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Goals of these lectures

Part 1 (Tue): Computation and Decidability
Formalise notion of computation
Universal programs for computation
Limitations of computation
Coding undecidable problems into (N,+, ∗, 0, 1)
Coding of computations into Natural Numbers

Part 2 (Fri): Search for proofs
Recursively enumerable systems of axioms
Theories provable from r.e. sets of axioms
Primitive recursive functions and sets
Solutions of Tutorial Questions
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Part 1

Programs of register machines.
Machine uses finitely many variables, called registers.
Each variable can store any natural number but nothing
else.
Programs consist of a numbered sequence of statements.
Statements are done in sequence unless otherwise
specified.
Statements can change variable values by assigning
additive combinations of variables and constants.
A statement like "Let y = y+x" assigns to y a new value; the
new value is the sum of the old value and the current value
of x.
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Euclid’s Algorithm

1. Function GCD(x,y);
2. If x > y then goto 5;
3. If x < y then goto 7;
4. Return(x);
5. Let x = x-y;
6. Goto 2;
7. Let y = y-x;
8. Goto 2;
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Explanation

In the first line, the inputs are assigned to registers x and y.
The statements in lines 2 and 3 are conditional jumps to
lines 5 and 7, respectively, which are taken when the
corresponding conditions are true.
The return-statement in line 4 defines the value of the
function, provided that it is reached; it is not reached when
one but not both variables are 0.
The statements in lines 5 and 7 replace the variable with
the larger value that value by the difference of the two
values in the variables.
In each round, the larger value in the variables is replaced
by the difference until both variables are equal; that value is
then returned as the greatest common divisor.
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Multiplication

This and the following examples show that all functions
from natural numbers to natural numbers which can be
computed by computer programs can actually be computed
by register programs. Here the multiplication.
1. Function Mult(x,y)
2. Let v = 0;
3. Let w = 0;
4. If w < y then goto 6;
5. Return(v);
6. Let v = v+x;
7. Let w = w+1;
8. Goto 4;
Multiplication can be carried out as a series of additions.
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Exponentiation

1. Function Eponentiationwithbasetwo(x);
2. Let y = 1;
3. Let z = 0;
4. If z < x then goto 6;
5. Return(y);
6. Let y = y+y;
7. Let z = z+1;
8. Goto 4;
Exponentiation can also be mapped back to loops and
addition.
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Factorial

1. Function Factorial(x);
2. Let z = x;
3. Let y = 1;
4. If z > 0 then goto 6;
5. Return(y);
6. Let y = Mult(y,z);
7. Let z = z - 1;
8. Goto 4;
The factorial can be expressed using the function for
multiplication.
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Cantor Pairing Function

1. Function Cantor(x,y);
2. Let v = 0;
3. Let w = y;
4. If v < x+y then goto 6;
5. Return(w);
6. Let v = v+1;
7. Let w = w+v;
8. Goto 4;
The function Cantor(x,y) computes a number z which codes
x,y according to the formula z = (0+1+2+...+(x+y))+y; this
formula can also be written as z = (x+y)∗(x+y+1)/2+y. This
function is a bijection from pairs to numbers and can be
used to store data.
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Inverse for x

1. Function Cantorx(z);
2. Let v = 0;
3. Let w = 0;
4. If z > v+w then goto 8;
5. Let y = z-v;
6. Let x = w-y;
7. Return(x);
8. Let w = w+1;
9. Let v = v+w;
10. Goto 4;
The function Cantorx(z) computes the values x,y with z =
Cantor(x,y) and then takes x as the return value.
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Inverse for y

1. Function Cantory(z);
2. Let v = 0;
3. Let w = 0;
4. If z > v+w then goto 8;
5. Let y = z-v;
6. Let x = w-y;
7. Return(y);
8. Let w = w+1;
9. Let v = v+w;
10. Goto 4;
The function Cantory(z) computes the values x,y with z =
Cantor(x,y) and then takes y as the return value. The only
difference to the program of the previous slide is in line 7
when y is returned in place of x.

Mathematical Logic – p. 11



Subprograms

Some of the above slides and many slides below will use
subprograms. This is for the reader’s convenience, as too
lengthy programs might be too difficult to understand.
Nevertheless, the subprograms could be worked into the
mother program and the resulting program would have a
more complicated structure of jumps and more variables
but it would not need any subprograms.
All what can be programmed in this paradigm (data type
natural numbers) can be programmed with register
machines where the basic operations are to compare
variables and to assign to variables values obtained by
adding or subtracting values of variables and constants.
Furthermore, one needs the ability to jump.
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Arrays

An array is a sequence a0, a1, . . . of numbers where almost
all of them are 0. It is storred in a number a as
Cantor(a0,Cantor(a1,Cantor(a2,...))) for which should be
noted that Cantor(0,0) = 0.
One can scroll an array from the beginning to the point
where one wants to read or write the array. For the
scrolling, one has to decompose the array head into the
current element and the part right of it and at the same time
to save the scrolled part in a variable b.
After accessing an, the scrolling has to go the other way.
Arrays permit to simulate programs which have many line
numbers and are stored in a variables.
Arrays also permit to simulate the registers of such a
program as there might be many.
So defining arrays is a first step on defining register
machines which can simulate other register machines.
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Reading in Arrays

1. Function Read(a,n)
2. Let m = 0; Let b = 0; Let x = 0;
3. Let b = Cantor(b,x);
4. Let x = Cantorx(a);
5. Let a = Cantory(a);
6. If m < n then goto 8;
7. Let y = x; Goto 9;
8. Let m = m+1; Goto 3;
9. Let m = 0;
10. Let a = Cantor(x,a);
11. Let x = Cantory(b);
12. Let b = Cantorx(b);
13. If m < n then goto 15;
14. Return(y);
15. Let m = m+1;
16. Goto 10;
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Writing in Arrays

1. Function Write(a,n,y)
2. Let m = 0; Let b = 0; Let x = 0;
3. Let b = Cantor(b,x);
4. Let x = Cantorx(a);
5. Let a = Cantory(a);
6. If m < n then goto 8;
7. Let x = y; Goto 9;
8. Let m = m+1; Goto 3;
9. Let m = 0;
10. Let a = Cantor(x,a);
11. Let x = Cantory(b);
12. Let b = Cantorx(b);
13. If m < n then goto 15;
14. Return(a);
15. Let m = m+1;
16. Goto 10;
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Universal Function

There is a universal function which computes on inputs e
and x the output of the e-th register machine on input x.
This function uses an array to store the register program.
The position of the statement in the array coincides with the
line number.
The statement is a four-tuple consisting of the type of
statement and three arguments; the statement type tells
whether these arguments refer to variables, constants or
line numbers.
For example, a statement of type 1 could just be a goto
statement which jumps to the line in the first parameter.
The statement of type 2 could be an update of the form Let
a[d]=a[f]+a[g] where d,f,g are the three parameters which
refer to entries in the array a of the variables.
The variables are stored in an array as well.
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Universal Function

There are only finitely many types of statements.
The interpreter runs in a cycle.
In each cycle, it takes the current line number l and reads
out the statement from the array p representing the
program. It furthermore reads out the values of the
parameters and that of the variables in question.
Depending on the statement type, it does the following:
(a) Computing the new value of the corresponding variable
and updating the variable array and going to statement l+1;
(b) Directly jumping to the new statement number according
to the first parameter;
(c) Comparing two values and jumping to the new statement
number if the comparison evaluates to true and going to the
next statement l+1 if the comparison evaluates to false.
This cycle is repeat until a return-statement with the return
value is reached. This event is denoted as “halting”.

Mathematical Logic – p. 17



General Idea for Universal Machine

The variables e and a are interpreted as arrays holding the
program and the data, respectively, and l is the line number.
In each cycle, the universal machine reads command i from
entry l of the array e which holds the program and
decomposes i into c,d,f,g where c is a code for the
operation and d,f,g are parameters:
Code c = 0 stands for halting with output a[d];
Code c = 1 stands for going to line d;
Code c = 2 stands for a[d] = f;
Code c = 3 stands for a[d] = a[f]+a[g];
Code c = 4 stands for a[d] = a[f]-a[g];
Code c = 5 stands for a[d] = a[f]+g;
Code c = 6 stands for a[d] = a[f]-g;
Code c = 7 stands for if a[f] < a[g] then goto d.
Note that the syntax is a bit more restrictive than in the
sample programs.

Mathematical Logic – p. 18



Example of a Universal Machine

1. Function Universal(e,x);
2. Let l = 1; Let a = Cantor(x,0);
3. Let i = Read(e,l);
4. Let c = Cantorx(Cantorx(i)); Let d = Cantory(Cantorx(i));
5. Let f = Cantorx(Cantory(i)); Let g = Cantory(Cantory(i));
6. If c > 0 Then goto 9;
7. Let h = Read(a,d);
8. Return(h);
9. If c > 1 then goto 11;
10. Let l = d; Goto 3;
11. If c > 2 then goto 13;
12. Let a = Write(a,d,f); Let l = l+1; Goto 3;
13. If c > 3 then goto 16;
14. Let v = Read(a,f); Let w = Read(a,g); Let u = v+w;
15. Let a = Write(a,d,u); Let l = l+1; Goto 3;
Continued next slide
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Example Implementation Continued

16. If c > 4 then goto 19;
17. Let v = Read(a,f); Let w = Read(a,g); Let u = v-w;
18. Let a = Write(a,d,u); Let l = l+1; Goto 3;
19. If c > 5 then goto 22;
20. Let v = Read(a,f); Let u=v+g; a = Write(a,d,u);
21. Let l = l+1; Goto 3;
22. If c > 6 then goto 25;
23. Let v = Read(a,f); Let u=v-g; a = Write(a,d,u);
24. Let l = l+1; Goto 3;
25. Let v = Read(a,f); Let w = Read(a,g);
26. If v < w then goto 28;
27. Let l = l+1; Goto 3;
28. Let l = d; Goto 3;
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Undecidability of the Halting Problem

Let ϕe be the function computed by the e-th register
machine with one input x; that is, ϕe(x) is the outcome of
the computation Universal(e,x). The function ϕe is called
the e-th partial-recursive function.
Assume that a program Halt could test whether ϕe(x) halts.
Consider the following program.
1. Function Diag(e);
2. Let a = Halt(e,e); Let b = 0;
3. If a < 1 then goto 6;
4. b = Universal(e,e);
5. b = b+1;
6. Return(b);
This function computes a function different from all
partial-recursive functions.
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Diagonalisation

The function Diag(e) returns on input e the value 0 if ϕe(e)
is undefined and the value ϕe(e) + 1 if that is defined. It
uses the function Universal(e,x) simulating ϕe(x) and the
function Halt(e,x) which returns 1 whenever ϕe(x) halts and
0 if it does not halt.

If now ϕe computes the function Diag(e) then ϕe(e) is
defined. Hence Halt(e,e) is 1 and Universal(e,e) is ϕe(e).
The function Diag takes then the value ϕe(e) + 1, a
contradiction.
Hence Halt does not exist and the halting problem is
undecidable.

Problems like the halting problem are called undecidable.
That means, there is no register machine which computes
the characteristic function of the set {(e, x) : ϕe(x) halts}.
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Halting Behaviour of Functions

1. Function Collatz(n)
2. Let m = n;
3. Let k = 0;
4. If k+k = m then goto 7;
5. If k+k+1 = m then goto 8;
6. Let k = k+1; Goto 4;
7. Let m = k; Goto 3;
8. If m = 1 then goto 10;
9. Let m = m+m+m+1; Goto 3;
10. Return(1);
Does the function Collatz(n) halt for all natural numbers
n>0?
Lothar Collatz conjectured this in 1937 and it is until today
an open problem.
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Searches which might not halt

Does a program which for input n finds the smallest p ≥ n
such that p and p+2 are both primes halt for all n? It is easy
to write such a program, but no one was up to now able to
prove that there are indeed infinitely many twin primes.

Another search which might never terminate is the search
for an even number n > 2 such that n is not the sum of two
prime numbers. Again it is an open question in mathematics
whether such an n exists; on June 1742 Christian Goldbach
conjectured in a letter to Leonhard Euler that every integer
greater than 5 can be written as the sum of up to three
primes. A further conjecture (now known as the Goldbach
conjecture) says that every even number greater than 2 is
the sum of two primes: 4 = 2+2, 6 = 3+3, 8 = 3+5, 10=3+7,
12=5+7, 14=11+3, 16=13+3, 18=13+5, 20=17+3 and so on.
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Partial-recursive functions

Besides register machines, there are also other approaches
to define the notion of functions computed by machines.

One is with recursion: Starting from few base cases, one
can define more involved functions by recursive schema
like f(0) = 1 and f(n+ 1) = f(n) + f(n) for the powers of 2.
Furthermore, one can define new functions from old ones
by search, for example log(n) is the first m with f(m) ≥ n
(rounded value as only natural numbers are considered).
The combination of these two principles — recursion and
search — gives rise to the notion of partial-recursive
functions. They are called “partial-recursive” as the function
can be undefined when for some arguments the
corresponding search does not terminate.
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Church’s Thesis

Church stated the thesis that all reasonable notions of
computation give rise to the same concept: that of
partial-recursive functions.

This has been verified for many notions of computation
which had been formalised and so there is much evidence
for this thesis.

Therefore, when proving that a function is partial-recursive,
often the algorithm is given in an informal way without
specifying register programs as done on the first slides.
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Modern Programming Languages

Modern programming languages do not write programs as
numbered lists of statements but rather with structured
commands like “if - then - else”, “while - do” and “for - to -
do”. Here two sample programs.

Function Isprime(x)
Begin If x > 1 Then r = 1 Else r = 0;
For y = 2 To x Do Begin
For z = 2 To x Do Begin
If Mult(y,z) == x Then r = 0 End End;
Return(r) End;

Function Findnexttwinprime(x)
Begin y = x+1;
While Isprime(y)==0 Or Isprime(y+2)==0
Do Begin y=y+1 End;
Return(y) End;
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Recursively enumerable sets

A set is recursively enumerable iff there is a recursive
function enumerating all its values. The recursively
enumerable sets coincide with domains of partial-recursive
functions and also with ranges of partial-recursive
functions. This notion turned out to be very fruitful in the
theory of computing.

A set is recursive iff there is a recursive function deciding its
values.

The halting problem is by definition a recursively
enumerable set which is not recursive.
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Characterising recursive sets

THEOREM.
A set A is recursive if both, A and N− A are recursively
enumerable.

It is clear that if A is recursive then both A and its
complement are also r.e. sets.

So assume now that A is the range of a recursive function f
and its complement the range of a recursive function g.
Given input x, one can search for the first y such that either
f(y) = x or g(y) = x. If f(y) = x then x ∈ A and if g(y) = x
then x /∈ A. The search terminates for every x as the union
of the ranges of f and g is N. Thus the informally given
algorithm is a decision procedure for A and A is recursive.

Mathematical Logic – p. 29



Recursive subsets of r.e. sets

THEOREM.
Every infinite r.e. set has an infinite recursive subset.

Assume that A is an infinite r.e. set. Then A is the range of
a recursive function f . Now let

B = {y : ∃v [v = f(v) ∧ ∀w < v [f(w) < y]]}.

It is easy to see that the set B is recursively enumerable, as
one can construct from f inductively a function g such that
g(0) = f(0) and g(n+ 1) = f(min{m : f(m) > g(n)}). This
function g is recursive and it is strictly monotonically
increasing. Now the formula

y ∈ B ⇔ y ∈ {g(0), g(1), . . . , g(y)}

provides a decision procedure for B using the function g.
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Existential and Bounded Quantifiers

A formula ∃b∀u < b[x 6= u · u ∧ x < b] is called an existential
bounded formula. Such type of formulas are quite flexible

and can be used to describe many sets. A Σ0
1-set is a set

which is defined by existentially bounded formulas, that is,
x ∈ A iff a formula of above type is true.

It can easily be seen that every Σ0
1-set is recursively

enumerable. Given the existentially bounded formula, one
can, for any possible bound, check by exhaustive search
whether the condition specified by the bounded quantifiers
can be made true. One can easily make a partial-recursive
function which for input x returns the first bound which
makes the formula true (if it exists); then the set of all x
where the function is defined coincides with A and hence A
is recursively enumerable.
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Examples

The formula Prime(u) denotes whether u is a prime:
Prime(u) ⇔ ∀x < u∀y < u[1 < u ∧ (x+ 2) · (y + 2) 6= u];
Divides(v, w) ⇔ ∃u ≤ w [w = u · v];
Primepower(x) ⇔ ∃y ≤ x∀z ≤ x[Divides(y, x) ∧ Prime(y) ∧
(Divides(z, x) ∧ Prime(z) → z = y)].
All these formulas can be expressed using bounded

quantifiers only and are therefore Σ0
1-formulas; their

negations (due to the absence of unboundedly quantified

variables) are also Σ0
1-formulas.
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Machine configuration

For a given register machine program, a configuration of the
machine is a tuple consisting of the current line number l
and the current values of the variables before the step of
line l is executed. One can code such configurations in one
number; for example if the variables are x,y,z then the
configuration is Cantor(l,Cantor(x,Cantor(y,z))) for the
function Cantor defined previously.

A computation is a sequence of configurations such that
each two subsequent configurations (l,x,y,z) and (l’,x’,y’,z’) it
holds that (l’,x’,y’,z’) is the configuration after doing the
statement in line l and adjusting the variables accordingly.

The next slides make a formula to define the factorial as
defined on Slide 8 by using configurations for that program.
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Elements of the formula

The formula is the following: w is the factorial of v iff there is
a prime p and a computation c such that for all powers q of p
with q < c the following conditions hold:
1. If q ∗ p < c then c is of the form
r + q ∗ Cantor(l, Cantor(x, Cantor(y, z))) + q ∗ p ∗
Cantor(l′, Cantor(x′, Cantor(y′, z′))) + s ∗ q ∗ p ∗ p where
r < q, Cantor(l, Cantor(x, Cantor(y, z))) < p,
Cantor(l′, Cantor(x′, Cantor(y′, z′))) < p and (l′, x′, y′, z′) is
the next step after (l, x, y, z);
2. If q = 1 then l = 1 and x = v;
3. If q < c < q ∗ p then
c = r + q ∗ Cantor(l, Cantor(x, Cantor(y, z))) with r < q, l = 5
and y = w.

Mathematical Logic – p. 34



Conditions on Transition

In 1., the conditions on (l, x, y, z) and (l′, x′, y′, z′) are the
following:
l = 1 ⇒ l′ = 2 and x′ = x and y′ = y and z′ = z;
l = 2 ⇒ l′ = 3 and x′ = x and z′ = x and y′ = y;
l = 3 ⇒ l′ = 4 and x′ = x and y′ = 1 and z′ = z;
l = 4 ⇒ (z > 0 → l′ = 6 ∧ z = 0 → l′ = 5) and x′ = x and
y′ = y and z′ = z;
l = 5 ⇒ l′ = l and x′ = x and y′ = y and z′ = z (a halted
program has no activity);
l = 6 ⇒ l′ = 7 and x′ = x and y′ = y ∗ z and z′ = z;
l = 7 ⇒ l′ = 8 and x′ = x and y′ = y and z′ + 1 = z;
l = 8 ⇒ l′ = 4 and x′ = x and y′ = y and z′ = z.
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Summary of Formula

The previous slide made a Σ0
1 formula φ(v, w) of the form

∃c∃p < c∀q < l, l′, x, y, z, x′, y′, z′, r, s < c [p is a prime and
(if q is a power of p and c is of the form

r + q ∗ C(l, x, y, z) + q ∗ p ∗ C(l′, x′, y′, z′) + q ∗ p2 ∗ s and
C(l, x, y, z), C(l′, x′, y′, z′) < p then the conditions from last
slide hold) and
(if c = C(l, x, y, z) + p ∗ s then l = 1 and x = v) and
(if q is a power of p and c = r + q ∗ C(l, x, y, z) then l = 5 and
y = w)].
So the formula φ(v, w) is true iff the computation of the
program from slide 8 terminates and produces the output w
from v.
Note that here the computation is stored as a number

c = c0 + pc1 + p2c2 + . . .+ pmcm where c0 is the initial and cm
the halting configuration; any prime p which is larger than all
configurations in the computation can be used for the coding.Mathematical Logic – p. 36



Universal Formula

One can make a formula ∃p, c[φ(e, c, p, x, y)] with additional
bounded quantification over the variables which is true iff
p, c code a halting computation with output y for ϕe(x).
Similarly Halt(e, x) is true iff ∃p, c, y[φ(e, c, p, x, y)]. Note that
the body of the formula only contains addition and
multiplication and other operations from the natural
numbers and Boolean combinations of the resulting terms.
Hence the theory of (N,+, ∗, 0, 1) is undecidable.

A byproduct of this proof is that every recursively
enumerable set A of natural numbers can be represented

by a Σ0
1 formula as one can choose an e for which ϕe(x)

exactly on the members x of A halts; then
x ∈ A ⇔ ∃p, c, y[φ(e, c, p, x, y)].
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Diophantine Sets

A special case of Σ0
1 sets are Diophantine sets. Here a set

A is Diophantine iff there is a polynomial p with integer
coefficients (can be negative) in several variables such that
x ∈ A iff there are natural numbers y1, y2, . . . , yn with
p(x, y1, y2, . . . , yn) = 0.

Example: x ∈ A ⇔ ∃y[x− y · y = 0] defines the set of all
square numbers;

x ∈ B ⇔ ∃y, v, w[(y2+1+ v−x)2+((y+1)2−x−w− 1)2 = 0]
defines the set of all numbers which are not squares;
x ∈ C ⇔ ∃y, z[x− (y + 2) ∗ (z + 2) = 0] defines the set of all
composite numbers.
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Hilbert’s Tenth Problem

In the year 1900 at the International Congress of
Mathematician, David Hilbert formulated 23 problems which
mathematicians should solve during the century. The tenth
problem was to find an algorithm to solve Diophantine
equations and to check whether a Diophantine set is
non-empty.

In the year 1944, Emil Leon Post conjectures that Hilbert’s
tenth problem does not have an algorithm, but that instead
one needs an undecidability proof.

1949 Martin Davis conjectures that the Diophantine sets
coincide with the recursively enumerable sets and that
therefore there is a Diophantine set which is undecidable.

1970 Matiyasevich proves the conjecture of Martin Davis
and establishes that every r.e. set of natural numbers is
Diophantine.
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Part 2

Part 1 formalised the notion of computation and showed
that one can express in formulas using arithmetics over the
natural numbers whether a computation halts. Furthermore,
Part 1 showed that there are problems related to
computation which are undecidable, most notable the
halting problem of programs.

Part 2 will formalise the notion of proof. It is shown that one
can formulate algorithms which check whether a certain
proof is correct. Furthermore, Part 2 deals with the notion
of axiomatisable theories and their treatment from the
viewpoint of computation. The central notion here the notion
of recursively enumerable and decidable sets of formulas.
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Formalising Proofs and Formulas

Goal is to formalise the notion of proof.
The first part is to convert all formulas into an abstract
representation.
Enumerate all variables and symbols, so x0, x1, x2, . . .,
c0, c1, c2, . . ., f0, f1, f2, . . . and r0, r1, r2, . . . where fn has n
inputs (may be defined to be irrelevant if not needed by
∀x0, x1, x2 [f2(x0, x1) = f2(x0, x2)]) and similarly for relations.
Furthermore, one can construct terms and prime formulas
by some fixed conventions, see next slide.

The exact form of the coding is not so important; it is only
important that all formulas can be found explicitly and that
one can test explicitly with a computer program whether
certain terms or formulas have a collision, whether formulas
are prime, which variables in formulas are free and so on.
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Sample Definition of Formulas

Here a sample coding for terms and formulas (Rautenberg
has some other, own method) where C is a tuple version of
Cantor’s pairing function:
tC(0,n) represents cn,

tC(1,n) represents xn,

tC(2,n,a1,a2,...,an) represents fn(ta1
, ta2

, . . . , tan
),

φC(3,i,j) represents the equation ti = tj,

φC(4,n,a1,a2,...,an) represents rn(ta1
, ta2

, . . . , tan
),

φC(5,i,j) represents φi ∧ φj,

φC(6,i,j) represents φi ∨ φj,

φC(7,i) represents ¬φi,

φC(8,i,j) represents φi → φj,

φC(9,i,j) represents ∀xi[φj ],

φC(10,i,j) represents ∃xi[φj ].
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Formulas and Proofs

The set F of all codes of legal formulas and the set S of all
codes of legal sentences (= closed formulas) are recursive.

Having these sets, one can now say that a theory T (given
by its codes) is axiomatisable iff T ⊆ S and there exists an
r.e. set R ⊆ F such that every φe with e ∈ T can be proven
from the universal closures of the sets φd with d ∈ R.

Here a proof of a formula φe ∈ T as a finite tuple of the form
(n, (e0, p0, i0, j0), (e1, p1, i1, j1), . . . , (en, pn, in, jn)) where for
ek = 0 the formula φpk is the ik-th member of a recursive

enumeration of R and for ek = 1 the formula φpk is the ik-th

member of a recursive enumeration of the tautologies
Λ1, . . . ,Λ10 on page 122 and for ek = 2 it holds that ik, jk < k
and φpjk is of the form φpik → φpk so that φpk is obtained by

using the modus ponens on φpik and φpjk .
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Hilbert’s Axioms

The set of Hilbert’s tautologies consists of the following
formulas (with parameter formulas α, β, γ and parameter
variables x, y and parameter terms t):
Λ1: (α → β → γ) → (α → β) → α → γ;
Λ2: α → β → α ∧ β;
Λ3: α ∧ β → α and α ∧ β → β;
Λ4: (α → ¬β) → β → ¬α;

Λ5: ∀x[α] → α t
x

provided that α, t
x

are collision-free;

Λ6: α → ∀x[α] provided that x /∈ free(α);
Λ7: ∀x[α → β] → ∀x[α] → ∀x[β];
Λ8: ∀y[α

y
x
] → ∀x[α] provided that y /∈ var(α);

Λ9: t = t;
Λ10: x = y → α → α y

x
provided that α is a prime formula.

Λ contains these formulas and all formulas of the form
∀x1∀x2 . . . ∀xn[φ] derived from φ as above.
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Completeness of Hilbert Calculi

THEOREM.
Given a set X of formulas and a formula α. Then X |= α iff
α can be proven from X using the Hilbert calculus.

THEOREM.
The following is equivalent for a formula α:
(a) α can be derived using the rules of the Hilbert calculus
and the modus ponens;
(b) α can be derived using the rules of the Hilbert calculus
and the modus ponens and the operation which replaces
any formula β by ∀x[β];
(c) α is a tautology, that is, X |= α for all sets X of formulas.
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Axiomatisable Theories

THEOREM.
If a theory is axiomatisable then its theorems are
recursively enumerable.

Given an axiomatisable theory T and the r.e. set R
consisting of the axioms, one enumerates all sentences φe
with e ∈ S for which there is a proof. So the naive method to
enumerate the theory is just to do an exhaustive search
over all possible proofs and to enumerate those sentences
for which a valid proof has been found.

COROLLARY.
The set of tautologies (sentences true in every model) is
recursively enumerable as it coincides with those sentences
which have a proof.
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Example

THEOREM.
Let (F,+, ∗, 0, 1) be a fixed finite field. Then the theory of
this finite field is axiomatisable.

The reason is that one can evaluate all terms and
quantifiers efficiently. Given a term t and knowing all the
values of the variables involved, one can compute the value
of the term t. Similarly, one can compare the values of
terms. As the only predicate is the equality of two terms,
one can also evaluate all prime formulas (provided that the
variable values are known). For quantified formulas, they
variables range only over the finitely many values of F and
so one can evaluate ∃x[φ] by checking out whether one of
the finitely many values in F for x makes the formula φ true
and correspondingly with ∀x[φ]. This permits to determine
the truth-value of every sentence.
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Outlook

Gödel proved that there is a r.e. axiomatisable theory T
using the language of arithmetics such that every further
theory T ′ ⊇ T is either incomplete or inconsistent or not
axiomatisable. He proved two theorems known as the First
and Second Incompleteness Theorem.

Hilbert asked 1928 whether there is any algorithm which
can decide whether a sentence is true in arithmetics. The
language use are the natural numbers with addition and
multiplication.

Church 1936 and Turing 1937 developed a theory of
algorithms and then showed that an algorithm as asked for
by Hilbert cannot exist.
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Primitive Recursive Functions

Primitive recursive functions are the smallest class of
functions satisfying 1-3 below.

1. Every constant function and every function selecting a
variable out of many is primitive recursive, for example
f(x, y, z) = y would be a primitive recursive function.
Furthermore, the function Succ(x) = x+ 1 is primitive
recursive.

2. The concatenation of primitive recursive functions is
primitive recursive.

3. If an n-ary function g and an n+2-ary function h is
primitive recursive then there is a unique n=1-ary function
f satisfying f(x1, x2, . . . , xn, 0) = g(x1, x2, . . . , xn) and
f(x1, x2, . . . , xn, y + 1) = h(x1, x2, . . . , xn, y, f(x1, x2, . . . , xn, y))
and this function f is primitive recursive as well.
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Examples

The addition is primitive recursive. The function mapping
x, y to x+ y satisfies x+ 0 = x and x+ (y + 1) = (x+ y) + 1
where the second equation is formally be given derived
from three inputs by h(x, y, x+ y) = (x+ y) + 1.

The multiplication is primitive recursive. The function
mapping x, y to x · y has the base case x · 0 = 0 and the
inductive condition is h(x, y, x · y) = (x · y) + x using addition
and projection of functions.

The exponentiation is primitive recursive (working with

00 = 1) as given by the base-case x0 = 1 and the inductive

case xy+1 = xy · x.

The factorial is primitive recursive by 0! = 1 and
(x+ 1)! = x! · (x+ 1).
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Prim. Rec. and Register Machines

One can show by induction that every primitive recursive
function is computed by a register machine. This is clearly
due for the functions coming from cases 1 and 2 in the
definition. Here case 3 with sample arity 2:

1. Function f(x,y) made from g and h
2. Let z = g(x,0); Let u = 0;
3. If u < y then goto 5;
4. Return(z);
5. Let z = h(x,u,y);
6. Let u = u+1;
7. Goto 3;

This program computes f using programs for g and h
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Ackermann function

Wilhelm Ackermann provided the following example of an
easy function which has a recursive definition in two
parameters but which is not primitive recursive:

f(x, y) =

{

y + 1 if x = 0;
f(x− 1, 1) if x > 0 ∧ y = 0;
f(x− 1, f(x, y − 1)) if x > 0 ∧ y > 0.

This function is not primitive recursive; indeed, the diagonal
x → f(x, x) grows faster than every primitive recursive
function with one input.
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Numbering

It is possible to make a numbering of all primitive-recursive
functions. That is, a function e, x 7→ ϑe(x) such that every
primitive recursive function with one input equals to some
ϑe and that the full function can be computed by a register
machine.

This function, in whatever way it is chosen, is an example of
a total function which is computed by a register machine but
which is not primitive recursive. The reason is that the
function sum(x) = ϑ0(x) + ϑ1(x) + . . .+ ϑx(x) grows faster
than all ϑe; this function sum would be primitive recursive
whenever the function e, x 7→ ϑe(x) is primitive recursive.
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Primitive Recursive Sets

A set is primitive recursive iff its characteristic function is
primitive recursive.

Given a coding (as on slides 38 and 39), one can show that
the following sets are primitive recursive:

The set of all terms;
The set of all formulas;
The set of all sentences;
The set of all logical axioms of the Hilbert calculus;
The set of all correct proofs.

Not every decidable set is primitive recursive: one can
make a recursive listing A0, A1, . . . of all primitive recursive
sets and then the universal set {(e, x) : x ∈ Ae} and the
diagonal {e : e ∈ Ae} are both not primitive recursive.
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Recursive Functions

Partial-recursive functions can be obtained from primitive
recursive functions by search. Given two primitive recursive
functions g and h in n+ 1 inputs, one can define
f(x1, x2, . . . , xn) to be g(x1, x2, . . . , xn, t) for the first t found
such that h(x1, x2, . . . , xn, t) = 1. The resulting f can be
partial as the value t might never be found; in the case that
f is nevertheless total, f is just called a recursive function.

All the functions which are definable using register
machines are partial-recursive. The proof is done using a
run-time parameter t for the universal function so that it
runs the main loop only t times.
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Realising Universal Machine by Search

A counter s is introduced for the universal function to
measure how often the simulator runs through line 3. In
each round of the simulation, the function goes through this
line and makes the parameter s by 1 larger. If s = t then f/g
halt outputting the corresponding configuration. If s is large
enough so that the functions reach termination then
g(e, x, t) outputs the function value and h(e, x, t) outputs 1
(W.l.o.g. 1 differs from all configurations).

The program on the next slides is for both functions f and g.
The update from one configuration to the next is primitive
recursive, hence also the functions f and g defined there
are primitive recursive.

Now ϕe(x) is g(e, x, t) for the first t where h(e, x, t) = 1.
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Universal Machine with Counter

1. Function Universal(e,x,t);
2. Let l = 1; Let a = Cantor(x,0); Let s = 0;
3. Let i = Read(e,l); Let s = s+ 1; If s = t then goto 29;
4. Let c = Cantorx(Cantorx(i)); Let d = Cantory(Cantorx(i));
5. Let f = Cantorx(Cantory(i)); Let g = Cantory(Cantory(i));
6. If c > 0 Then goto 9;
7. Let h = Read(a,d);
8. Return(h); (for function g) // Return(1); (for function h)
9. If c > 1 then goto 11;
10. Let l = d; Goto 3;
11. If c > 2 then goto 13;
12. a = Write(a,d,f); Let l = l+1; Goto 3;
13. If c > 3 then goto 16;
14. Let v = Read(a,f); Let w = Read(a,g); Let u = v+w;
15. a = Write(a,d,u); Let l = l+1; Goto 3;
Continued next slide
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Example Implementation Continued

16. If c > 4 then goto 19;
17. Let v = Read(a,f); Let w = Read(a,g); Let u = v-w;
18. a = Write(a,d,u); Let l = l+1; Goto 3;
19. If c > 5 then goto 22;
20. Let v = Read(a,f); Let u=v+g; a = Write(a,d,u);
21. Let l = l+1; Goto 3;
22. If c > 6 then goto 25;
23. Let v = Read(a,f); Let u=v-g; a = Write(a,d,u);
24. Let l = l+1; Goto 3;
25. Let v = Read(a,f); Let w = Read(a,g);
26. If v < w then goto 28;
27. Let l = l+1; Goto 3;
28. Let l = d; Goto 3;
29. Return Cantor(l,a)+2;
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Equivalence

One can show along the above ideas that a partial function
is partial-recursive iff it is computed by a register machine.

One can show that a set is decidable iff its characteristic
function is recursive iff its characteristic function is
computed by a register machine.

Gödel used in his paper primitive recursive and recursive
functions to get his proof; the equivalent notions using more
explicit computing devices like register machines and Turing
machines followed later.

Recursive functions have the advantage that one sees
easily that they are inductively definable from the base
cases and can therefore be used in logic.
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Robinson Arithmetic

1. ∀x [Succ(x) 6= 0];
2. ∀x∀y [Succ(x) = Succ(y) → x = y];
3. ∀x 6= 0∃y [x = Succ(y)];
4. ∀x[x+ 0 = x];
5. ∀x, y [x+ Succ(y) = Succ(x+ y)];
6. ∀x [x · 0 = 0];
7. ∀x, y [x · Succ(y) = x · y + x];

This axioms encompass the primitive recursive definitions
of the basic functions but they fall short for being able to
prove ∀x [x 6= Succ(x)].

To see this, consider the domain N ∪ {∞} with
∞ = Succ(∞) = ∞+∞ = ∞ ·∞ = ∞+ n = n+∞ =
m · ∞ = ∞ ·m where n is any member of N and m is any
nonnull member of N.

Mathematical Logic – p. 60



The System PA−

0. x+ 0 = x;
1. x+ y = y + x;
2. (x+ y) + z = x+ (y + z);
3. x · 1 = x;
4. x · y = y · x;
5. (x · y) · z = (x · y) · z;
6. x · (y + z) = x · y + x · z;
7. Succ(x) = x+ 1;
8. x+ y = x+ z → y = z;
9. x ≤ y ∨ y ≤ x;
10. x ≤ 0 → x = 0;
11. x < y ⇔ Succ(x) ≤ y;

The universal closure of this axiom system generates the

theory PA− and it implies Robison’s arithmetic Q.

PA is PA− plus α 0
x
∧ ∀x(α → αSucc(x)

x
) → ∀x (α) for every α.
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Encoding Numerical Constants

In the following let 0 be the value denoted by 0, 1 denote
Succ(0), 2 denote Succ(1) what is Succ(Succ(0)) and n+ 1
denote Succ(n).

One can prove all the usual properties of natural numbers
from PA−.
0. Succ(x) + n = x+ Succ(n);
1. m+ n = m+ n and m · n = m · n;
2. m 6= n whenever m 6= n;
3. m ≤ n whenever m ≤ n;
4. m 6≤ n whenever m 6≤ n;
5. x ≤ n ↔ x = 0 ∨ x = 1 ∨ . . . ∨ x = n;
6. x ≤ n ∨ n ≤ x.
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Tutorial Question 5.1 (a)

The set X formalises that f is a function from A to A such
that for all x, y, v, w ∈ A with P (x), P (y), P (v), P (w), if
(x, y) 6= (v, w) then f(x, y) 6= f(v, w). Furthermore, if x, y ∈ A
with P (x), P (y) then ¬P (f(x, y)) and every z ∈ A with ¬P (z)
equals to f(x, y) for some x, y ∈ A with P (x), P (y). Thus
each pair of values in A satisfying P corresponds to one

element of A not satisfying P and so m = n2.
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Tutorial Question 5.1 (b)

The new set Y has the modification that one has to identify
unordered pairs of elements satisfying P with elements
satisfying ¬P via f .

• ∃x [Px];

• ∀x, y, v, w [(Px∧Py∧Pv∧Pw∧((x 6= v∧x 6= w)∨(y 6= v∧y 6=
w)∨(v 6= x∧v 6= y)∨(w 6= x∧w 6= y)) → f(x, y) 6= f(v, w)];

• ∀v, w [Pv ∧ Pw → ¬P (f(v, w))];

• ∀u∃v, w [¬Pu → Pv ∧ Pw ∧ f(v, w) = u ∧ f(w, v) = u].
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Tutorial Question 5.2

The set X contains for each m,n a formula saying the
following statement: For all x1, . . . , xm and all y1, . . . , yn
there is a z such that if all the xi are different from all the yj
then z is connected to all xi and to none of the yj.

By using the shorthand ∧i=1,...,m for the conjunction of m

terms and correspondingly for disjunctions, the formula can
be formalised as follows.

αm,n is the formula ∀x1 . . . ∀xm ∀y1 . . . ∀yn ∃z
[(∧i=1,...,m ∧j=1,...,n (xi 6= yj)) →
∧i=1,...,m ∧j=1,...,n (E(xi, z) ∧ ¬E(yj , z))]).

X consists of all formulas αm,n with m,n ≥ 1. In order to get

an undirected graph, the formula ∀v, w [E(v, w) ↔ E(w, v)]
has to be added.
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Tutorial Question 5.3

The axioms are the following.

∀x ∈ R1 [x ∈ R2]; 0 ∈ R1; 1 ∈ R1; 0 6= 1;

All axioms from the lecture for non-commutative rings for R2

without the multiplicative inverse (associativeness of + and
·, distributive laws from both sides, neutral elements for +
and · in R2, commutativeness of +, existence of inverse for
+, e0 + e3 = 1);

The axiom which says that R1 is closed under + and ·;

The axiom ∀x ∈ R1∀y ∈ R2 [x · y = y · x];

The axioms
∀x ∈ R2∃y0, y1, y2, y3 ∈ R1 [x = e0 · y0 + e1 · y1 + e2 · y2 + e3 · y3]
and ∀x ∈ R1 [x = (x · e0) + (x · e3)];
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Continuation of Axioms

The axiom
∀y0, y1, y2, y3, x0, x1, x2, x3 ∈ R1 [e0 · y0 + e1 · y1 + e2 · y2 + e3 · y3
= e0 · x0 + e1 · x1 + e2 · x2 + e3 · x3 →
x0 = y0 ∧ x1 = y1 ∧ x2 = y2 ∧ x3 = y3];

The axiom ∀y0, y1, y2, y3 ∈ R1

[det(e0 · y0 + e1 · y1 + e2 · y2 + e3 · y3) = y0 · y3 − y1 · y2];

The 16 axioms defining the multiplication rules for the four
generators: e0 · e0 = e0, e0 · e1 = e1, e0 · e2 = 0, e0 · e3 = 0,
e1 · e0 = 0, e1 · e1 = 0, e1 · e2 = e1, e1 · e3 = e1, e2 · e0 = e2,
e2 · e1 = e3, e2 · e2 = 0, e2 · e3 = 0, e3 · e0 = 0, e3 · e1 = e2,
e3 · e2 = 0, e3 · e3 = e3.
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Tutorial Question 5.4

The goal is to make an isomorphism between two
countable structures ({a0, a1, . . .}, <, 0, 1) and
({b0, b1, . . .}, <, 0, 1). For this, assume that a0 = 0, a1 = 1 and
b0 = 0, b1 = 1 in the respective structures. Now let
f(a0) = b0, f(a1) = b1 and, for n ≥ 2, let f(an) be bm for the
least m such that for all k < n it holds that ak < an implies
f(ak) < bm and an < ak implies bm < f(ak).

It is easy to see that f preserves the relation < and f is
total: As the ordering ({b0, b1, . . .}, <, 0, 1) is dense, there is
for every an a value bm found this way and one can easily
see by induction that for all i, j with i < j it holds that ai < aj
implies f(ai) < f(aj) and aj < ai implies f(aj) < f(ai).

Mathematical Logic – p. 68



Continuation

Furthermore, assume now that some bm would be left out,
without loss of generality, m is the least such index. It
happens infinitely often that f(ak) needs to be defined for
an ak such that all h < k satisfy ah < ak ⇒ f(ah) < bm and
ah > ak ⇒ f(ah) > bm; otherwise there would be ai and aj
such that f(ai) < bm and f(aj) > bm and no ak with
ai < ak < aj would be in the list in contradiction to the

denseness. Now, from some time onwards, m will be for
those k as indicated above the least index such that bm is
not yet in the range of f and therefore one of these ak will
be mapped to bm. Therefore the function f is an order
isomorphism.
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