ` ∀x [f(f(f(x))) = x]→ f(f(f(x))) = x (Axiom 2);

10. S ` f(f(f(x))) = x (Modus Ponens);

11. S ` f(f(f(x))) = f(x)→ x = f(x) (Modus Ponens);

12. S ` x = f(x) (Modus Ponens);

13. S ` ∀x [x = f(x)] (Generalisation Theorem).


