Midterm Examination 1 MA 3205: Set Theory

15.09.2009, 12.00-12.45h

Matriculation Number:

Rules

Each question contains as many marks as it has subquestion. Each correct subquestion gives 1 mark. The maximum score is 15 marks.

Question 1. Determine the following sets where $A=\{1,2,4,8,16\}$ and $B=$ $\{3,4,5,6,7,8\}$:
(a) $A \cup B=\{$ \qquad
(b) $A \cap B=\{$ \qquad
(c) $A \Delta B=\{$

Here \cup is the union, \cap the intersection and Δ the symmetric difference.
Question 2. Let A be the powerset of \mathbb{N}, that is, let A be the set of all subsets of \mathbb{N}. Check the correct box for each set.
(a) The set $\{B \in A: \mathbb{N} \subseteq B\}$ isempty \square finite and not emptycountableuncountable.
(b) The set $\{C \in A: C$ has 5 elements $\}$ is \square empty \square finite and not emptycountableuncountable.
(c) The set $\{D \in A: D$ is infinite $\}$ isempty finite and not emptycountableuncountable.

Question 3. (a) Is there a set A such that A has more elements then $\cup A$?No.
(b) Write a few lines to justify your answer (no complete proof needed, but it should make sense; only counted if (a) is correct).

Question 4. (a) Is there a set B such that $B \neq \mathbb{N}, B$ is transitive and B is inductive? \square Yes; \square No.
(b) Write a few lines to justify your answer (no complete proof needed, but it should make sense; only counted if (a) is correct).

Question 5. (a) Is there a set C such that the power set $\mathcal{P}(C)$ of C is countable? Yes; \square No.
Here recall that the statement " $\mathcal{P}(C)$ is countable" implies that " $\mathcal{P}(C)$ is infinite". (b) Write a few lines to justify your answer (no complete proof needed, but it should make sense; only counted if (a) is correct).

Question 6. (a) Determine all sets A which satisfy $\mathcal{P}(A) \subseteq\{\emptyset,\{\emptyset\},\{\{\emptyset\}\}\}$:
(b) Determine all sets B which satisfy $B \subseteq \mathbb{N}$ and $\forall n[n \in B \Leftrightarrow n+2 \in B]$:
(c) How many sets $C \in \mathbb{N}$ have at most 5 elements?

$\square 2$
$\square 7$
$\square 3$
$\square 4$ infinitely many.

Working Space

You can use this page to do calculations, but you should write the answers into the space provided. Answers found here are not evaluated.

