Midterm Examination 1 MA 3205: Set Theory

15.09.2009, 12.00-12.45h

Matriculation Number: _____

Rules

Each question contains as many marks as it has subquestion. Each correct subquestion gives 1 mark. The maximum score is 15 marks.

Question 1. Determine the following sets where $A = \{1, 2, 4, 8, 16\}$ and $B = \{3, 4, 5, 6, 7, 8\}$: (a) $A \cup B = \{\dots, \dots, n\}$; (b) $A \cap B = \{\dots, \dots, n\}$; (c) $A \Delta B = \{\dots, \dots, n\}$; Here \cup is the union, \cap the intersection and Δ the symmetric difference.

Here \bigcirc is the union, + the intersection and \bigtriangleup the symmetric unierence.

Question 2. Let A be the powerset of \mathbb{N} , that is, let A be the set of all subsets of \mathbb{N} . Check the correct box for each set.

(a) The set $\{B \in A : \mathbb{N} \subseteq B\}$ is \square empty \square finite and not empty	countable	uncountable.
(b) The set $\{C \in A : C \text{ has 5 elements}\}$ is $\square \text{ empty} \square \text{ finite and not empty}$	\Box countable	uncountable.
(c) The set $\{D \in A : D \text{ is infinite}\}$ is $\square \text{ empty} \square \text{ finite and not empty}$	\Box countable	uncountable.

Question 3. (a) Is there a set A such that A has more elements then $\cup A$? Yes; \square No.

(b) Write a few lines to justify your answer (no complete proof needed, but it should make sense; only counted if (a) is correct).

Question 4. (a) Is there a set B such that $B \neq \mathbb{N}$, B is transitive and B is inductive? \Box Yes; \Box No.

(b) Write a few lines to justify your answer (no complete proof needed, but it should make sense; only counted if (a) is correct).

Question 5. (a) Is there a set C such that the power set $\mathcal{P}(C)$ of C is countable? \square Yes; \square No.

Here recall that the statement " $\mathcal{P}(C)$ is countable" implies that " $\mathcal{P}(C)$ is infinite". (b) Write a few lines to justify your answer (no complete proof needed, but it should make sense; only counted if (a) is correct). **Question 6.** (a) Determine all sets A which satisfy $\mathcal{P}(A) \subseteq \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}$:

(b) Determine all sets B which satisfy $B \subseteq \mathbb{N}$ and $\forall n[n \in B \Leftrightarrow n+2 \in B]$:

(c) How many sets $C \in \mathbb{N}$ have at most 5 elements?

	v		
$\Box 0$	$\Box 1$	$\Box 2$	$\Box 3 \Box 4$
$\Box 5$	$\Box 6$	$\Box 7$	\Box infinitely many.

Working Space

You can use this page to do calculations, but you should write the answers into the space provided. Answers found here are not evaluated.