# Midterm Examination 2 <br> MA 3205: Set Theory 

03.11.2009, 12.00-12.45h

Matriculation Number:

## Rules

Each question contains as many marks as it has subquestion. Each correct subquestion gives 1 mark. The maximum score is 15 marks.

Question 1. Let $(A,<)$ be a well-ordered set and $B=\{f: A \rightarrow A\}$ be the set of all functions from $A$ to $A$. Now define the following relation $\sqsubset$ on $f, g \in B$ :

$$
f \sqsubset g \Leftrightarrow \exists a \in A \forall b \in A[f(a)<g(a) \wedge[b<a \Rightarrow f(b)=g(b)]] .
$$

(a) What can be said about this ordering:The relation is reflexive and thus not a partial ordering;
The relation is a partial ordering and has incomparable elements;
The relation is a linear ordering.
(b) Give a justification for your answer.

Question 2. How many well-orderings exist on $A=\{0,1,2,3\}$ ? Here call two wellorderings $<_{1},<_{2}$ on a set $A$ are different iff there exist distinct $x, y \in A$ such that $x<_{1} y$ and $y<_{2} x$.
(a) How many different well-orderings exist on $A=\{0,1,2,3\}$ ? $\qquad$
(b) Give a justification for your answer.

Question 3. (a) Given two ordinals $\omega^{\alpha}$ and $\omega^{\beta}$, which of the following conditions is equivalent to $\omega^{\alpha}+\omega^{\beta}=\omega^{\beta}+\omega^{\alpha}$ ?$\alpha<\beta ;$$\alpha \leq \beta ;$ $\square$ $\alpha=\beta ;$ $\square$ $\alpha \geq \beta ;$$\alpha>\beta ;$$\alpha \neq \beta$.
(b) Give a justification for your answer.

Question 4. Which of the following statements about the rank are true always (for all sets $X$ ), sometimes (for some but not all sets $X$ ) and never (for no set $X$ )?
(a) If $\alpha=\rho(X)$ then $\alpha \subseteq X \subseteq V_{\alpha}$ :always;sometimes;never.
(b) $\rho(\mathcal{P}(X))=\rho(X)+1$ :always; $\square$ sometimes;never.
(c) $\rho(X \times X)=\rho(X)$ where $X \times X=\{\{a,\{a, b\}\}: a, b \in X\}$ :$\square$ always;
$\square$ sometimes; $\qquad$

Question 5. (a) When is an ordinal $\alpha$ a cardinal?
$\qquad$ $\alpha$ is a cardinal iff $\alpha$ is a limit ordinal; $\square \alpha$ is a cardinal iff $\alpha \leq \omega$ or $\alpha$ is uncountable; $\square \alpha$ is a cardinal iff $\forall \beta \in \alpha[|\beta|<|\alpha|]$; $\square \alpha$ is a cardinal iff $\exists \beta \in \alpha[|\beta|<|\alpha|]$.
(b) Which of the following statements is true?
$\square$ There is exactly one finite cardinal;
There is exactly one countable cardinal;
There is exactly one uncountable cardinal.
(c) For which cardinals $\kappa$ does $\kappa+\kappa=\kappa$ hold?$\kappa+\kappa=\kappa$ iff $\kappa=0$;
$\square \kappa+\kappa=\kappa$ iff $\kappa \geq \aleph_{0}$;
$\square \kappa+\kappa=\kappa$ iff $\kappa=0 \vee \kappa \geq \aleph_{0}$;
$\kappa+\kappa=\kappa$ iff $\kappa<\aleph_{0}$;
$\square \kappa \kappa=\kappa$ iff $\kappa=0 \vee \kappa=\aleph_{0}$.
Question 6. Consider the partial ordering $\sqsubset$ on three-tuples of integers by

$$
(u, v, w) \sqsubset(x, y, z) \Leftrightarrow u \leq x \wedge v \leq y \wedge w \leq z \wedge u+v+w<x+y+z .
$$

An element $(x, y, z)$ of a set $A$ is called minimal iff there is no $(u, v, w) \in A$ with $(u, v, w) \sqsubset(x, y, z)$. Determine the number of minimal elements of the following sets; this number can be any value in $\left\{0,1,2, \ldots, \aleph_{0}\right\}$.
(a) $A=\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ : $\qquad$
(b) $B=\{(x, y, z) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}: x \geq 5 \wedge y \geq 5 \wedge z \geq 5 \wedge x+y+z \geq 16\}$ : $\qquad$
(c) $C=\{(x, y, z) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}: x \geq 5 \wedge y \geq 5 \wedge z \geq 5 \wedge x+y+z \geq 17\}$ : $\qquad$

## Working Space

You can use this page to do calculations, but you should write the answers into the space provided. Answers found here are not evaluated.

