
1

Medusa: Simplified Graph Processing on
GPUs

Jianlong Zhong, Bingsheng He

Abstract—Graphs are common data structures for many applications, and efficient graph processing is a must for application
performance. Recently, the graphics processing unit (GPU) has been adopted to accelerate various graph processing algorithms
such as BFS and shortest paths. However, it is difficult to write correct and efficient GPU programs and even more difficult for
graph processing due to the irregularities of graph structures. To simplify graph processing on GPUs, we propose a programming
framework called Medusa which enables developers to leverage the capabilities of GPUs by writing sequential C/C++ code.
Medusa offers a small set of user-defined APIs, and embraces a runtime system to automatically execute those APIs in parallel
on the GPU. We develop a series of graph-centric optimizations based on the architecture features of GPUs for efficiency.
Additionally, Medusa is extended to execute on multiple GPUs within a machine. Our experiments show that (1) Medusa greatly
simplifies implementation of GPGPU programs for graph processing, with many fewer lines of source code written by developers;
(2) The optimization techniques significantly improve the performance of the runtime system, making its performance comparable
with or better than manually tuned GPU graph operations.

Index Terms—GPGPU, GPU Programming, Graph Processing, Runtime Framework.

F

1 INTRODUCTION

G RAPHS are common data structures in various
applications such as social networks, chemistry

and web link analysis. Graph processing algorithms
have been the fundamental tools in various fields.
Developers usually apply a series of operations on
the graph edges and vertices to obtain the final result.
The example operations can be breadth first search
(BFS), PageRank [32], shortest paths and even their
customized variants (for example, developers may
apply different application logics on top of BFS).
The efficiency of graph processing is a must for
high performance of the entire system. On the other
hand, writing every graph processing algorithm from
scratch is inefficient and involves repetitive work,
since different algorithms may share the same opera-
tion patterns, optimization techniques and common
software components. A programming framework
supporting high programmability for various graph
processing applications and providing high efficiency
as well can greatly improve productivity.

Recent years have witnessed the increasing adop-
tion of GPGPU (General-Purpose computation on
Graphics Processing Units) in many applications [31].
The GPU has been used as an accelerator for var-
ious graph processing applications [14], [16], [23],
[35]. While those GPU-based solutions have demon-
strated significant performance improvement over
CPU-based implementations, they are limited to spe-

• J. Zhong and B. He are with the School of Computer Engineering,
Nanyang Technological University, Singapore, 639798.
E-mail: jzhong2@ntu.edu.sg, bshe@ntu.edu.sg

cific graph operations. Developers usually need to
implement and optimize GPU programs from scratch
for different graph processing tasks.

Writing a correct and efficient GPU program is
challenging in general, and even more difficult for
graph applications. First, the GPU is a many-core
processor with massive thread parallelism. To fully
exploit the GPU parallelism, developers need to
write parallel programs that scale to hundreds of
cores. Moreover, compared with CPU threads, the
GPU threads are lightweight, and the tasks in the
parallel algorithms should be fine grained. Second, the
GPU has a memory hierarchy that is different from
the CPU’s. Since graph applications usually involve
irregular accesses to the graph data, careful designs
of data layouts and memory accesses are key factors
to the efficiency of GPU acceleration. Finally, since the
GPU is designed as a co-processor, developers have to
explicitly perform memory management on the GPU,
and deal with GPU specific programming details such
as kernel configuration and invocation. All these
factors make the GPU programming a difficult task.

To ease the pain of leveraging the GPU in common
graph computation tasks, we propose a software
framework named Medusa to simplify program-
ming graph processing algorithms on the GPU. In-
spired by the bulk synchronous parallel (BSP) model,
we develop a novel graph programming model
called “Edge-Message-Vertex” (EMV) for fine-grained
processing on vertices and edges. EMV is specifi-
cally tailored for parallel graph processing on the
GPU. Like existing programming frameworks such
as MapReduce [9] and its variant on the GPU [15],
Medusa provides a set of APIs for developers to

BSHE
Text Box
This is a preprint for journal publication in IEEE TPDS.

2

implement their applications. The APIs are oriented
at the EMV programming model for fine-grained
parallelism. Medusa embraces an efficient message
passing based runtime. It automatically executes user-
defined APIs in parallel on all the processor cores
within the GPU and on multiple GPUs, and hides the
complexity of GPU programming from developers.
Thus, developers can write the same APIs, which
automatically run on multiple GPUs.

Memory efficiency is often an important factor for
the overall performance of graph applications [14],
[16], [23], [35]. To improve the memory efficiency
of Medusa, we have developed a series of memory
optimizations. A novel graph layout is developed to
exploit the coalesced memory feature of the GPU. A
graph aware message passing mechanism is specially
designed for message passing in Medusa. We also
develop two multi-GPU-specific optimization tech-
niques, including the cost model guided replication
for reducing data transfer across the GPUs and
overlapping between computation and data transfer.

We have evaluated the efficiency and programma-
bility of Medusa on a machine with four NVIDIA
C2050 GPUs and two Intel E5645 CPUs. To demon-
strate the programmability of Medusa, we develop a
set of common graph processing primitives on sparse
graphs and compare Medusa-based implementations
with manual implementations. The CPU-based man-
ual implementations are based on the MultiThreaded
Graph Library (MTGL) [7], and we adopt previous
GPU implementations [14], [19], [30] as GPU-based
manual implementations.

Our experimental results show that: (1) Medusa
simplifies programming GPU graph processing algo-
rithms in terms of a significant reduction in the num-
ber of source code lines. Medusa achieves comparable
or better performance than the manually tuned GPU
graph operations. (2) Our optimization techniques on
graph layout and message buffering significantly im-
prove the performance of graph processing operations
on the GPU. (3) Medusa executing on four GPUs is
up to 1.8 and 2.6 times faster than on a single GPU
for BFS and PageRank, respectively.

Organization. The remainder of this paper is orga-
nized as follows. Section 2 reviews the related work.
Section 3 describes the system overview, followed by
detailed design in Section 4. We present evaluation
results in Section 5, and conclude in Section 6.

2 RELATED WORK

2.1 Graph Processing
Parallel algorithms have been a classical way to
improve the performance of graph processing. On
multi-core CPUs, parallel libraries such as MTGL [7]
have been developed for parallel graph algorithms.
Similar to Medusa, MTGL offers a set of data struc-
tures and APIs for building graph algorithms. The

MTGL API is modeled after the Boost Graph Li-
brary [34] and optimized to leverage shared memory
multithreaded machines. The SNAP framework [5]
provides a set of algorithms and building blocks
for graph analysis, especially for small-world graphs.
To facilitate developing distributed graph algorithms
in the cluster/grid settings, software libraries such
as Parallel BGL [13] and Combinatorial BLAS [8]
have been developed. Cloud platforms are becoming
popular for graph applications [20], [21], [29].

Previous studies [10], [25], [26] have observed that
many common graph algorithms can be formulated
using a form of the bulk synchronous parallel (BSP)
model (we call it GBSP). In GBSP, local computa-
tions are performed on individual vertices. Vertices
are able to exchange data with each other. The
same computation and communication procedures
are executed iteratively with barrier synchroniza-
tion at the end of each iteration. This common
algorithmic pattern is also adopted by distributed
graph processing frameworks such as Pregel [29]
and distributed GraphLab [27]. For example, Pregel
applies a user-defined function Compute() on each
vertex in parallel in each iteration of the GBSP
execution. The communications between vertices are
performed with message passing interfaces. Medusa
shares the same design goal as Pregel in providing
a programming framework to ease development of
graph algorithms, and in hiding the complexity of the
underlying runtime from developers.

Medusa differs from Pregel in the following aspects.
First, the design, implementation and optimization of
Medusa are specific to the hardware features of GPUs.
For example, our multi-GPU Medusa adopts graph
partitioning to reduce data transfer on the host-device
communication link (i.e., PCI-e bus), while Pregel
uses random hashing by default. Second, Medusa
provides more fine-grained programming interfaces
than Pregel, exposing fine-grained data parallelism
on edges, vertices and messages. Finally, Medusa
does not have the sophisticated design for distributed
systems, such as failure handling.

More recently, the GraphLab2 project [12], [24] fur-
ther decomposes the vertex-program abstraction into
small pieces, which also offer fine-grained parallelism
like our EMV model. Green-Marl [18] is another
recent effort on easing the difficulty of optimizing
GPU graph analysis algorithms, which uses domain-
specific language (DSL) to provide developers a high
level language interface. In comparison with Medusa,
Green-Marl processes all vertices with a foreach loop
in the order of BFS or DFS, and does not use message
passing mechanisms of the GBSP model.

2.2 GPGPU

In this work, we adopt NVIDIA CUDA as our
development platform. The GPU consists of an array

3

of streaming multiprocessors (SM). Inside each SM is
a group of scalar cores. CUDA allows developers to
write device programs, which are called kernels, to
run on hundreds of GPU cores with thousands of
threads. Each 32 of the massive number of threads
are grouped as a warp and execute synchronously
on one SM. Divergence inside a warp is supported
but may introduce a severe performance penalty since
different paths are executed serially. An important
memory feature exposed by CUDA is called coalesced
accesses. If memory requests issued by a warp fall into
the same memory segment, they are coalesced into
one, thus significantly improving memory bandwidth
utilization. Different from common CPUs, the CUDA
memory hierarchy includes a scratchpad memory
called shared memory which has much lower latency
than the device memory.

With massive parallelism, GPUs have been adopted
to accelerate graph processing. Harish et al. [14]
investigated the design and implementation of several
most commonly used graph algorithms on GPUs,
including BFS, single source shortest paths (SSSP) and
all-pair shortest paths (APSP). Hong et al. proposed
a virtual warp-centric [19] GPU BFS algorithm with
optimization techniques such as deferring outliers
to address irregularities of the graph data struc-
ture. Compared with Harish’s work, the warp-centric
method achieved notable speedup when the input
graph is highly irregular. Luo et al. [28] and Merrill
et al. [30] implemented BFS with queue structures
to store the frontier vertices or edges in order to
reduce excessive accesses. Most existing GPU graph
processing studies focus on specific algorithms.

Both Medusa and our previous work Mars [15]
are designed as programming frameworks to simplify
parallel GPU programming with sequential interfaces.
Medusa is specifically designed for graph processing.
We have also addressed some inefficient designs of
Mars, e.g., the graph-aware message passing mecha-
nism for Medusa avoids the costly pre-counting result
output mechanism in Mars.

3 OVERVIEW

The following two design goals guide our design
to make a useful programming framework for dif-
ferent graph processing algorithms. Particularly, pro-
grammability is our first-class design goal, and our
overall goal is to offer a highly programmable graph
processing framework for different applications with
reasonable performance.

We present our techniques for directed graphs, and
the techniques are applicable to undirected graphs. In
a directed graph, we define an edge s → t, where
s is the head vertex and t is the tail vertex. We say
the edge is associated with s. Each vertex in the graph
has a unique ID ranging in [0, V − 1], where V is the
number of vertices in the graph. For the set of edges

...

VERTEX

API

MLIST

API

Combiner

API

PCI-e

Medusa Runtime

Medusa Storage

ELIST

API

EDGE

API

GPU 2GPU 1 GPU N

Medusa Front End

MESSAGE

API

Fig. 1. An overview of Medusa.

associated with the same vertex, we assign a unique
local ID for each edge ranging in [0, d − 1], where d
is the out-degree of the vertex. dmax is defined as the
maximum value of the out-degrees in the graph.

In the remainder of this section, we present the
programming interface and workflow of Medusa,
mainly from the developers’ perspective.

3.1 Programming Interface

Figure 1 shows the system architecture of Medusa.
Medusa is able to run on one or multiple GPUs in the
same machine. In this section, we give an overview
of the entire system from the developers’ perspective
on how they use Medusa. The detailed designs are
described in Section 4.

Previous studies [10], [25]–[27], [29] have shown
that the GBSP model greatly simplifies the compo-
sition of graph algorithms by offering a sequential
programming interface oriented on individual ver-
tices. This model is derived from the observation
of two common access patterns in various graph
applications. First, the processing of vertices and
edges is often localized within neighboring vertices.
Second, many graph applications have multiple iter-
ations where many edges and vertices are accessed
and updated within an iteration. Most GBSP-based
systems provide a single vertex-based API.

The EMV model of Medusa enhances the current
single vertex-based API design to support efficient
and fine-grained graph processing on the GPU. In par-
ticular, Medusa offers the following two mechanisms
for programmability and efficiency.

First, Medusa provides six device code APIs for
developers to write GPU graph processing algorithms,
as shown in Table 1. Each API is either for processing
vertices (VERTEX), edges (ELIST , EDGE) or mes-
sages (MESSAGE , MLIST). Using these APIs, pro-
grammers can define their computation on vertices,
edges and messages. The vertex and edge APIs can
also send messages to neighboring vertices. The idea
of providing six APIs is mainly for efficiency (The
details are presented in Section 4.1).

Second, Medusa hides the GPU-specific
programming details with a small set of system

4

TABLE 1
User-defined APIs in the EMV model

API Type Parameters Variant Description
ELIST Vertex v, Edge-list el Collective Apply to edge-list el of each vertex v
EDGE Edge e Individual Apply to each edge e
MLIST Vertex v, Message-list ml Collective Apply to message-list ml of each vertex v
MESSAGE Message m Individual Apply to each message m
VERTEX Vertex v Individual Apply to each vertex v
Combiner Associative operation o Collective Apply an associative operation to all edge-lists or message-lists

TABLE 2
System provided APIs and parameters in Medusa

API/Parameter Description
AddEdge (void* e), AddVertex (void* v) Add an edge or a vertex into the graph
InitMessageBuffer (void* m) Initiate the message buffer
maxIteration The maximum iterations that Medusa executes (231 − 1 by default)
halt A flag indicating whether Medusa stops the iteration
Medusa :: Run(Func f) Execute f iteratively according to the iteration control
EMV<type>:: Run(Func f ′) Execute EMV API f ′ with type on the GPU

provided APIs (Table 2). Particularly, Medusa
provides EMV < type >:: Run() to invoke the
device code API, which automatically sets up
the thread block configurations and calls the
corresponding EMV user-defined function. Medusa
allows developers to define an iteration by running
multiple EMV < type >:: Run() calls sequentially in
one host function (invoked by Medusa :: Run()). The
iteration is performed iteratively until predefined
conditions are satisfied. Medusa offers a set of
configuration parameters and utility functions for
iteration control.

Given user-defined data structures and definitions
of device code APIs, the Medusa front end automati-
cally transforms them into compilable CUDA kernels
and related device management code. The design goal
of the front end is to hide GPU specific programming
details. After the preprocessing using the front end,
the program is compiled and linked with the Medusa
libraries.

In the storage component, Medusa allows devel-
opers to initialize the graph structure by adding
vertices and edges with two system provided APIs,
namely AddEdge and AddVertex . After initialization,
the storage component stores the graph with the
optimized graph layout on the GPU (Section 4).
Note, the memory management on the GPU and data
transfer between the GPU memory and the main
memory is managed by Medusa, which is transparent
to developers.

The Medusa runtime is responsible for executing
the user-defined APIs in parallel on the GPU. Medusa
offers two system provided APIs for execution,
Medusa :: Run(Func f) and EMV<type>:: Run(Func
f ′). Medusa :: Run(Func f) is the main entry of
the Medusa execution, and executes function f
according to the iteration control policy, where f
usually consists of an execution sequence of the EMV

Device code APIs:
/* ELIST API */
struct SendRank{
__device__ void operator() (EdgeList el,
Vertex v){
 int edge_count = v.edge_count;
 float msg = v.rank/edge_count;
 for(int i = 0; i < edge_count; i ++)
 el[i].sendMsg(msg);
}
/* VERTEX API */
struct UpdateVertex{
__device__ void operator() (Vertex v, int
super_step){
 float msg_sum = v.combined_msg();
 vertex.rank = 0.15 + msg_sum*0.85;
}
Data structure definitions:
struct vertex{
 float pg_value;
 int vertex_id;
}
struct edge{
 int head_vertex_id, tail_vertex_id;
}
struct message{
 float pg_value;
}

Iteration definition:
void PageRank() {
 /* Initiate message buffer to 0 */
 InitMessageBuffer(0);
 /* Invoke the ELIST API */
 EMV<ELIST>::Run(SendRank);
 /* Invoke the message combiner */
 Combiner();
 /* Invoke the VERTEX API */
 EMV<VERTEX>::Run(UpdateRank);
}
Configurations and API execution:
int main(int argc, char **argv) {

 Graph my_graph;
 /* Load the input graph. */
 conf.combinerOpType = MEDUSA_SUM;
 conf.combinerDataType = MEDUSA_FLOAT;
 conf.gpuCount = 1;
 conf.maxIteration = 30;
 /*Setup device data structure.*/
 Init_Device_DS(my_graph);
 Medusa::Run(PageRank);
 /* Retrieve results to my_graph. */
 Dump_Result(my_graph);

 return 0;
}

Fig. 2. User-defined functions in PageRank imple-
mented with Medusa.

APIs. EMV<type>:: Run(Func f ′) executes an EMV
user-defined API on the graph storage according
to type (type ∈ {ELIST, EDGE, MLIST, MESSAGE,
MLIST}).

3.2 Medusa Workflow
There are three steps to implement a graph algorithm
based on Medusa. First, the developer defines the
basic data structures such as edge, message and vertex
in C/C++ structs. Second, the developer implements
EMV APIs according to his/her application logic.
Third, the developer composes the main program,
including initializing the graph structure, configuring
the framework parameters and invoking the cus-
tomized EMV APIs with the system provided APIs
(in Table 2).

Many graph computation tasks require multiple
iterations until convergence. To support iterations,

5

Medusa provides two interfaces for controlling the
number of iterations of the execution. Developers can
use both of them for a more flexible iteration control.
First, the developer can specify the maximum number
of iterations, maxIteration . Medusa terminates when
the number of iterations reaches the predefined limit.
Second, Medusa has defined a global variable halt ,
which can be modified by the EMV APIs. By ini-
tializing halt as false, the framework continues the
iterations until any of the API instance sets halt to be
true. This is equivalent to all API instances needing
to vote false to continue the iteration. This iteration
control mechanism is also used in Pregel [29].

To demonstrate the usage of Medusa, we show
an example of the PageRank implementation with
Medusa, as shown in Figure 2. Data structures (e.g.,
vertex) are defined. The function PageRank() is com-
posed of three user-defined EMV API function calls:
an ELIST type API (SendRank), a message Combiner
and a VERTEX type API (UpdateRank). In the main
function, we configure the execution parameters such
as the Combiner data type and operation type, the
number of GPUs to use and the maximum number
of iterations. Init Device DS automatically builds the
graph data structures and copies them to the GPU.
Medusa::Run(PageRank) invokes the PageRank func-
tion.

4 SYSTEM DESIGN

This section details the design and implementation
of Medusa. The Medusa runtime involves advanced
and complicated mechanisms and implementations in
order to improve the efficiency with the constraint
of preserving high programmability. Most runtime
optimizations are entirely transparent to developers.
Some implementations may be seemingly trivial for
specific applications, but become challenging to in-
tegrate into a framework to support general graph
processing operations. In particular, Medusa focuses
on processing sparse graphs.

Table 3 presents a summary of the list of opti-
mizations in Medusa and their respective advantages.
The proposed optimizations enable Medusa to better
exploit massive parallelism and memory features of
the GPU while preserving the simple programming
interface at the same time. For multi-GPU execution,
the graph is partitioned using METIS [22]. Due to
space limitations, we present the details on the GPU-
transparent programming interface and graph layouts
in Appendix A of the supplementary file.

4.1 Fine-Grained Graph APIs
Most GBSP model based systems provide a single ver-
tex centered API. Programmers use the single vertex
API to access all associated edges and messages (one
typical access pattern is iterating edges/messages one
by one). While the single vertex-based API design

of the GBSP model has achieved good performance
and programmability on distributed systems like
Pregel [29], such coarse-grained designs are inefficient
on GPUs due to execution divergence and irregular
memory access. The vertex-based API exhibits severe
divergence which makes it unsuitable for GPU ex-
ecution. First, different vertices may have different
numbers of edges, leading to different workloads
on each API instance. Second, different number of
received messages is another source of divergence. As
for memory efficiency, the vertex-centric API makes
the memory optimizations on edges and messages a
challenging task.

To address those issues, we propose the EMV
model as an extension of GBSP. It decouples the
single vertex API into separate APIs which target
individual vertices, edges or messages. Each GPU
thread executes one instance of the user-defined API.
The thread configuration such as the number of
threads is tuned to maximize GPU utilization. The
fine-grained data parallelism exposed by the EMV
model can better exploit the massive parallelism of
the GPU.

In addition, Medusa supports two variants of
APIs for individual and collective operations of
edges and messages associated with the same vertex.
The collective APIs allow developers to access the
elements in each edge-list (the set of edges associated
with the same head vertex) or a message-list (the set
of messages sent to the same vertex) sequentially.
On the other hand, the individual APIs support
operations on individual edges, vertices or messages
and expose more parallelism. Medusa also provides
a Combiner interface, with which developers can
apply an associative operator to all the elements
of each edge-list and message-list. All these APIs
require no parallel programming, and developers
write conventional sequential code to implement
those APIs.

The collective APIs forms a superset of the in-
dividual APIs in terms of expressibility. Operations
which involve dependent computation (e.g., the com-
putation on one edge depends on other edges in the
same edge-list) can only be implemented by collective
APIs. However, we have observed that many graph
algorithms do not need dependent computation on
the edge-lists or message-lists. Choosing individual
graph elements yields better workload balance and
more parallelism. Moreover, many dependent com-
putations are associative operations, for example,
PageRank sums the values of received messages of
each vertex to update rank values. This enables us to
use the Combiner interface. The Combiner interface
is implemented as segmented scan, which has the
load-balanced implementation on GPUs [33].

By default, Medusa applies the user-defined API
on the vertices/edges on the entire graph. This
may result in work-suboptimal algorithms for some

6

TABLE 3
Summary of techniques used in Medusa and their advantages

Problem Solution Advantage
Massive parallelism EMV API Fine grained parallelism for massive parallelism
Work efficiency Queue-based implementation with our

SetActive API
Allow developing more work-efficient algorithm

GPU specific programming details Automatic GPU specific code generation Eliminate the GPGPU learning curve
Graph layout Novel graph representation Better memory bandwidth utilization
Message passing efficiency Graph-aware buffer scheme Better memory bandwidth utilization and avoid

message grouping overheads
Multi-GPU execution Replication, memory transfer/computa-

tion overlapping
Alleviate PCI-e overheads

0

1

23

4

5 A B C D

A B C D

Message

buffer

Receive

messages

Send

messages

(a) Original graph (b) Reversed graph and rID (c) Graph aware buffer scheme

0 1 2 3 4 5

Fig. 3. Graph aware buffer scheme.

applications such as BFS and SSSP. In order to allow
developers to implement work-efficient algorithms,
we have added an additional device code API called
SetActive(vertexID/edgeID), and developers are able
to indicate whether a vertex or an edge is active in
the next EMV API call. The active edges/vertices are
maintained in a dynamic queue. We implement the
queue structure following the previous study [30] ,
where we do not have specific order of enqueuing
vertices or edges. In subsequent API invocations,
developers are able to apply the EMV APIs to the
active vertices and edges only and thus implement
more work efficient algorithms. With the SetActive
API, we have implemented work-efficient BFS and
SSSP algorithms and experimentally evaluated their
performance (described in Section 5).

4.2 Graph-Aware Buffer Scheme

Messages are temporarily stored in buffers,
allocated by calling the system provided API
InitMessageBuffer . We first discuss two basic buffer
schemes, array- and list-based buffer schemes with
respect to the memory efficiency of sending and
receiving messages.

The array-based buffer scheme is to allocate an
array for message storage. Implementing the buffer
with a fixed-sized array, this buffer scheme requires
the information of the buffer size as well as the
output positions for each message to avoid conflicts.
Even worse, if the messages to the same vertex are
not stored consecutively, Medusa needs a grouping
operation in order to support message processing
in collective user-defined APIs. In contrast, the list-
based buffer scheme relies on dynamic memory
allocation. We adopt a hash table with dynamic mem-

ory allocation [17] to store messages. This method
eliminates the pre-computation of message sizes and
the grouping operation in the array-based storage
scheme. However, the dynamic hash table requires
atomic operations and the accesses to the hash table
are minimally coalesced.

Neither of the two buffer schemes can achieve
good performance on both storing and processing
the messages. That motivates us to develop a buffer
scheme to capture the best of both worlds. We observe
that the messages are usually sent/received along the
edge in the EMV model. Given the maximum number
of messages that can be sent along each edge, we can
compute (1) the maximum total number of messages;
(2) the maximum number of messages that each vertex
can receive. The awareness of the graph structure
helps us to allocate the buffer, and to obtain the write
positions of the messages along each edge.

To avoid the grouping operation, we ensure that
the write positions of the messages sent to the same
vertex are consecutive. This is achieved with the idea
of “reversed edge indexed message passing.” While
loading the graph, Medusa constructs a reverse graph
by swapping the head and tail of each edge. The
reverse graph is stored in AA format. We assign an
rID (reverse ID) for each edge in the original graph,
whereby the rID value of each edge equals the index
of its reverse edge in the adjacency array. Figure 3(b)
shows the rID value for each edge in an example
graph.

The rID definition has an important property: the
rID values for the edges with the same tail vertex are
consecutive integers. For example, the rIDs of the edges
with the same tail vertex D in the original graph
in Figure 3 are 4 and 5. We take advantage of this
property to ensure that the write positions of the
messages sent to the same vertex are consecutive.

The graph aware buffer scheme works as follows.
First, a message buffer with (E × m) entries is
allocated, where m is the maximum number of
messages that can be sent via each edge. For example,
m is equal to one in PageRank. Medusa allows
developers to set the m value. Second, when a
message is sent along an edge and the rID of that
edge is k, the start position for the message generation

7

is (k × m) in the message buffer. Figure 3(c) shows
an example of the graph aware buffer scheme for
PageRank (m = 1).

When sending messages, the rID values give the
write locations for the message along each edge.
When receiving messages, the messages for the same
vertex are already stored together. Thus, all the
messages are already grouped by the tail vertex.
This is because of the property of the rID values.
Thus, no additional grouping operation is needed.
Moreover, the message buffer uses an array, and thus
the memory efficiency of message processing is much
higher than that of the list-based buffer scheme, as
demonstrated in our experiments.

4.3 Multi-GPU Execution

We first present a basic implementation of the multi-
GPU extension, and then our multi-hop replication
optimization to reduce the data transfer cost in
the PCI-e bus. Our multi-hop replication scheme is
inspired by stencil operation optimizations [6], [11].
Differently, we target at partitioned graphs in multi-
GPU environments.

Replication. To accommodate multi-GPU graph
processing, we divide the graph into equal-sized
partitions and store each partition on one GPU.
We adopt the widely used graph partitioning tool
METIS [22] to partition the input graph. Clearly,
the quality of graph partitioning has great effect on
the amount of data transfer among different GPUs.
It is our future work to investigate other graph
partitioning algorithms.

Figure 4(a) shows an example with three GPUs. A
directed graph is partitioned into three parts and each
part is stored on one GPU. In the design of Medusa,
messages are passed along edges. Graph partitioning
introduces cross-partition edges, whose head and tail
vertices are in different partitions and hence stored on
different GPUs.

In order to apply EMV APIs on each graph par-
tition, we maintain replicas of the head vertices of
all cross-partition edges in the partitions where the
tail vertices reside (we call it the tail partition). Each
cross partition edge is replicated in its tail partition,
as shown in Figure 4(b). Thus, messages are emitted
directly from the replicas and every edge can access its
head and tail vertices directly. The execution of EMV
APIs is performed on each partition independently.
After the execution, we update the replicas on each
graph partition. The update requires the costly PCI-
e data transfer, which can become a bottleneck for
some application such as BFS. We therefore propose a
multi-hop replication scheme as well as overlapping
on the computation and data transfer to alleviate the
overhead of PCI-e data transfer.

Multi-hop Replication Scheme. When the inter-
GPU communication time is dominant in the total

A

B C

Partition 1

D

E
F

Partition 2

G

H

Partition 3

(a)

A

B C

Partition 1

Partition 2 Partition 3

D

E
F

B
G

H

C

F

(b)
Fig. 4. Graph partitioning and replication: (a) direct
partitioning; (b) replication for EMV executions (dashed
circles represent the replicas).

execution time, reducing the time cost of communica-
tion can significantly improve the application perfor-
mance. The multi-hop replication scheme presented
alleviates the overhead of inter-GPU communication
by reducing the number of times of replica update.

Instead of only maintaining head vertices of cross-
partition edges as replicas, we introduce the second
hop replicas by replicating tail vertices of the first hop
replicas. Similarly, more hops of replicas can be added
to each partition. We call this approach as multi-hop
replication scheme. Our multi-hop replication scheme
is inspired by stencil operation optimizations [11].
Due to the message propagation nature of the EMV
model, replica update only needs to be carried out
after every n iterations if there are n hops of replicas.
We call n iterations as a round and one round has n
stages. As the stages are carried out outer hops of
replicas are marked as “outdated”. That essentially
uses the eventual consistency model, and the data are
consistent after each round.

Figure 5 shows an example of the same graph as
in Figure 4. Now Partition 2 and Partition 3 both
maintain two-hop replication. The replicas need to be
updated every two iterations, reducing the number
of replica update by a half. In the first stage of each
round, Medusa APIs are applied to all vertices in
each partition. After that, the second hop replicas are
outdated and are not processed in the second stage.
After each round, the replicas are updated and a new
round start.

As described above, increasing the number of
replica hops can reduce the number of times of updat-
ing replicas. However, this scheme is not guaranteed
to be beneficial compared with the basic replication
scheme since more replicas and edges need to be
processed. For example, maintaining multiple hops
of replicas for dense graphs or small-world graphs
with a small diameter can lead to explosive growth
of replica vertices. However, since Medusa mainly
deals with sparse graphs, multi-hop replication can
be beneficial. For a given graph, we estimate the
benefits of all possible hop numbers within the
storage constraint and select the best one. Medusa
uses a cost model to estimate the benefits of all
possible hop numbers. More details can be found in
Appendix A.3.

8

G

H

C

F

Partition 3

E

A

Level 1Level 2

D

E
F

B

Partition 2

A

Level 1

Level 2

Fig. 5. Graph partitioning with multi-hop replication.

TABLE 4
Characteristics of graphs used in the experiments

Graph Vertices
(106)

Edges
(106)

Max
d

Avg
d

σ

RMAT 1.0 16.0 1742 16 32.9
Random (Rand) 1.0 16.0 38 16 4.0
BIP 4.0 16.0 40 4 5.1
WikiTalk (Wiki) 2.4 5.0 100022 2.1 99.9
RoadNet-CA (Road) 2.0 5.5 12 2.8 1.0
kkt power (KKT) 2.1 13.0 95 6.3 7.5
coPapersCiteseer
(Cite)

0.4 32.1 1188 73.9 101.3

hugebubbles-00020
(Huge)

21.2 63.6 3 3.0 0.03

5 EVALUATION

5.1 Experimental Setup

We have conducted the evaluations on a workstation
equipped with four NVIDIA Tesla C2050 GPUs, two
Intel Xeon E5645 CPUs (totally 12 CPU cores at
2.4GHz) and 24GB RAM.

Our workloads include a set of common graph pro-
cessing operations for manipulating and visualizing
a graph on top of Medusa. The graph processing
operations include PageRank, breadth first search
(BFS), maximal bipartite matching (MBM), and single
source shortest paths (SSSP). In order to assess the
queue-based design in Medusa, we have implemented
two versions of BFS: BFS-N and BFS-Q for the
implementations without and with the usage of
SetActive APIs, respectively. Similarly, we have also
implemented two versions of SSSP: SSSP-N and SSSP-
Q without and with the usage of SetActive APIs,
respectively. The implementation details are presented
in Appendix B of the supplementary file. In the
remainder of this section, we use “Medusa” to refer
to the better-performing implementation of the two
versions on BFS and SSSP, unless we specify “-N” and
“-Q” explicitly.

Our experimental dataset includes two categories
of sparse graphs: real-world and synthetic graphs.
Table 4 shows their basic characteristics. We use the
GTgraph graph generator [2] to generate power-law
graph RMAT and Random graph. To evaluate MBM,
we generate a synthetic bipartite graph (denoted as
BIP), where vertex sets of two sides have one half of
the vertices and the edges are randomly generated.
The real world graphs are publicly available [1], [3].

All the experiments are executed for ten runs and
the average execution time is reported. The difference
among runs for the same experiment is smaller than
2%. For BFS and SSSP, we randomly choose 100 source
vertices and report the average execution time.

5.2 Comparison with Manual Implementations

We first compare the Medusa BFS and SSSP im-
plementations with manual implementations of GPU
graph processing: Harish’s work [14] and Hong’s
work [19].

Harish’s work provides an open-source implemen-
tation of BFS and SSSP using CUDA and we tune the
thread configuration and shared memory optimiza-
tions according to the C2050 Fermi architecture. We
use it as the basic implementation. We implement
the virtual warp-centric BFS proposed in Hong’s
work [19]. The underlying difference between the
Medusa implementation and the warp-centric method
is that Medusa applies L threads to a vertex if that
vertex has L edges, while the warp-centric method
applies a virtual warp to a vertex. As a result, our
method incurs more memory accesses because we
check the head vertex status for every edge.

Table 5 shows the traversed edges per second
(TEPS) comparison between the three implementa-
tions of BFS. Compared to the basic implementation,
Medusa performs better on all graphs except KKT.
Although Medusa incurs more memory access and
runtime overhead than the highly optimized warp-
centric method, Medusa outperforms warp-centric on
some graphs and degrades the performance on other
graphs. Note that the reported results of the warp-
centric approach are better than those in the original
paper [19], mainly because the GPU in our experiment
is more powerful.

Figure 6 shows the performance comparison be-
tween Medusa and basic implementation of SSSP.
Medusa provides comparable performance with the
basic implementation except on Road and Huge. On
large-diameter graphs such as Road and Huge, the
performance of Medusa-based SSSP is notably worse
than that of the basic implementation. This is because
the Combiner API invocation in SSSP takes a large
part of its execution time and that overhead is almost
fixed for every iteration.

Programmability is difficult for a quantitative com-
parison. As a start, we show the programmability
comparisons on some major implementation issues of
GPU programs in Table 6. Medusa simplifies GPU
programming for graph processing, by significantly
reducing the number of GPU-related source code lines
written by developers. This is because Medusa hides
the GPU programming complexity by offering a small
set of user-defined APIs. For example, developers
only need to write 7 and 11 lines of source code for
defining the APIs in BFS-Q and SSSP-Q, respectively,
whereas the basic implementation [14] has 56 and
59 lines of GPU-related code. Moreover, compared to
manual implementations, Medusa requires no parallel
or GPU specific programming.

Overall, Medusa offers reasonable performance
in comparison with manual implementations. With

9

TABLE 5
Traversed edge per second (106 TEPS) comparison

with manual implementations [14], [19].

Basic Warp-centric Medusa
Wiki 61.4 152.9 1091.1
Road 26.2 45.7 63.5
RMAT 593.2 971.1 895.8
Rand 648.6 844.95 765.8
Huge 5.7 1.3 68.1
KKT 480.7 175.7 351.5
Cite 1460.4 1503.1 2686.7

TABLE 6
Coding complexity of Medusa implementation and

manual implementations.

Baseline Warp-centric Medusa
(N/Q)

GPU code lines (BFS) 56 76 9/7
GPU code lines (SSSP) 59 N.A. 13/11
GPU memory management Yes Yes No
Kernel configuration Yes Yes No
Parallel programming Thread Thread+Warp No

different design goals, Medusa is to offer good pro-
grammability with reasonable performance, whereas
manual implementations usually do not consider
programmability. Some techniques that are applicable
to manual implementations may not be applicable to
Medusa, if they hurt programmability.

We present more experimental results on BFS. Ta-
ble 7 shows the comparison on BFS between Medusa-
based implementation and the Contract-Expand and
Hybrid approaches in Merrill et al.’s paper [30].
The Hybrid approach is more optimized than the
Contract-Expand approach. For more details of those
approaches, we refer the reader to the original pa-
per [30]. The design and implementation of Medusa-
based BFS is similar to the Contract-Expand approach,
but targets at general graph processing. Overall,
Medusa-based implementation can be slower than
the Contract-Expand approach on some graphs such
as Huge and KKT, and can be faster on other
graphs such as Cite. On the other hand, Medusa-
based implementation is slower than the Hybrid
approach on all the three graphs. Compared with var-
ious specific optimizations for BFS, Medusa involves

0

200

400

600

800

1000

RMAT Rand Wiki Road Huge KKT Cite

E
x

e
c
u

ti
o

n
 T

im
e
 (

m
s)

Basic

Medusa

141826405691965

Fig. 6. Performance comparison between Medusa and
existing GPU implementation of SSSP [14].

TABLE 7
Traversed edge per second (109 TEPS) comparison

with Merrill et al.’s paper [30].

Medusa Contract-Expand [30] Hybrid [30]
Huge 0.1 0.4 0.4
KKT 0.4 0.7 1.1
Cite 2.7 1.3 3.0

considerate runtime overhead in supporting general
graph processing, for example, message passing based
mechanisms.

5.3 Experiments on Efficiency
Overall comparisons. We implement the graph pro-
cessing operations with MTGL [7], as the baseline for
graph processing on multi-core CPUs.

The BFS and PageRank implementations are of-
fered by MTGL and we implement the Bellman-
Ford algorithm for single source shortest paths and
a randomized maximal matching algorithm [4] using
the MTGL APIs. We tuned the number of threads in
MTGL and report the best result obtained when the
number of threads was 12 on our machine. MTGL
running on 12 cores is on average 3.4 times faster
than that running on one core. Due to the memory
intensive nature of graph algorithms, the scalability
of MTGL is limited by the memory bandwidth.

Figure 7 shows the speedup for Medusa over MTGL
running on 12 cores. The speedup is defined as the ratio
between the elapsed time of the CPU-based execution
and that of Medusa-based execution. PageRank is
executed with 100 iterations. Medusa is significantly
faster than MTGL on most comparisons and delivers
a performance speedup of 1.0–19.6 with an average
of 5.5 (we report the better results of the two
implementations of BFS and SSSP, respectively). On
some graphs such as Road, BFS-N is notably slower
than MTGL-based BFS, because the work-inefficient
issue of BFS-N is exaggerated on the graphs with large
diameter.

The work-efficient BFS and SSSP algorithms (BFS-
Q and SSSP-Q) achieve better performance on the
graphs with large diameters, and can degrade the
performance in some cases (e.g., Rand, Wiki and KKT)
due to the computation and memory overhead in
maintaining the queue structure. This is consistent
with the previous studies [19]. Currently, we leave
the decision on whether to use the SetActive API to
the users. In the future work, we consider whether
this decision can be made automatically in Medusa.

6 CONCLUSIONS

In this paper, we address the efficiency and pro-
grammability of GPU-based parallel graph processing
by developing a programming framework named
Medusa. Medusa embraces an optimized runtime

10

0

2

4

6

8

10

12

14

16

18

20

RMAT Rand Wiki Road Huge KKT Cite BIP

M
ed

u
sa

 o
v
er

 M
T

G
L

 S
p

ee
d

u
p

BFS-N

BFS-Q

SSSP-N

SSSP-Q

PageRank

BM

Fig. 7. Performance speedup of Medusa running on
the GPU over MTGL [7] running on 12 cores.

system to hide the programming complexity of imple-
menting parallel graph computation tasks for GPUs.
Developers only need to write sequential programs
to implement a small set of APIs. On an NVIDIA
Tesla C2050 GPU, Medusa-based implementations are
5.5 times on average faster than the parallel MTGL
based implementations on two Intel six-core CPUs.
Moreover, with much less coding complexity, Medusa
achieves comparable or even better performance than
existing manual implementations. As for future work,
we are interested in evaluating Medusa in other
architectures such as Intel Xeon Phi and extending
Medusa to distributed environments.

The source code of Medusa is available at http://
code.google.com/p/medusa-gpu/.

7 ACKNOWLEDGEMENT

The authors would like to thank the anonymous
reviewers for their valuable comments, and Pawan
Harish for providing the source code for CUDA-based
BFS and shortest paths. This work is partly supported
by a MoE AcRF Tier 2 grant (MOE2012-T2-2-067) and
an NVIDIA Academic Partnership Award.

REFERENCES

[1] 10th DIMACS implementation challenge. http://www.
cc.gatech.edu/dimacs10/index.shtml, accessed on Feb 17th,
2013.

[2] GTGraph generator. http://www.cse.psu.edu/∼madduri/
software/GTgraph/index.html, accessed on Feb 17th, 2013.

[3] Stanford large network dataset collections. http://snap.
stanford.edu/data/index.html, accessed on Feb 17th, 2013.

[4] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker.
High-speed switch scheduling for local-area networks. ACM
Trans. Comput. Syst., 11:319–352, November 1993.

[5] D. Bader and K. Madduri. SNAP, small-world network
analysis and partitioning: An open-source parallel graph
framework for the exploration of large-scale networks. In
IPDPS, pages 1–12, 2008.

[6] F. Bassetti, K. Davis, and D. J. Quinlan. Optimizing
transformations of stencil operations for parallel object-
oriented scientific frameworks on cache-based architectures. In
International Symposium on Computing in Object-Oriented Parallel
Environments, 1998.

[7] J. Berry, B. Hendrickson, S. Kahan, and P. Konecny.
Software and algorithms for graph queries on multithreaded
architectures. In IPDPS, March 2007.

[8] A. Buluç and J. R. Gilbert. The Combinatorial BLAS: Design,
implementation, and applications. Int. J. High Perform. Comput.
Appl., 25(4), Nov. 2011.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. Communications of the ACM,
51(1):107–113, 2008.

[10] M. Delorimier, N. Kapre, N. Mehta, D. Rizzo, I. Eslick,
R. Rubin, T. E. Uribe, T. F. Knight, and A. Dehon. GraphStep:
A system architecture for sparse-graph algorithms. In FCCM,
2006.

[11] M. Frigo and V. Strumpen. Cache oblivious stencil
computations. In ICS, 2005.

[12] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
PowerGraph: Distributed graph-parallel computation on
natural graphs. In OSDI, 2012.

[13] D. Gregor and A. Lumsdaine. The Parallel BGL: A generic
library for distributed graph computations. In Parallel Object-
Oriented Scientific Computing (POOSC), 2005.

[14] P. Harish and P. J. Narayanan. Accelerating large graph
algorithms on the GPU using CUDA. In HiPC, 2007.

[15] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mars:
A MapReduce framework on graphics processors. In PACT,
2008.

[16] G. He, H. Feng, C. Li, and H. Chen. Parallel SimRank
computation on large graphs with iterative aggregation. In
SIGKDD, 2010.

[17] C. Hong, D. Chen, W. Chen, W. Zheng, and H. Lin. MapCG:
Writing parallel program portable between CPU and GPU. In
PACT, 2010.

[18] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-Marl: A
DSL for easy and efficient graph analysis. In ASPLOS, London,
England, UK, 2012.

[19] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun.
Accelerating CUDA graph algorithms at maximum warp. In
PPoPP, 2011.

[20] U. Kang, C. Tsourakakis, A. P. Appel, C. Faloutsos, and
J. Leskovec. HADI: Fast diameter estimation and mining in
massive graphs with Hadoop. Technical Report CMU-ML-08-
117, Carnegie Mellon University, 2008.

[21] U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASUS:
A peta-scale graph mining system – implementation and
observations. In ICDM, 2009.

[22] G. Karypis and V. Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal on
Scientific Computing, 20(1):359–392, 1998.

[23] G. J. Katz and J. T. Kider, Jr. All-pairs shortest-paths for large
graphs on the GPU. In Graphics hardware, 2008.

[24] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi: Large-scale
graph computation on just a PC. In OSDI, 2012.

[25] J. Lin and M. Schatz. Design patterns for efficient graph
algorithms in MapReduce. In MLG, 2010.

[26] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. M. Hellerstein. GraphLab: A new parallel framework for
machine learning. In Conference on Uncertainty in Artificial
Intelligence (UAI), July 2010.

[27] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. M. Hellerstein. Distributed GraphLab: A framework for
machine learning and data mining in the cloud. PVLDB,
5(8):716–727, April 2012.

[28] L. Luo, M. Wong, and W.-m. Hwu. An effective GPU
implementation of breadth-first search. In DAC, 2010.

[29] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski. Pregel: A system for large-scale graph
processing. In SIGMOD, 2010.

[30] D. Merrill, M. Garland, and A. Grimshaw. Scalable GPU graph
traversal. In PPoPP, 2012.

[31] J. D. Owens, D. Luebke, N. K. Govindaraju, M. Harris,
J. Kruger, A. E. Lefohn, and T. J. Purcell. A survey of general-
purpose computation on graphics hardware. In Eurographics,
State of the Art Reports, 2005.

[32] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank
citation ranking: Bringing order to the Web. Stanford InfoLab.
Technical report, 1999.

[33] S. Sengupta, M. Harris, and M. Garland. Efficient parallel scan
algorithms for GPUs. NVIDIA, Tech. Rep. NVR-2008-003.

[34] J. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost Graph Library:
User Guide and Reference Manual. Addison-Wesley, 2002.

[35] V. Vineet and P. J. Narayanan. CUDA cuts: Fast graph cuts on
the GPU. In CVPR Workshops, June 2008.

11

PLACE
PHOTO
HERE

J ianlong Zhong received the bachelor de-
gree in software engineering from Tianjin
University (2006-2010), and is now a PhD
candidate in School of Computer Engineer-
ing of Nanyang Technological University, Sin-
gapore. His research interests include GPU
computing and parallel graph processing.

PLACE
PHOTO
HERE

B ingsheng He received the bachelor degree
in computer science from Shanghai Jiao
Tong University (1999-2003), and the PhD
degree in computer science in Hong Kong
University of Science and Technology (2003-
2008). He is an assistant professor in Divi-
sion of Networks and Distributed Systems,
School of Computer Engineering of Nanyang
Technological University, Singapore. His re-
search interests are high performance com-
puting, cloud computing, and database sys-

tems.

