NATIONAL UNIVERSITY OF SINGAPORE

CS 4232: Theory of Computation Semester 1; AY 2019/2020; Midterm Test 2

Time Allowed: 40 Minutes

INSTRUCTIONS TO CANDIDATES

- 1. Please write your Student Number. Do not write your name.
- 2. This assessment paper consists of FOUR (4) questions and comprises NINE (9) printed pages.
- 3. Students are required to answer **ALL** questions.
- 4. Students should answer the questions in the space provided.
- 5. This is a **CLOSED BOOK** assessment.
- 6. Every question is worth FIVE (5) marks. The maximum possible marks are 20.

STUDENT NO: _____

This portion is for examiner's use only

Question	Marks	Remarks
Question 1:		
Question 2:		
Question 3:		
Question 4:		
Total:		

Question 1 [5 marks]

Let $\Sigma = \{0, 1, 2, 3\}$. Recall that a generalised homomorphism is a mapping from regular sets to regular sets such that $h(\emptyset) = \emptyset$, $h(\{\varepsilon\}) = \{\varepsilon\}$, $h(L \cup H) = h(L) \cup h(H)$, $h(L \cdot H) = h(L) \cdot h(H)$ and $h(L^*) = (h(L))^*$. List all h satisfying the following conditions:

- 1. h is a generalised homormophism;
- 2. $h(L) = \bigcup_{w \in L} h(\{w\})$ for all regular sets L;
- 3. $h(\{0, 1, 2, 3\}) = \{4, 44, 444\};$
- 4. $h(\{0123\}) = \{44444, 444444\};$
- 5. $h(\{2233\}) = \{4444\}.$

Here each generalised homormorphism satisfying the above conditions can be listed by determining what $h(\{a\})$ is for all $a \in \{0, 1, 2, 3\}$.

Solution. By the third condition, every $h(\{a\})$ is a subset of $\{4, 44, 444\}$; by the fourth condition, each set $h(\{a\})$ is not empty. By $h(\{2233\}) = \{4444\}, h(\{2\}) = \{4\}$ and $h(\{3\}) = \{4\}$. It can not be that both $h(\{0\})$ and $h(\{1\})$ contain 4 as then $4444 \in h(\{0123\})$, what is not the case. Furthermore, exactly one of $h(\{0\})$ and $h(\{1\})$ has two elements, the other one has one element. One of $h(\{0\})$ and $h(\{1\})$ must have the element 444. So one has the following choices:

1.
$$h(\{0\}) = \{4\}, h(\{1\}) = \{44, 444\}, h(\{2\}) = \{4\} \text{ and } h(\{3\}) = \{4\};$$

2.
$$h(\{0\}) = \{44, 444\}, h(\{1\}) = \{4\}, h(\{2\}) = \{4\} \text{ and } h(\{3\}) = \{4\}.$$

So there are in total two such h.

Question 2 [5 marks]

Let $L = \{0^n 10^n : n \ge 1\}$ and $H = L^+$ where L^+ is the Kleene plus of L. Provide a grammar in Greibach Normal Form for H and give a sample derivation for 01000100.

As H does not contain ε , a grammar for H is in Greibach Normal Form if every rule is of the form $A \to bw$ where A is a nonterminal, b a terminal and w a possibly empty word of nonterminals.

Solution. The grammar is $(\{0,1\}, \{S,T,U\}, P, S)$ where the rules in P are the following: $S \to 0TUS \mid 0TU, T \to 0TU \mid 1, U \to 0$.

The sample derivation is $S \Rightarrow 0TUS \Rightarrow 01US \Rightarrow 010S \Rightarrow 0100TU \Rightarrow 01000TUU \Rightarrow 010001UU \Rightarrow 0100010U \Rightarrow 01000100$.

Question 3 [5 marks]

Consider the grammar ({0}, {S,T}, { $S \to ST|TS|TT|0, T \to ST|TS|TT|0$ }, S). Determine the number of derivation trees of 0000 in this grammar.

Solution. Note that both S and T have the same rules; so the entries for S and T are the same. Let F(A, w) be the number of derivation trees which allow to derive w from the symbol A for A = S, T. The following can be derived from the Algorithm of Cocke, Kasami and Younger (all entries on each level of the pyramid would be the same):

- F(S,0) = 1, F(T,0) = 1;
- $F(S,00) = F(S,0) \cdot F(T,0) + F(T,0) \cdot F(S,0) + F(T,0) \cdot F(T,0) = 3$, F(T,00) = 3; note that using F(S,w) = F(T,w) in the grammar, one can just state this as $F(S,00) = 3 \cdot F(S,0) \cdot F(S,0)$;
- $F(S,000) = 3 \cdot F(S,0) \cdot F(S,00) + 3 \cdot F(S,00) \cdot F(S,0) = 18$ and F(T,000) = 18;
- $F(S,0000) = 3 \cdot F(S,0) \cdot F(S,000) + 3 \cdot F(S,00) \cdot F(S,00) + 3 \cdot F(S,000) \cdot F(S,00) = 54 + 27 + 54 = 135.$

As the start symbol is S, the overall number of derivation trees is 135.

Question 4 [5 marks]

Recall that the sequence of Fibonacci numbers is defined by

Fibonacci(0) = 0, Fibonacci(1) = 1 and Fibonacci(n + 2) = Fibonacci(n) + Fibonacci(n + 1).

Write a function Nextfibonacci with

Nextfibonacci(x) = min{ $y \ge x : \exists z \in \mathbb{N} [y = \text{Fibonacci}(z)]$ }

which finds for input x the smallest Fibonacci number y with $y \ge x$.

Register machine programs can use conditional and unconditional goto-commands, compare $(\langle, \leq, =, \geq, \rangle, \neq)$ and add (+) and subtract (-) registers and natural numbers and has the input x in the register R_1 . The return command provides the output of the function; for example, Return (R_7) returns the content of register R_7 as output of the function. Write the function as one program without using any macros.

Solution. The program can be made as follows.

Line 1: Function Nextfibonacci (R_1) ; Line 2: $R_2 = 0$; $R_3 = 1$; Line 3: $R_4 = R_2 + R_3$; Line 4: If $R_1 \le R_2$ Then Goto Line 7; Line 5: $R_2 = R_3$; $R_3 = R_4$; Line 6: Goto Line 3; Line 7: Return (R_2) .