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Question 1 [6 Marks]
Construct a formula α using the atoms A1, A2, A3, A4, A5, A6 which outputs 1 for square num-
bers and 0 for prime numbers and does not need to satisfy any requirements for other inputs.
Here the bitsequence A1A2A3A4A5A6 of the values of the atoms is interpreted as the number
32 ·A1 +16 ·A2 +8 ·A3 +4 ·A4 +2 ·A5 +A6, so 001001 is nine, a square number. Up to seven of
the Boolean connectives ∧ (and), ∨ (or), ⊕ (exclusive or) are allowed, furthermore, arbitrarily
many ¬ (negations) and brackets.

Solution. One possible solution is

¬A5 ∧ (¬A6 ∨ (A6 ∧ ¬A4 ∧ ((A1 ⊕ A3) ∨ (¬A2 ⊕ A3)))),

The square numbers in question are, in binary

000000, 000001, 000100, 001001, 010000, 011001, 100100, 110001.

Note that the odd square numbers end with 001 and the even ones with 00. So the main conflict
are prime numbers ending with 001 and these are 010001 (seventeen) and 101001 (forty-one).
So the formula would be to give 1 when the binary number either ends with 00 or when it with
001 and does not start neither with 010 nor 101. For the end condition, one can move out ¬A5

in order to enforce that the second last digit is always 0. If the last digit is 0, no further check
is needed, if the last digit is 1, one requires also that A4 is 0 and either A1 differs from A3 or
A2 equals A3 in order to get the desired formula. The resulting formula is displayed above. So
one computes B6

α for the displayed formula α above.
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Question 2 [6 Marks]
Determine for each of the following sets of formulas say whether they are unsatisfiable, satisfi-
able but not all tautologies, entirely consisting of tautologies; give reasons for each decision:

1. {(A1 ∨ A2)→ A1, (A1 ∧ A2)→ A2};

2. {(A1 ⊕ A2) ∨ (A1 ↔ A2)};

3. {A1 → A2, A2 → A3, A3 → A4, A4 → A1, A1 ⊕ A2 ⊕ A3 ⊕ A4}.

Solution. 1. The first formula is not a tautology, as one sees when atom A1 takes the truth-
value 0 and A2 takes the truth-value 1. However, the set of formulas is satisfiable, as one sees
when all two atoms are 1.

2. A1⊕A2 is 1 iff A1 ↔ A2 is 0; thus the disjunction of these two terms is always satisfied. So
this set of formulas consists entirely of one tautology.

3. The first four implications form some type of circle, therefore either all four atoms are 1
or all four atoms are 0. The last formula is, however, only satisfied when an odd number of
atoms is 1. Thus they cannot be all four 1 and they also cannot be all four 0. Hence the set
of formulas is unsatisfiable.
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Question 3 [6 Marks]
Let a formula α be in a set C of formulas if it only uses the connectives ∨ (defined as maximum)
∧ (defined as minimum) and ¬ (mapping r to 1 − r) but no other connectives and no truth-
constants. Allow the Fuzzy truth-values Q = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. Prove by structural
induction the following: All formulas α ∈ C satisfy that if ν takes on all atoms truth-values
from {0.2, 0.4, 0.6, 0.8} then ν(α) ∈ {0.2, 0.4, 0.6, 0.8}.

Solution. Let P = {0.2, 0.4, 0.6, 0.8}. By induction one shows the following statement: If ν
maps all atoms to P then ν(α) ∈ P .

Now consider any α and assume that by induction hypothesis, the assumption holds for
β, γ whenever α is obtained from β, γ using one single connective (this assumption is void in
the case that α is an atom). Note that one needs only to show this for connectives which are
used for building formulas in C.

If α is an atom Ak then ν(Ak) = ν(Ak) by definition and ν(Ak) ∈ P by choice of ν.
Now assume that α ∈ C and α is ¬β. By induction hypothesis, ν(β) ∈ {0.2, 0.4, 0.6, 0.8}

and ν(α) = 1 − ν(β). One sees easily that ν(α) is one of the values 0.8 = 1 − 0.2, 0.6 =
1− 0.4, 0.4 = 1− 0.6, 0.2 = 1− 0.8 and also in P .

Now assume that α ∈ C and α is either β∨γ or β∧γ for β, γ ∈ C. By induction hypothesis,
β, γ satisfy ν(β) ∈ P , ν(γ) ∈ P . Now ν(α) is either the minimum or the maximum of the two
values ν(β) and ν(γ) which are both in P . Thus ν(α) ∈ P . This concludes the inductive step
and the proof.

Note that for the choice of C the selection of the connectives was crucial, as 0.2↔ 0.2 and
0.2⊕ 0.8 both evaluate to 1 which is outside P .
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Question 4 [6 Marks]
Assume that a logical language contains predicates R,B,G, Y,W for things having the colours
red, blue, green, yellow and white, respectively. So W (x) says that the variable x denotes
a thing which has (perhaps among other colours) the colour white. Formalise the following
verbal statements in logic:

1. There is a thing which has the colour red and there is a thing which has the colour blue;

2. All green things have also the colour yellow;

3. Exactly one thing has both colours, yellow and white;

4. No thing has all of the colours red, blue and green;

5. There are at least two things which have both the colours green and white;

6. Every thing which has both colours yellow and red has also the colour blue as well.

Solution. The formulas are as follows:

1. ∃x∃y [R(x) ∧B(y)];

2. ∀x [G(x)→ Y (x)];

3. ∃x∀y [Y (x) ∧W (x) ∧ ((Y (y) ∧W (y))→ x = y)];

4. ∀x [¬R(x) ∨ ¬B(x) ∨ ¬G(x)];

5. ∃x∃y [x 6= y ∧G(x) ∧G(y) ∧W (x) ∧W (y)];

6. ∀x [(Y (x) ∧R(x))→ B(x)].
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Question 5 [6 Marks]
Consider the additive structure of the natural numbers, (N, 0,+) where 0 ∈ N. Give formulas
(with free variables x and, if applicable, y) which are equivalent in this logic to the follow-
ing verbal statements (where equality = and its negation 6= are available, but no constants
besides 0):

1. There is at most one odd number less than or equal to x and x is not 0;

2. y ≥ x+ 2;

3. x is of the form 3y or 5y and also odd.

Write a few words explaining each formula and note that <,≤, >,≥ are not available in the
logical language, so quantified formulas have to replace them.

Solution. 1. ∀u∀v ∀w [((u 6= 0 ∧ v 6= 0 ∧ w 6= 0)→ x 6= u + v + w) ∧ x 6= 0]. So the first two
odd numbers are 1 and 3 and all numbers from 3 onwards cannot be x; the numbers from 3
onwards are the sums of three nonzero natural numbers. So x has to be different from those
and different from 0. There are no further conditions.

2. ∃v ∃w [v 6= 0∧w 6= 0∧y = x+v+w]. So y is the sum of x and two nonzero natural numbers.

3. (x = y + y + y ∨ x = y + y + y + y + y) ∧ ∀u [x 6= u + u]. The first two conditions relate x
and y, so they do not need a quantifier. The last condition says that x is odd. This one can
express by either saying that x is of the form u + u + 1 or by saying that x cannot be of the
form u+ u. The latter is used, as the constant 1 is not available.
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Question 6 [6 Marks]
Assume that the following axioms are given where + is a binary operation:

1. ∀x∀y ∀z [(x+ y) + z = x+ (y + z)];

2. ∀x∀y [x+ x+ x+ x = y + y + y + y];

3. ∀x∀y [x+ y = y + x];

4. ∃x∃y [x+x = y+y∧x 6= y∧x 6= y+y+y∧x+x+x 6= y∧x+x+x 6= y+y+y∧x+x 6=
y + y + y + y ∧ x+ x+ x+ x 6= y + y].

Provide a finite structure (semigroup) which satisfies all axioms. Explain why the structure
works.

Solution. There are many correct solutions. Here two examples.

(a) Let H = {0, 1, 2, 3}, + be addition modulo 4 and G = H×H with coordinatewise addition
modulo 4. Then x + x + x + x = (0, 0) for all x, as in both coordinates, four times adding a
number with itself gives 0. Furthermore, addition in G is associative and commutative. For
the last one, one takes x = (1, 3) and y = (1, 1). Then y+ y+ y = (3, 3) and x+x+x = (3, 1),
so these four elements of G are pairwise distinct. Furthermore, x + x = y + y = (2, 2) and
x+ x+ x+ x and y + y + y + y are both (0, 0), so x+ x and y + y are both distinct from the
neutral element (0, 0). Thus all the conditions of the last axiom are also satsified. Furthermore,
as the structure has 16 elements, it is finite. The variant of (a) where one has the product of
H and a two-element group also works. However, H alone (instead of G) does not work.

(b) Here one has {1, 2, 3, 4} × {0, 1} − {(4, 1)} where (a, b) + (c, d) = (a+ c, b⊕ d) where ⊕ is
exclusive or in the case that a + c < 4 and (a, b) + (c, d) = (4, 0) in the case that a + c ≥ 4.
Thus the sum of four elements is always (4, 0). Furthermore, one sees that this operation is
commutative. The law of associativity needs a case-distinction. When adding three numbers
and the first coordinate of at least one is greater than or equal to 2 then the result is (4, 0),
thus associativity holds in this case. Furthermore, (1, c) + (1, d) + (1, e) is, independently of
putting the brackets, (3, c⊕ d⊕ e) what is associative due to the associativity of the exclusive
or. Now choosing x = (1, 0) and y = (1, 1) satisfies the fourth axiom, as x+ x = y + y = (2, 0)
and x+ x+ x = (3, 0) and y + y + y = (3, 1).
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Question 7 [6 Marks]
Let a logical language contain the equality = and three constants 0, 1, 2. Furthermore consider
the model A = (N, 0, 1, 2) where the domain is the natural numbers and 0, 1, 2 refer to the
usual numbers; however, the successor-function, + and · are not in the logical language and
therefore not part of the model.

Let T be the theory of all sentences in the given logical language which are true in the model A.

Recall that the theory T is κ-categorical iff it contains a model of size κ and if all models of
size κ are isomorphic.

Provide a recursively enumerable set S of sentences such that S |= α for all α ∈ T and say for
each κ ∈ {5,ℵ0,ℵ1} whether theory is κ-categorical and give reasons for the answer.

Solution. S contains the axioms 0 6= 1, 0 6= 2, 1 6= 2 plus for each number n an axiom αn
which says that there are more than n elements,

αn = ∀x1∀x2 . . . ∀xn∃y [y 6= x1 ∧ y 6= x2 ∧ . . . ∧ y 6= xn].

T must contain every αn as the model A is infinite. Furthermore, in the model A are the three
constants different, so this must also be added into S.

Furthermore, the models of {0 6= 1, 0 6= 2, 1 6= 2} are just all sets with at least three elements
where the three constants are different; between two such sets of the same cardinality, one can
make a bijection which maps the representatives of each constant c ∈ {0, 1, 2} in one model
to that representative of the same constant in the other model. Thus these models are all
κ-categorical for all κ ≥ 3. However, the αn exclude all finite models, thus the resulting theory
T generated by the full S is ℵ0-categorical and ℵ1-categorical, but not 5-categorical.
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Question 8 [6 Marks]
Let c, d be constants and P be a uniary predicate. Find consistent sets S, T, U of sentences not
containing the constants c, d plus the corresponding proofs for the below or say that the sets
of sentences and corresponding proofs cannot exist and explain why.

1. S ` c = d;

2. T ` P (c), T ` P (d);

3. U ` P (c), U ` ¬P (d).

Solution. 1. One selects S = {∀x∀y [x = y]}. This formula is consistent, as there is a model
with exactly one element. Now applying Axiom 2 twice onto this formula with modus ponens
allows to deduce that c = d:

1. S ` ∀x∀y [x = y] (Copy);

2. S ` ∀y [c = y] (Axiom 2, x→ c, Modus Ponens);

3. S ` c = d (Axiom 2, y → d, Modus Ponens).

2. One selects T = {∀x [P (x)]}. Again the formulas P (c) and P (d) can be proven easily from
T by the following proof:

1. T ` ∀x [P (x)] (Copy);

2. T ` P (c) (Axiom 2, x→ c, Modus Ponens);

3. T ` P (d) (Axiom 2, x→ d, Modus Ponens).

3. A consistent set U with this property does not exist. For this recall that by the Principle of
Generalisation of Constants, if the set U can prove αzc for a constant c neither occurring in α
nor in U then U ` ∀z [α]. So let c, d not occur at all in U . Now one has the following formal
proof:

1. U ` P (c) (Assumption on c);

2. U ` ∀z [P (z)] (Generalisation of Constants);

3. U ` P (d) (Axiom 2, z → d, Modus Ponens);

4. U ` ¬P (d) (Assumption on d).

The last two steps show that U is inconsistent. Thus a consistent U which does not contain
the constants c and d cannot prove both, P (c) and ¬P (d).
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Question 9 [6 Marks]
Make a formal proof that the following statement is valid:

∀x [f(f(x)) = x]→ ∀y [y = f(f(y))].

This statement should be proven directly from Λ, the Deduction Theorem and the Generalisa-
tion Theorem, but without using the Principle of Alphabetic Variants.

Solution. The derivation is as follows:

1. ∅ ` ∀x [f(f(x)) = x]→ f(f(y)) = y (Axiom 2);

2. {∀x [f(f(x)) = x]} ` f(f(y)) = y (Deduction Theorem);

3. {∀x [f(f(x)) = x]} ` v = w → v = v → w = v (Axiom 6);

4. {∀x [f(f(x)) = x], v = w} ` v = v → w = v (Deduction Theorem);

5. {∀x [f(f(x)) = x], v = w} ` v = v (Axiom 5);

6. {∀x [f(f(x)) = x], v = w} ` w = v (Modus Ponens);

7. {∀x [f(f(x)) = x]} ` v = w → w = v (Deduction Theorem);

8. {∀x [f(f(x)) = x]} ` ∀w [v = w → w = v] (Generalisation Theorem);

9. {∀x [f(f(x)) = x]} ` ∀v ∀w [v = w → w = v] (Generalisation Theorem);

10. {∀x [f(f(x)) = x]} ` ∀w [f(f(y)) = w → w = f(f(y))] (Axiom 2, v → f(f(y)), Modus
Ponens);

11. {∀x [f(f(x)) = x]} ` f(f(y)) = y → y = f(f(y)) (Axiom 2, w → y, Modus Ponens);

12. {∀x [f(f(x)) = x]} ` y = f(f(y)) (Modus Ponens);

13. {∀x [f(f(x)) = x]} ` ∀y [y = f(f(y))] (Generalisation Theorem);

14. ∅ ` ∀x [f(f(x)) = x]→ ∀y [y = f(f(y))] (Deduction Theorem).
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Question 10 [6 Marks]
Is the below statement valid? If so, prove it formally using the axioms from Λ and the Deduction
Theorem and the Generalisation Theorem, if not provide a model where it is, for some default
of the variables, false. The predicate P in the statement is unary, that is, depends only on one
term. The statement is this:

P (x)→ ∀y [P (y)→ P (x)].

Solution. The formula is valid. One can see it like this: If P (x) is true then P (y)→ P (x) is
true for all y, if P (x) is false then the overall implication is true independently of what happens
to the right side of the first implication. A formal proof for this statement goes as follows:

1. ∅ ` P (x)→ P (y)→ P (x) (Axiom 1, as A→ B → A is a tautology independently of the
values of the atoms A and B);

2. {P (x)} ` P (y)→ P (x) (Deduction Theorem);

3. {P (x)} ` ∀y [P (y) → P (x)] (Generalisation Theorem, y does not occur free in the
preconditions);

4. ∅ ` P (x)→ ∀y [P (y)→ P (x)] (Deduction Theorem).


