Midterm Examination 1 MA 3205: Set Theory

15.09.2009, 12.00-12.45h

Matriculation Number:

Rules

Each question contains as many marks as it has subquestion. Each correct subquestion gives 1 mark. The maximum score is 15 marks.

Question 1. Determine the following sets where $A=\{1,2,4,8,16\}$ and $B=$ $\{3,4,5,6,7,8\}$:
(a) $A \cup B=\{1,2,3,4,5,6,7,8,16\}$;
(b) $A \cap B=\{4,8\}$;
(c) $A \Delta B=\{1,2,3,5,6,7,16\}$.

Here \cup is the union, \cap the intersection and Δ the symmetric difference.
Question 2. Let A be the powerset of \mathbb{N}, that is, let A be the set of all subsets of \mathbb{N}. Check the correct box for each set.
(a) The set $\{B \in A: \mathbb{N} \subseteq B\}$ is\square empty $\quad \mathrm{x}$ finite and not emptycountableuncountable.
(b) The set $\{C \in A: C$ has 5 elements $\}$ is\square emptyfinite and not empty
x countableuncountable.
(c) The set $\{D \in A: D$ is infinite $\}$ isempty finite and not empty \square countable
x uncountable.

Question 3. (a) Is there a set A such that A has more elements then $\cup A$? x Yes; $\quad \square$ No.
(b) Write a few lines to justify your answer (no complete proof needed, but it should make sense; only counted if (a) is correct).
Assume that A is the power set of another set, say $A=\mathcal{P}(\{0,1\})$. Then $\cup A=\{0,1\}$ has less elements than $A=\{\emptyset,\{0\},\{1\},\{0,1\}\}$. In this example, $\cup A$ has 2 and A has 4 elements.

Question 4. (a) Is there a set B such that $B \neq \mathbb{N}, B$ is transitive and B is inductive? x Yes;\square No.
(b) Write a few lines to justify your answer (no complete proof needed, but it should make sense; only counted if (a) is correct).
There are many examples. One is V_{ω} which is inductive and transitive and a proper superset of \mathbb{N}. Another example is $\mathbb{N} \cup\{\mathbb{N}, S(\mathbb{N}), S(S(\mathbb{N})), S(S(S(\mathbb{N}))), \ldots\}$ where $S(X)=X \cup\{X\}$ for every set X.

Question 5. (a) Is there a set C such that the power set $\mathcal{P}(C)$ of C is countable? Yes; x No.
Here recall that the statement " $\mathcal{P}(C)$ is countable" implies that " $\mathcal{P}(C)$ is infinite". (b) Write a few lines to justify your answer (no complete proof needed, but it should make sense; only counted if (a) is correct).
If C is a finite set then $\mathcal{P}(C)$ is finite as well.
If C is infinite then $|C| \geq|\mathbb{N}|$. As the power set has always a cardinality larger than the set itself, it holds that $|\mathcal{P}(C)|>|C| \geq|\mathbb{N}|$ and $\mathcal{P}(C)$ is uncountable.

Question 6. (a) Determine all sets A which satisfy $\mathcal{P}(A) \subseteq\{\emptyset,\{\emptyset\},\{\{\emptyset\}\}\}$:
$A=\emptyset$ satisfies $\mathcal{P}(A)=\{\emptyset\} \subseteq\{\emptyset,\{\emptyset\},\{\{\emptyset\}\}\}$;
$A=\{\emptyset\}$ satisfies $\mathcal{P}(A)=\{\emptyset,\{\emptyset\}\} \subseteq\{\emptyset,\{\emptyset\},\{\{\emptyset\}\}\} ;$
$A=\{\{\emptyset\}\}$ satisfies $\mathcal{P}(A)=\{\emptyset,\{\{\emptyset\}\}\} \subseteq\{\emptyset,\{\emptyset\},\{\{\emptyset\}\}\}$.
As the powerset of a set with at least 2 elements has at least 4 elements and as $A \in \mathcal{P}(A)$, there are no other examples.
(b) Determine all sets B which satisfy $B \subseteq \mathbb{N}$ and $\forall n[n \in B \Leftrightarrow n+2 \in B]$:
$B=\mathbb{N}$ and $B=\emptyset$ and $B=\{0,2,4,6, \ldots\}$ and $B=\{1,3,5,7, \ldots\}$; it was required to list all these four sets.
(c) How many sets $C \in \mathbb{N}$ have at most 5 elements?

$\square 0$	$\square 1$	$\square 2$	$\square 3$
$\square 5$	$\boxed{x} 6$	$\square 7$	\square infinitely many.

These six elements are $0,1,2,3,4,5$ where $0=\emptyset, 1=\{0\}, 2=\{0,1\}, \ldots, 5=$ $\{0,1,2,3,4\}$.

