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Synthesis Problem

Input: A specification S(I,O)
Task: Find a program P which implements S, i.e.,

∀I(S(I, P (I)).

Parameterized by Formal Specification and Implementation languages.

Church’s Problem: Given an MSO[<] formula that defines a
relation between input ω-strings and output ω-strings, determine
whether there exists an automaton (operator) that implements the
specification.
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Church’s Problem

Consider a bit by bit transformation of bit streams

...at    ...a2 a1...bt...b2b1
F

Church’s Problem: For a given I-O specification on ω strings - fill the
box.

Given a logical specification of the input-output relation R find a
mapping (implementation) F : b → F (b) such that (b, F (b)) ∈ R for all
b.
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Implementation language - Causal Operators

...at    ...a2 a1...bt...b2b1
F

Causal-operator - at depends only on b1b2 . . . bt - is independent from
bt+1bt+2 · · · - C-operators.

Strongly Causal-operator - at depends only on b1b2 . . . bi . . . (i < t)
- SC -operators.

SC-operators = Player I strategy; C-operators = Player II strategy .

C-operators computable by finite automata, recursive C-operators.
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Examples

F
…It…I3I2I1 …Ot…O3O2O1

Consider R1 defined by
If all I(t) = 0 then all O(t) = 0; otherwise all O(t) = 1.

∀I∃O R1(I,O).

Is it possible to implement R1 by a causal operator?

Consider R2 defined by
If infinitely often I(t) = 0 then infinitely often O(t) = 0

Is it possible to implement R2 by a causal operator?
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Example

Consider R defined by the conjunction of three conditions on the
input-output stream (I, O):

1 ∀t(I(t) = 1 → O(t) = 1)

2 never O(t) = O(t+ 1) = 0

3 If infinitely often I(t) = 0 then infinitely often O(t) = 0

Common-Sense Solution
1 for input 1 produce

output 1
2 for input 0 produce

output 1 if last output
was 0
output 0 if last output
was 1

Last 0 Last 1

1/1
1/1

0/0

0/1

Can be described by a finite state automaton with output.
Equivalently, can be defined by an MSO[<] formula Ψ(X,Y ).
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Büchi-Landweber Theorem

In the examples the input-output specification R(I,O) can be
formalized in the Monadic second-order logic of order (MSO[<]).

Theorem (Büchi-Landweber(69) )

Let Ψ(X,Y ) be an MSO[<] formula.
1 Determinacy: exactly one of the following holds for Ψ

a. There is a C-operator F such that ω |= ∀X. Ψ(X,F (X)).
b. There is a SC-operator G such that ω |= ∀Y. ¬Ψ(G(Y ), Y ).

2 Decidability: it is decidable whether 1 (a) or 1 (b) holds.
3 Definability:

a. If 1 (a) holds then there is an MSO[<] formula U that defines a
C-operator which implements Ψ.

b. Similarly for 1 (b).

4 Computability: There is an algorithm such that for each MSO[<]
formula Ψ(X,Y ):
a. If 1 (a) holds, constructs an MSO[<] formula that defines F .
b. Similarly for 1 (b).
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Church’s view

Church (Cornell 1957) does not explicitly restrict to finite state
systems. He has a vague and general formulation about “logistic
systems” and “circuits” and discussed infinite state systems.

“Given a requirement which a circuit is to satisfy, we may suppose the
requirement expressed in some suitable logistic system which is an
extension of restricted recursive arithmetic. The synthesis problem is
then to find recursion equivalences representing a circuit that satisfies
the given requirement (or alternatively, to determine that there is no
such circuit).”

Following the Büchi-Landweber paper the community narrowed the
view of Church’s Problem to the finite-state case. Equivalently, to the
MSO[<]-definable C-operators.
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Continuous Time

Trakhtenbrot (1995) suggested to lift the Classical Automata Theory
from Discrete to Continuous Time.
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Continuous Time

The set of Non-Negative Reals (R≥0, <) instead of ω = (Nat,<).

MSO[<] has a natural interpretation over the non-negative reals
(R≥0, <).
Unfortunately, the satisfiability problem for MSO[<] over the reals is
undecidable (Shelah 1975).

Reasons - quantification over arbitrary predicates, e.g. P is True at the
rationals and False at the irrationals.

In Computer Science, it is natural to restrict to finitely variable
(non-Zeno) predicates,

P ⊆ R≥0 is a finitely variable (non-Zeno) predicate, if there is an
unbounded sequence 0 = a0 < a1 < · · · < ai < · · · such that P is
constant on every interval (ai, ai+1).
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Finite Variability

A signal S a function from R≥0 to a finite alphabet Σ.
A signal S is finitely variable if there is an unbounded sequence
0 = a0 < a1 < · · · < ai < · · · such that P is constant on every interval
(ai, ai+1).

Alex Rabinovich (joint with Daniel Fatal)The Church Synthesis Problem over Continuous TimeFebruary 7, 2024 12 / 39



Finite Variability

A signal S a function from R≥0 to a finite alphabet Σ.
A signal S is finitely variable if there is an unbounded sequence
0 = a0 < a1 < · · · < ai < · · · such that P is constant on every interval
(ai, ai+1).

Alex Rabinovich (joint with Daniel Fatal)The Church Synthesis Problem over Continuous TimeFebruary 7, 2024 12 / 39



Decidability of MSO[<]

FVsig is the structure for MSO[<] over (R≥0, <) with the finite
variability predicates for the monadic variables.

Theorem

MSO[<] over FVsig is decidable.
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Casual and Strongly Causal Operators

F : FVsig → FVsig is causal if for every t and S, the value of F (S) at
t depends only on S ↿ [0, t]. i.e., is independent from S ↿ (t,∞).

F : FVsig → FVsig is strongly causal if for every t and S, the value of
F (S) at t depends only on S ↿ [0, t).
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Church Synthesis Problems Continuous vs Discrete

Church Synthesis problem for Continuous time
Input: an MSO[<] formula Ψ(X,Y ).
Question: Is there is a C-operator F such that
∀X. Ψ(X,F (X)) holds in FVsig?

vs

Church Synthesis problem for Discrete time
Input: an MSO[<] formula Ψ(X,Y ).
Question: Is there is a C-operator F such that
∀X. Ψ(X,F (X)) holds in ω?
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Results for Continuous Time
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Indeterminacy

Theorem (Indeterminacy)

The synthesis problem for continuous time is indeterminate.
There exists an MSO[<] formula Ψ(X,Y ) such that

1 There is no C-operator F such that FVsig |= ∀X. Ψ(X,F (X)).

2 There is no SC-operator G such that FVsig |= ∀Y. ¬Ψ(G(Y ), Y ).

vs Discrete case

Theorem (Determinacy)

Let Ψ(X,Y ) be an MSO[<] formula. Exactly one of the following
holds for Ψ

a. There is a C-operator F such that ω |= ∀X. Ψ(X,F (X)).

b. There is a SC-operator G such that ω |= ∀Y. ¬Ψ(G(Y ), Y ).
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Dichotomy Fails

Theorem (Dichotomy Fails)

There exists an MSO[<] formula Ψ(X,Y ) such that both

1 There is a C-operator F such that FVsig |= ∀X. Ψ(X,F (X)).

2 There is a SC-operator G such that FVsig |= ∀Y. ¬Ψ(G(Y ), Y ).
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Definability Fails

Theorem (Undefinability)

There exists Ψ(X,Y ) such that

1 There is a C-operator F such that FVsig |= ∀X. Ψ(X,F (X)).

2 There is no MSO[<]-definable C-operator F such that
FVsig |= ∀X. Ψ(X,F (X)).

vs Discrete case

Theorem (Definability)

If there is a C-operator F such that ω |= ∀X. Ψ(X,F (X)) holds, then
there is an MSO[<]-definable C-operator which implements Ψ.
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Two versions of the Church Synthesis Problem for
Continuous Time

Input: an MSO[<] formula Ψ(X,Y ).
Implementation Question: Is there is a C-operator F such
that ∀X. Ψ(X,F (X)) holds in FVsig?
Definable Implementation Question: Is there is an MSO-
definable C-operator F such that ∀X. Ψ(X,F (X)) holds
in FVsig?
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Decidability of Synthesis

Theorem (Computability of Definable Synthesis)

Given an MSO[<] formula Ψ(X,Y ), it is decidable whether exists an
MSO[<]-definable C-operator F such that FVsig |= ∀X. Ψ(X,F (X))
and if so, there is an algorithm that constructs an MSO[<] formula
that defines F .

Theorem (Decidability of Synthesis)

Given an MSO[<] formula Ψ(X,Y ), it is decidable whether exists a
C-operator F such that FVsig |= ∀X. Ψ(X,F (X)).
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Proofs
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FV Signals

The signal is constant on the intervals [t, u] and (u, v).

Alex Rabinovich (joint with Daniel Fatal)The Church Synthesis Problem over Continuous TimeFebruary 7, 2024 23 / 39



Proof of Indeterminacy

Theorem (Indeterminacy)

There exists an MSO[<] formula Ψ(X,Y ) such that

1 There is no C-operator F such that FVsig |= ∀X. Ψ(X,F (X)).

2 There is no SC-operator G such that FVsig |= ∀Y. ¬Ψ(G(Y ), Y ).

Ψ(X,Y ) := ∃t > 0.Y is not continuous at t and X is constant at (0, t].

Define δx(t) :=

{
1, if t = x

0 else

If an C-operator F implements Ψ, then Yδ2 := F (δ2) is not continuous
at some b ∈ (0, 2).
Let b > 0 be the minimal discontinuity of Yδ2 .
F (δb) is not continuous at c < b. But δb and δ2 are 0 on [0, c], hence
F (δb) = F (δ2) on [0, c] - contradiction 1 = F (δb)(c) ̸= 0 = F (δ2)(c).
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Proof of Indeterminacy -cont.

Figure: δx

Ψ(X,Y ) := ∃t > 0.Y jumps at t and X is constant at (0, t]
For no SC-operator G

∀Y ¬Ψ(G(Y ), Y ).

G(δ2) cannot be constant on (0, b) for no b > 2. Hence, it jumps at
some (minimal) c ∈ (0, 2].

G(δ c
2
) jumps at some d ≤ c

2 .

δ2 and δ c
2
coincide on [0, c2), however, G(δ c

2
) differs from G(δ2) at

d ≤ c
2 . Contradicts that G is SC.
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Dichotomy Fails

Theorem (Dichotomy Fails)

There exists an MSO[<] formula Ψ(X,Y ) such that both

1 There is a C-operator F such that FVsig |= ∀X. Ψ(X,F (X)).

2 There is a SC-operator G such that FVsig |= ∀Y. ¬Ψ(G(Y ), Y ).

Proof is elementary Ψ · · ·
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Definability Fails

Theorem (Undefinability)

There exists Ψ(X,Y ) such that

1 There is no MSO[<]-definable C-operator F such that
FVsig |= ∀X. Ψ(X,F (X)).

2 There is a C-operator F such that FVsig |= ∀X. Ψ(X,F (X)).

A bijection ρ : R≥0 → R≥0 is an automorphism if it is order
preserving.

Claim. If ρ is an automorphism, and Ψ(P,Q) then Ψ(ρP, ρQ).
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Proof Undefinability

Consider a specification Ψ(X,Y ) that states:

There is t > 0 such that Y is zero on [0, t) and Y is one on [t,∞).

This specification is easily formalized in MSO[<].

Claim. There is a C-operator that implements Ψ.

Lemma. If Φ(X,Y ) defines an operator and Φ(P,Q) then Q jumps at
t > 0 only if P jumps at t.

Hence, No MSO[<]-definable operator implements Ψ.

Indeed, take the input constant everywhere.
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Proof of Lemma

Lemma. If Φ(X,Y ) defines an operator and Φ(P,Q) then Q jumps at
t > 0 only if P jumps at t.

Assume F is definable by Φ(X,Y ). Assume that Φ(P,Q) and Q jumps
at t > 0.
If P does not jump at t there are t1 < t < t2 such that P is constant in
[t1, t2], and t is the only jump of Q in [t1, t2].

Take an automorphism ρ that is identity outside [t1.t2] and moves t to
t′ ̸= t, for t′ ∈ (t1, t2).

ρ(P ) = P , Q1 := ρ(Q) ̸= Q, and Φ(P,Q) holds.
Hence Φ(P,Q1) holds - contradicts that Φ defines an operator.
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FV Signals and Timed ω-sequences
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Representation of FV signals by ω sequence

Let t̂ := 0 = t0 < t1 < · · · ti < · · · be an unbounded ω-sequence of reals
and ŝ = (a0, b0)(a1, b1) · · · be an ω string over Σ× Σ.
The signal X represented by (t̂, ŝ) is defined as follows:
X(ti) := ai and X(t) := bi for t ∈ (ti, ti+1).

It is clear a signal is represented iff it is finitely variable signal.

(t̂, ŝ) is called a timed ω sequence; t̂ is its scale and ŝ its ω string.

Let L be an ω language over Σ× Σ.
To L corresponds a set S of FV signals over Σ defined as X ∈ S there
is t̂ and there is ŝ ∈ L such that (ŝ, t̂) represents X.

We say that S is represented by L.
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MSO[<]-definable FV signal Languages

Theorem

A FV signal language is MSO[<] definable (over (R≥0, <)) iff it is
represented by an MSO[<] -definable ω languages.

Corollary

A FV signal language is MSO[<] definable iff it is represented by an ω
language accepted by a deterministic parity automaton.
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Computability of Definable Synthesis

Theorem (Computability of Definable Synthesis)

Given an MSO[<] formula Ψ(X,Y ), it is decidable whether exists an
MSO[<]-definable C-operator F such that FVsig |= ∀X. Ψ(X,F (X))
and if so, there is an algorithm that constructs an MSO[<] formula
that defines F .

A proof is similar to the Buchi - Landwerber proof for Discrete time. It
relies on ω-Games over finite boards.
There are some subtleties.
E.g. If Input player makes a move that does not make a jump in the
corresponding signal, then the Output player is not allowed to make a
move that creates a jump.
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Decidability of Synthesis

Theorem (Decidability of Synthesis)

Given an MSO[<] formula Ψ(X,Y ), it is decidable whether exists a
C-operator F such that FVsig |= ∀X. Ψ(X,F (X)).

Proof is based to a reduction to ω-games. However, even the alphabet
of this games is uncountable.
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Game

Round 0:

I set t0 := 0. Then I chooses a0. O chooses b0. This defines X and Y
on the interval [0, t0] = [0, 0].

Round n+1:

(A) I chooses adn+1 such that X will have this value for a while after tn.
(B) O replies by suggesting an output signal Sign+1 on the interval
(tn,∞) under the condition that the input has the value adn+1 on all
points of this interval.
(C) I either agrees and then games ends with the signals defined on
[0,∞), or set tn+1 > tn, agrees that on the points of (tn, tn+1) the
input has value adn+1 and the output is the same as Sign+1 on
(tn, tn+1), and I will define a jump point at tn+1.
(D) I chooses a value an+1 for the input signal at tn+1, and O replies
by choosing bn+1 for the output at tn+1. Now, input and output are
defined on [0, tn+1] and a new round starts.
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Winning Conditions

The winning condition for O :

If limn tn < ∞ then O wins.
If limn tn = ∞ then the play has defined the input X and output Y on

all points of [0,∞), and O wins iff Ψ(X,Y ) holds.

Theorem

Let Ψ be an MSO[<] formula. Player O wins iff there is a C operators
that implements Ψ.

In the game each player has uncountable many possible move at each
round i > 0. Our main technical results reduce this game to a game
with finitely many moves at each round, and further reduce it to a
parity game on a finite arena.
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Simple Strategies

Let ρ := (t̂, ŝ) be a timed sequence.
A timed sequence is simple if its untimed version ŝ is ultimately
periodic and its time scale is uniform (ti := ∆× i for some ∆ and all i).
A simple move - move that uses a simple sequence.

Lemma

O has a winning strategy iff there is a finite set U of ultimately periodic
strings such that O has a winning strategy which uses only simple
moves with strings from U .
Moreover, at i-th move O uses the timescale 1

2i
.

This restricted games can be converted to memoryless restricted games
over finite arenas.

Hence, decidability.
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Let ρ := (t̂, ŝ) be a timed sequence.
A timed sequence is simple if its untimed version ŝ is ultimately
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Open Problems

Metrical Extensions - add +1 function.

Unfortunately, even FO[<,+1] is undecidable.

Restricted metric properties.
“P will happen at distance at most 1 from t.”
MITL logic.

Is the Church synthesis decidable for MITL specifications?

THANK YOU
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