Midterm Examination 2 MA 3205: Set Theory

03.11.2009, 12.00-12.45h

Matriculation Number:	
-----------------------	--

Rules

Each question contains as many marks as it has subquestion. Each correct subquestion gives 1 mark. The maximum score is 15 marks.

Question 1. Let (A, <) be a well-ordered set and $B = \{f : A \to A\}$ be the set of all functions from A to A. Now define the following relation \square on $f, g \in B$:

$$f \sqsubset g \Leftrightarrow \exists a \in A \forall b \in A \, [f(a) < g(a) \wedge [b < a \Rightarrow f(b) = g(b)]].$$

- (a) What can be said about this ordering:
 - The relation is reflexive and thus not a partial ordering;
 - The relation is a partial ordering and has incomparable elements;
 - The relation is a linear ordering.
- (b) Give a justification for your answer.

Question 2. How many well-orderings exist on $A = \{0, 1, 2, 3\}$? Here call two well-orderings $<_1, <_2$ on a set A are different iff there exist distinct $x, y \in A$ such that $x <_1 y$ and $y <_2 x$.
(a) How many different well-orderings exist on $A = \{0, 1, 2, 3\}$?
(b) Give a justification for your answer.
Question 3. (a) Given two ordinals ω^{α} and ω^{β} , which of the following conditions is equivalent to $\omega^{\alpha} + \omega^{\beta} = \omega^{\beta} + \omega^{\alpha}$? $\alpha < \beta; \alpha \leq \beta; \alpha = \beta; \alpha \geq \beta; \alpha > \beta; \alpha \neq \beta$. (b) Give a justification for your answer.
Overtion 4. Which of the following statements about the reals are two always (for
Question 4. Which of the following statements about the rank are true always (for all sets X), sometimes (for some but not all sets X) and never (for no set X)?
(a) If $\alpha = \rho(X)$ then $\alpha \subseteq X \subseteq V_{\alpha}$: \square always; \square sometimes; \square never.
(b) $\rho(\mathcal{P}(X)) = \rho(X) + 1$: \square always; \square sometimes; \square never.
(c) $\rho(X \times X) = \rho(X)$ where $X \times X = \{\{a, \{a, b\}\} : a, b \in X\}$: \square always; \square sometimes; \square never.

Question 5. (a) When is an ordinal α a cardinal?
$\square \alpha$ is a cardinal iff α is a limit ordinal;
α is a cardinal iff $\alpha \leq \omega$ or α is uncountable;
(b) Which of the following statements is true?
There is exactly one finite cardinal;
There is exactly one countable cardinal;
There is exactly one uncountable cardinal.
(c) For which cardinals κ does $\kappa + \kappa = \kappa$ hold?
Question 6. Consider the partial ordering \Box on three-tuples of integers by
$(u,v,w) \sqsubset (x,y,z) \Leftrightarrow u \leq x \land v \leq y \land w \leq z \land u+v+w < x+y+z.$
An element (x, y, z) of a set A is called minimal iff there is no $(u, v, w) \in A$ with
$(u, v, w) \sqsubset (x, y, z)$. Determine the number of minimal elements of the following sets;
this number can be any value in $\{0, 1, 2, \dots, \aleph_0\}$.
(a) $A = \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$:
(b) $B = \{(x, y, z) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} : x \ge 5 \land y \ge 5 \land z \ge 5 \land x + y + z \ge 16\}$:
(c) $C = \{(x, y, z) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} : x \ge 5 \land y \ge 5 \land z \ge 5 \land x + y + z \ge 17\}$:

Working Space

You can use this page to do calculations, but you should write the answers into the space provided. Answers found here are not evaluated.