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Abstract—JSON is a very popular data format in many ap-
plications in Web and enterprise. Recently, many data analytical
systems support the loading and querying JSON data. However,
JSON parsing can be costly, which dominates the execution time
of querying JSON data. Many previous studies focus on building
efficient parsers to reduce this parsing cost, and little work has
been done on how to reduce the occurrences of parsing. In this
paper, we start with a study with a real production workload
in Alibaba, which consists of over 3 million queries on JSON.
Our study reveals significant temporal and spatial correlations
among those queries, which result in massive redundant parsing
operations among queries. Instead of repetitively parsing the
JSON data, we propose to develop a cache system named Maxson
for caching the JSON query results (the values evaluated from
JSONPath) for reuse. Specifically, we develop effective machine
learning-based predictor with combining LSTM (long short-
term memory) and CRF (conditional random field) to determine
the JSONPaths to cache given the space budget. We have
implemented Maxson on top of SparkSQL. We experimentally
evaluate Maxson and show that 1) Maxson is able to eliminate the
most of duplicate JSON parsing overhead, 2) Maxson improves
end-to-end workload performance by 1.5–6.5×.

Index Terms—JSON parsing, semi-structured format, data
analytics system.

I. INTRODUCTION

In many Web and enterprise applications, JSON is a highly

popular data exchange format. The attractive features of JSON

include flexibility, simplicity, human-readability, and high ex-

pressive power. As such, nine of the ten most popular Web

APIs (mainly composed of APIs provided by big companies

such as Google, Facebook, and Twitter) expose data in JSON

format [1]. Many data analytics engines (e.g. Spark [2],

Flink [3], Storm [4], Drill [5]) natively support loading and

querying JSON data. However, unlike relational data, JSON

is a semi-structured format and thus has to be parsed before

further analysis and query. Recent research indicates that a

key bottleneck in querying raw data is parsing the data itself,

about 80% execution time spent on parsing JSON data [6].
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Many previous studies focus on building efficient parsers to

reduce this parsing cost [6]–[9]. Mison [6] utilizes the SIMD

instruction to build a field index for a JSON string based

on a special structure character such as brackets and colons.

Sparser [7] develops a new approach that apply filters on

raw byte stream before parsing based on the observation that

many real-world applications have high selectivity. Despite

the significant improvement in parsing speed, the overhead

can still be large for a large amount of JSON and complex

JSONPath. In reality, many enterprises face the challenging

problem of executing a large number of queries on a large

amount of JSON data every day across thousands of servers.

Thus, besides improving the parsing speed, it is also important

to research on how to reduce the occurrences of parsing.
In this paper, we start with a study with a real production

workload from Alibaba. In Alibaba, JSON format is widely

used to record information generated from various business

and analytics tasks, and the data volume continues to grow

rapidly. The workload in our study is a five-month trace

which consists of about 3 million queries on JSON. The study

reveals that high repeatability of JSONPath executions in those

queries. We find that over 89% of JSON parsing traffic is spent

on repetitive JSONPath executions across different queries.

Since each query needs to parse JSON once, massive parsing

redundancies cause significant waste in cluster resources.
Motivated by the previous study on big data workloads [10],

we find that the JSONPath redundancy is due to significant

temporal and spatial correlations among queries.

• Temporal correlations: The queries exhibit temporal cor-

relations where it is common to have a series of queries

involving the same JSON parsing on the same data set

in different time windows. Note that new JSON data are

stored in the production cluster periodically. For example,

one data set might store sale logs and is appended daily

with new entries. A query might be issued daily to

retrieve the most sales items from the sale logs over 3-day

sliding windows. These daily queries have clear temporal

correlations.



• Spatial correlations: The queries also exhibit spatial

correlations where a data set is often the target of multiple

queries involving overlapping or even the same JSONPath

parsing. Take the same sale logs as an example. A query

might probe the most turnover items in the same 3-day

window, thereby exhibiting spatial correlations with the

first set of queries and both queries will parse item name

and item id (see in Fig. 1).

Based on the above observations, we propose to develop

a cache system named Maxson1 for caching the JSON query

results (the values evaluated from JSONPath) for reuse. Max-

son leverages high JSONPaths repeatability in the workload

to avoid duplicate parsing overhead across different queries.

There have been many previous studies on improving caching

systems under different contexts [11]–[14]. They usually have

rather sophisticated caching policies and advanced replace-

ment policies. In our study, we look for a simple and suffi-

ciently effective caching strategy for the production workload.

Also, we hope that our system can cause minimal changes to

existing data analytics platforms. Specifically, Maxson features

the following two simple and efficient designs.

First, we develop effective machine learning-based predictor

with combining LSTM (long short-term memory) and CRF

(conditional random field) to determine the JSONPaths to

cache given the space budget. We call the JSONPath with

the parsed times greater than or equal to twice in one day as

Multiple-Parsed JSONPath (MPJP). MPJP are candidates for

caching with benefits. Every midnight, we predict and pick the

MPJP which can minimize the execution under limited storage

resources. After that we parse their values from the raw data

table and cache them into a new cache table with the same

storage format as the raw data table. Those parsing operations

can be done at the non-peak hours of the cluster. Then we can

read the value directly from the cache table without parsing

overhead for JSONPath cache hits.

Second, to enable queries to make use of the cached

JSONPaths, a query plan modifier is implemented. Because

of the cache, a part of the data of each record comes from the

raw data table, and other part of the data comes from the cache

table. These two parts of data belonging to the same row need

to be stitched together correctly to form a complete record. The

naive method is to join the raw data table and cache table to

find the complete record, but the join operations can be costly.

To do alignment efficiently, we initialize two parallel and

synchronized readers: one is responsible for reading the cache

table and the other is responsible for reading the raw data

table. We design synchronized methods to guarantee that the

two readers will read the data from the same row. Furthermore,

for queries with filtering predicates on the values of cached

JSONPaths, we also implemented predicate pushdown onto

the cache table to maximize query performance.

1The source code is available at https://github.com/CGCL-codes/Maxson

II. PRELIMINARIES

A. JSON Data in Data Warehouses

Large-scale data warehouses (eg. Hive [15], MaxCompute

[16]) typically store a large volume of data in distributed

data storage and provide SQL-Like language to manage and

query data. In these systems, JSON data is often stored

as String Types. Before running queries on such data, it is

necessary to parse the JSON data, to extract and transform

them into the native data format supported by the system.

Fig. 1 shows an example of how JSON data are typically

stored in a data warehouse. Table T in database mydb has

three columns: mall id, date, and sale logs, which store sales

information in JSON format. Two example queries retrieve

the items with the highest turnover and the highest sale count

in a 3-day window, respectively. In these two queries, the

function get json object is used to parse the JSON string

and retrieve the specified fields such as turnover, sale count.

The function get json object requires two parameters: namely,

Column Name, which specifies which column to read the

JSON string, and JSONPath, which indicates the path to the

specified field in a JSON string. For example, the JSONPath

$.turnover indicate the path to field turnover in sale logs. In

summary, to read the value of a field, one has to specify the

database name, the table name, the column name, and the

JSONPath.

mall_id date sale_logs

0001 20190101
{"item_id" : 000001, "item_name" : "apple", "sale_count" :  10,  "turnover":20, 
"price": 2 ...}

0001 20190102
{"item_id" : 000002, "item_name" : "watermelon", "sale_count" :  5, "turnover":50, 
"price": 10 ...}

.....

0001 20190131
{"item_id" : 000003, "item_name" : "banana", "sale_count" :  30,  "turnover":90, 
"price": 3 ...}

Information table T in database mydb 

select mall_id, get_json_object(sale_logs, ‘$.item_id’) as item_id, get_json_object(sale_logs, ‘$.item_name’) as

item_name, get_json_object(sale_logs, ‘$.turnover’) as turnover from mydb.T where date between ‘20190101’ and 

‘20190103’  order by get_json_object(sale_logs, ‘$.turnover’) limit 1

select mall_id, get_json_object(sale_logs, ‘$.item_id’) as item_id, get_json_object(sale_logs, ‘$.item_name’) as

item_name, get_json_object(sale_logs, ‘$.sale_count’) as sale_count from mydb.T where date between ‘20190101’ 

and ‘20190103’ order by get_json_object(sale_logs, ‘$.sale_count’) limit 1

Fig. 1: Query data in JSON format

B. Data Update Pattern

We further study the time of table updates during the day.

As shown in Fig. 2, updates are more frequent at noon, but

rare at midnight. In addition, these updates usually come from

the data generated in the previous day. Furthermore, the data

that has been appended will hardly be changed, only 2% of the

tables experienced modification of previously appended data.

C. Cost of Parsing JSON Data

In order to demonstrate the overhead of parsing JSON data,

we tested three types of queries, which appear very frequently

in the collected production workload from Alibaba. Q1 is a

simple SELECT query which retrieves two attributes from

the queried JSON data. Q2 uses COUNT aggregate function

with a group-by condition. Q3 performs a self-equijoin. We

run the queries on the JSON data generated from Nobench
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Fig. 2: Time of table updates during the day

[17]. Fig. 3 show the composition of the running time of these

three queries running on JSON data using SparkSQL. It is very

obvious that parsing JSON data accounts for the majority of

the execution time (≥ 80%), even both simple data retrieval

(Q1) and more expensive queries (Q2 and Q3) involving joins

and aggregations.
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Fig. 3: Parsing and query processing cost in three common

types of query

D. Workload Analysis

In Alibaba, there are about 6,000 machines allocated to the

service of querying JSON data. The queries are mainly data

mining tasks on JSON data generated from a wide range of

services inside Alibaba such as sale logs, machine state logs.

The data generated by these services are typically loaded into

the data warehouse on a daily basis. We collected a 5-month

query trace from a deployed data analysis system with over

several thousands of machines. We retrieved the information

related to the trace, which includes the query strings, table

update timestamps, query submission timestamps, query plans.

The trace contains nearly 3 million of successfully executed

queries. These queries are run on around 24, 000 tables stored

in a reliable append-only distributed file system similar to

HDFS [18]. We conducted the following analysis of the

queries in the trace.

1) Temporal correlation: Queries in the trace exhibit strong

temporal correlations: 82% queries are recurring, which are

submitted by about 1, 900 users. Out of these queries, over

71% are repeated daily (usually with a calendar day window,

e.g., requiring the data from yesterday, while approximately

7% with a window spanning multiple days); 17% are repeated

weekly, mostly with a window across a week.

2) Spatial correlations: We found that the frequency of

JSONPath parsing closely follows the power-law distribution:

89% of the parsing traffic are on 27% JSONPaths. This distri-

bution reveals spatial correlations across different queries. It

is often the case that users analyzed the same data in different

dimensions in different queries. For example, the aforemen-

tioned queries shown in Fig. 1 are daily queries extracted

from the Alibaba workload, which analyze, respectively, the

turnover and sale count values from the same input data. While

these two queries parse different JSONPaths, they also parse

common JSONPath from the sale logs, such as item name,

item id. Fig. 4 depicts the number of queries that involve

each particular JSONPath. On average each JSONPath will be

requested by 14 queries.
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Fig. 4: Number of queries that contain each JSONPath. Each

JSONPath is given a unique id, and the numbers of queries

that contain these JSONPaths are reported.

Finally, queries usually only involve data that are loaded

before the previous day. In other words, queries would not

involve data loaded on the same day, which provides time for

checking and validating data after they are loaded.

III. SYSTEM DESIGN

A. Technical Challenges

The above study of the trace reveals strong temporal and

spatial correlations across queries, which lead to significant

JSON parsing redundancies. Inspired by the previous work

such as [11]–[14], we propose a cache-based approach to

reduce the parsing overhead. Frequently accessed JSON data

is parsed and stored in the cache so that query execution do

not need repeatedly pay the parsing overhead.

However, conventional online caching methods where data

are first cached when it is accessed and cache is maintained

using an online replacement strategy, such as LRU, would not

be a desirable choice in our scenario. In our scenario, the

data accessed by queries is updated daily, and once updated,

it is usually remained unchanged within a day. Furthermore,

queries would only involve data that are loaded yesterday or

earlier. Therefore, there exist ample opportunities to make use

of unutilized cluster resources to parse the JSON data and

pre-load the cache even before the data are accessed the first

time. This can often happen during midnight when the cluster



is under-utilized. Finally, with online caching methods, the

first queries that access a JSONPath can not take advantage

of the cache, therefore it does not provide a uniform and fair

user experience.

B. System Overview

Our objective is to implement a lightweight JSONPath

caching system that can reduce the execution time of user

queries under the constraint of storage resource. To avoid the

aforementioned problems of online caching and replacement

methods, Maxson adopts a prediction-based caching approach,

where the system predicts daily the JSONPaths that would

be accessed in the coming day, and it pre-parses the selected

JSONPaths and stores the data values into the cache.

Application
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Historical Table Raw Data Table Cache TableDatabase

Cache

Query

Processor

JSONPath 

Collector

JSONPath 

Predictor

Scoring 

Function

JSONPath 

Cacher

User Sql

JSONPath

Record

Query Fields

Cached 

Value

Uncached Value

Fig. 5: System architecture of Maxson

Fig. 5 depicts Maxson’s overall architecture. JSONPath Col-

lector collects historical user queries, and for each JSONpath,

extracts information about its location (i.e. database name,

table name, column name) and the number of times that it is

accessed. Such information is stored in a statistics table, which

is partitioned by date.

The collected statistics are used to train the models in

JSONPath Predictor, which is used to predict the candidate

JSONPaths to be cached for the coming day, which are

called Multiple-Parsed JSONPaths (MPJP). Then a Scoring

Function would be used to choose the MPJPs that can provide

the highest benefit in terms of minimizing query execution

time. Then JSONPath Cacher parses the values of the chosen

MPJPs into a cache table at midnight when updates rarely

happen. The cache is emptied re-populated every midnight.

The storage size used by the cache table is a parameter that

can be tuned according to the available resource.

Maxson is designed to be fully compatible with SparkSQL,

a Spark module for structured data processing. Users can

execute SQL queries and support reading and writing data

stored in Hive. SparkSQL compiles SQL queries into physical

plans to be executed on a cluster. A physical plan is a set

of RDD [2] operations that are executed on the data source,

typically contains scan, filter, projection, join, etc. To make a

physical plan to access the cache table, we implemented Max-

sonParser based on SparkSQL parser. When the MaxsonParser

compiles SQL statement into a physical plan, if a JSONPath

in the SQL statement hits a valid cached value, it generates

a placeholder that stores the JSONPath information and the

reference to the cache table. A cache item is valid if the cached

time is behind the last modification time of raw data table. If

the query needs to access both cached and uncached data, then

during the table scan phase, we use Value Combiner to stitch

the cached and uncached data into complete records.

IV. IMPLEMENTATION

A. JSONPath Predictor

Fig. 6: Overview of JSONPath predictor

Fig. 6 depicts the overview of JSONPath Predictor. It

predicts whether a given JSONPath will be accessed at least

twice on the next day or not. In other words, it predicts if a

JSONPath is a Multiple-Parsed JSONPath (MPJP) on the

next day.

The input of the predictor is provided by JSONPath Col-

lector which includes JSONPath, Date, and Count, which

is access times of the JSONPath on the specified date. Our

hypothesis is that the next day’s MPJPs can be predicted by

the access times of JSONPaths in the history, and the nearer

history has greater impact on the prediction than the further

history.

For each JSONPath, the features include database name,

table name, and column name, Count sequence, which is

a sequence of JSONPath’s access times on each day, and

Datediff sequence, which is a sequence of integers indicating

how old each access times in Count sequence is (e.g. 1

indicating it is one day old and so on). We take database

name, table name and column name as part of the feature

set because JSONPaths in the same data source often appears

together in the queries.

We use a hybrid model composed by long short-term

memory (LSTM [19]) and conditional random field (CRF [20])

to implement Predictor. LSTM [19] can perform sequence

feature extraction well with its core component c (cell state)

and h (hidden state), where c is used to save the long-term state

and h is to save what the model has learnt. Besides capturing

the relation of features for learning like general classification

algorithms, CRF [20] can learn the context relation of labels,

which makes the model prediction more accurate. Combining

LSTM with CRF, we can well capture temporal and spatial

correlations of JSON queries.



For the given records of JSONPath features X = x1, ..., xn

where xi is an input vector composed of the ith JSONPath

location information, Datediff sequence, and Count sequence.

The JSONPath records are first feed into LSTM layer, it adopts

Cross-Entropy function [21] to adjust the correctness of model.

Then the label sequence output by LSTM, is fed into the

CRF layer, it adopts the viterbi algorithm [22] to decode

the sequence to get the label with the maximum probability.

We have also tried the other models, eg. LR [23], SVM

[24], MLPClassifer [25], and LSTM [19]. LSTM+CRF hybrid

model performs the best according to our experiments. The

results are presented in Section V-B.

B. Scoring Function

TABLE I: Notation used in scoring function

Symbol Description

Bj Average size of the value of MPJPj

Aj Acceleration per byte of MPJPj

Mi Number of MPJPs in queryi
Ni Number of JSONPaths in queryi
Rj Relevance of MPJPj

Pj Average parsing time of MPJPj

Oj Average number of occurrence of MPJPj

Scorej Score of MPJPj

Due to the storage constraint, we may not be able to cache

the values of all the MPJP. We propose a scoring function to

rank the predicted MPJP for caching. Table I summarizes the

notations that are used in the description below. The score of

a MPJP takes into account the data size after parsing, time

needed to spend on parsing, and the relevance of the MPJP.

The details of these factors are described as follow:

Acceleration per byte. The size of MPJP directly affects the

number of MPJPs that we can cache. When the disk size is

fixed, we prefer to cache the one that can bring more gains on

performance. We define acceleration per byte of an MPJP,

denoted by Aj as the average query time that can be saved by

each byte of its parsed values (Eq. 1). We calculate average

size of an MPJP, denoted by Bj , by sampling each split from

the table, and its average parsing cost, denoted by Pj , using

the same parsing algorithm in the data analysis engine.

Aj =
Pj

Bj

(1)

Relevance. If all the JSONPaths of a query are cached, it is

unnecessary to read the JSON strings from the raw data table

to parse the values of the uncached JSONPaths and stitch them

with the cached values. Instead, we can perform the cache-only

reading, which is cheaper in terms of both I/O and CPU cycles.

Note that only MPJPs are candidates for caching. Therefore,

the higher percentage of JSONPaths accessed by a query being

MPJPs, the larger portion of JSONPaths accessed by the query

can be cached to bring higher benefit in terms of reducing

query time. Based on this observation, we define the relevance

of MPJP (Eq. 2) as follows. Suppose MPJPj is accessed by n

queries. We count the total number of MPJPs and JSONPaths

involved in each of these n queries, respectively, denoted

by Mi and Ni. The relevance of the jth MPJP, denoted

by Rj , is defined in Eq. 2, which is actually the fraction

of JSONPaths accessed by the corresponding queries being

MPJPs. We prefer caching MPJPs with higher Rj , so that it

is more likely the case that all JSONPaths of some queries are

cached. We use the same queries as JSONPath Predictor to

calculate the relevance.

Rj =

∑i=n

i=1
Mi

∑i=n

i=1
Ni

(2)

Number of occurrence. We define the number of occurrence

of MPJPj , denoted by Oj , as the number of queries that would

access MPJPj . The higher the value of Oj , the more queries

that can be accelerated by caching MPJPj .

Score. To take all the aforementioned factors into account, the

score of MPJPj is defined as follows:

Scorej = Aj ·Rj ·Oj (3)

C. JSONPath Cacher

At the start of the cache population time, which is usually

scheduled at midnight every day, JSONPath Cacher receives

from JSONPath Predicator a list of MPJPs sorted in descend-

ing order of their scores. It then caches the MPJPs in the

sorted order until it runs out space.

The pre-parsing and caching operations are done in a

scalable way using Spark. As Fig. 7 shows, the raw data table

is stored in ORC [26] format on Hive, which contains multiple

files. In HDFS, a file can be divided into one or more blocks

(note that a block cannot span multiple files). In Spark, one

or more blocks can form an input split, which corresponds to

one Spark partition. The number of blocks contained in each

input split is a tunable parameter in Spark. When caching the

table, we treat a file as an input split to guarantee that the

value parsed from the raw data table file will only be written

to one cache table file. And We cache the JSONPath from the

same raw data table into the same cache table. In order to

remember the mapping relationship between the cache table

and the raw data table, we name a cache table according to the

corresponding database name and raw data table name, and a

cache field according to the corresponding column name and

JSONPath.

In order to correctly find the file where the parsed value is

located, we modified the Spark naming function when writing

the cache table file, so that the cache table file and the raw

data table file have the same sorting order during the process

of reading the table and the two readers can get the correct

file with the same index.

D. Maxson Parser

When a user submits a job to SparkSQL, in order to take

advantage of the cached tables, we transparently modify the

physical plan for the table reading phase. Algorithm 1 shows

the procedure of modifications to the physical plan. The input

of the algorithm contains two data structures: ProjectList and

Predicate. ProjectList contains the expressions that appear in
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Algorithm 1: Modifications to the Physical Plan

Input : ProjectList: PL, Predicate: P ,

DataBaseName: DBN , TableName: TN ;

Output: ProjectList which has been replaced: PL0,

Predicate which has been replaced: P0;

1 PL0 = Replace(ProjectList)

2 P0 = Replace(Predicate)

3 Function Replace(plarg)

4 foreach Expression expr in ProjectList do

5 res = MatchExpr(plarg);

6 switch res do

7 case placeholder do

8 return placeholder

9 otherwise do

10 Replace(plarg.children)

11 Function MatchExpr(earg)

12 begin

13 switch earg do

14 case get json object(CN ,JP ) do

15 if (DBN ,TN ,CN ,JP ) is cached then

16 cacheT ime ← get the cache time

of the cached table;

17 modifyT ime ← get the latest

modification time of the raw data

table;

18 if the modifyT ime after the

cacheT ime then

19 mark the cache table invalid;

20 return None ;

21 else

22 description ← (CN.name,

CN.id, JP );

23 return placeholder(description)

24 otherwise do

25 return None

the SELECT statement and Predicate contains the expres-

sions that appear in the WHERE statement. The columns

referenced by these expressions determine the columns to be

read at the table reading stage. Since expressions can contain

subexpressions, we use a recursive function to iterate through

1 s e l e c t
non json column0 ,

3 non json column1 ,
g e t j s o n o b j e c t ( json column0 , ’ $ . i d ’ ) as

j son co lum n0 id ,
5 g e t j s o n o b j e c t ( json column0 , ’ $ . u r l ’ ) as

j s o n c o l u m n 1 u r l
from T

7 where g e t j s o n o b j e c t ( json column0 , ’ $ . i d ’ ) > 10000 ;

Fig. 8: An SQL example for our modified physical plan

each expression in the ProjectList and its subexpressions (lines

3-15). When an expression is the function get json object, we

use pattern matching to extract the information of CN and

JP from it. Based on DBN and TN, We determine whether

we have cached this JSONPath (line 15). In lines 16-19, we

get the last modification time of the table from its metadata

(note that Spark loads metadata into memory before generating

the physical plan), and compare with the time of the cache.

If the cache time is before the last modification time, we

mark the cache table as invalid. Invalid cache tables would

be deleted when we perform caching operations next time. If

the JSONPath access is a cache hit and the cache is valid, we

replace get json object with a placeholder and put the Column

Name, the id of the column expression and the JSONPath

into the placeholder (lines 22-23). The information stored in

the placeholder would be used by reader to read the cached

values. On the other hand, if it is a cache miss, the expression

would not be changed, and data would be read by following

the normal procedure, i.e. reading the JSON string from the

raw data table followed by calling the get json object function

to parse its value.

We use an example to illustrate how this algorithm works.

As shown in Fig. 8, it is a simple query that retrieve the values

of non json column0 and non json column1 and parses the

id and url in the json column0 from the table T. Fig. 9

shows the comparison between SparkSQL’s original physical

plan and the modified physical plan for this simple query.

We assume that both id and url have been cached. The

original physical plan need to project the three columns:

non json column0, non json column1, json column0 and

needs to pass json column0 to get json object to retrieve

id and url. While in the modified plan, json column0 is

removed, replaced by two placeholder named json column0 id

and json column0 url. The values of id and url are read from

the cache table instead of by parsing json column0.

E. Value Combiner

A query may involve both cached values, such as id

and url in the above example, and uncached values, such

as non json column0 and non json column1. We start two

readers to read their values separately. The one that reads the

uncached values called PrimaryReader, while the other one

that reads the cached values is called CacheReader. We pass

the column names that they need to read by the configuration

of the readers. As Fig. 9 shows, PrimaryReader is responsible

for reading non json column0 and non json column1 and



scan non_json_column0 non_json_column_1 json_column0

Raw Data Table

get_json_object(json_column0, $.id)
> 10000filter

non_json_column0 non_json_column_1
get_json_object

(json_column, $.id)

get_json_object

(json_column, $.url)
projection

(a) Spark physical plan

scan non_json_column0 non_json_column_1 json_column0_id json_column0_url

Raw Data Table Cache Table

json_column0_id > 10000filter

non_json_column0 non_json_column_1 json_column0_id json_column0_urlprojection

placeholder placeholder

PrimaryReader CacheReader

(b) Maxson physical plan

Fig. 9: Comparison of physical plans generated by Spark and Maxson

CacheReader is responsible for reading json column0 id and

json column0 url. These four columns need to be stitched

together to form the complete records.

Algorithm 2 shows the procedure of Value Combiner. The

input of the algorithm includes the result schema (S), the

cached JSONPaths name (J), PrimaryReader, CacheReader,

and the split index (I). The name of the column we output

is recorded in the schema. In contrast to the original physical

plan, the output schema has four columns instead of three,

with the original json column0 being replaced by url and id.

JSONPath Cacher guarantees that the two files with the same

index have the same number of rows, and the cache table

files and raw data table files are aligned. We treat a file as an

input split when reading the table. The algorithm first reads

the values of split I from raw data table and cache table (line

1-2). Then for each pair of cache value and uncached value

that belong to the same row, we find their index from the

schema according to their name and then put their values in

the corresponding position of V (lines 5-8, 9-12). In particular,

when one reader has no value to read, we will directly return

the value of the other reader.

F. Optimization with Predicate Pushdown

In our system, data is stored in the ORC [26] format, which

is an efficient columnar storage format widely used by many

analytical systems. An ORC file can be divided into multiple

stripe depending on the data size. A stripe can contain multiple

row groups, each containg a group of 10,000 rows. An ORC

file maintains various indexes of the values within each column

(e.g. min and max values). The indexes are used by the reader

using Search ARGuments or SARGs, which are simplified

expressions that can specify the rows that are of interest.

Since we cache JSONPath’s values separately, if the predi-

cate contains a cached JSONPath, we can use it to restrict the

rows that should be read from the raw data table and cache

table. Algorithm 3 shows the procedure of applying predicate

pushdown. We use a query in Fig. 8 to illustrate how this

algorithm works. As shown in Fig. 10, when we push the

SARGs id >10000 down to the cache table, the CacheReader

Algorithm 2: The Procedure of the Value Combiner

Input : output schema: S, cached JSONPath name:

J , PrimaryReader: PR, CacheReader: CR,

SplitIndex: I;

Output: The combined value V read from table;

1 uncachedSplit← read split I from raw data table by

PR;

2 cacheSplit← read split I from cache table by CR;

3 foreach uncachedV alues, cachedV alues in

uncachedSplit, cachedSplit do

4 if uncachedValues is empty then

5 return cachedVlues;

6 if cachedValues is empty then

7 return uncachedValues;

8 V = Value[S.length];

9 foreach cached value, cached name in

cachedV alues do

10 fieldIndex← index of cached name in

schema S;

11 V [filedIndex]← cached value

12 foreach uncached value, uncached name in

uncachedV alues do

13 fieldIndex← index of uncached name in

schema S;

14 V [filedIndex]← uncached value

15 return V ;

initializes row group array from cache table’s file with SARGs

(line 4), and row group0 that contains id less than 10000

is completely skipped. There is an array in CacheReader to

record the skipped row groups [false, true,...] (line 5), where

false and true indicate skipped and non-skipped respectively.

We share the array to the PrimaryReader (line 7), so that the

PrimaryReader would also skip the row group0.

If there are multiple stripes in a file, we cannot guarantee

that the stripes in the cache table and in the raw data table

have the same number of rows due to the difference in size of



Algorithm 3: Predicate Pushdown on Cache Table

Input : The Raw Data Table U , The Cache Table C,

SearchArgument SA;

1 InitializeReader (U ,C)

2 Function InitializeReader(uarg, carg)

3 if cached column is filtered then

4 CacheReader← initialize reader with SA on

C;

5 CacheRowGroups[]← cr.getRowGroups;

6 PrimaryReader← initialize reader on T ;

7 PrimaryReader.PrimaryRowGroups[]←
CacheRowGroups[];

stripe

File

stripe

File

json_column0 non_json_column0 non_json_column1

……

{“id”:10001, “url”:”https”} “20190101” 2

{“id”:10002, “url”:”http”} “20190102” 1

……

json_colunmn0_id json_column0_url

……

10001 “https”

10002 “http”

……

non_json_column0 non_json_column1 json_column0_id Json_column0_url

“20190101” 2 10001 “https”

“20190102” 1 10002 ♣http�

Raw Data Table CacheTabl

e

Returned Fields

……

Row Group0

Row Group n

Row Group1

……

Row Group0

Row Group n

Row Group1

Fig. 10: One example of predicate pushdown

a row in the two tables. This would make us unable to perform

row alignment when skipping the row group. However, as

described in Section IV-C, each file in the cache table is parsed

from the raw data table, and files with the same index have the

same number of rows. Thus we only perform this optimization

when a file has only one stripe and that is quite common

because stripe size usually has default setting as 64MB or

even larger.

V. EVALUATION

A. Experimental Setup

We have implemented Maxson on Spark 2.3.0. We ran

distributed Spark experiments on a 22-node cluster. Each node

has two eight-core Xeon-2670 CPUs, 64GB memory, and one

SAS disk, running Red Hat EnterPrise Linux Server release

6.2 (kernel 4.4.5-6) and JDK 1.8.0 171. To configure an envi-

ronment that is close to a real production setup, we deployed

HDFS, Yarn, and Hive services in high-availability mode. We

also run Spark in yarn cluster mode. In the experiments, our

tables are stored in Hive in ORC format. For each query, eight

executors are allocated, each with 8GB memory size.

We obtained about 3 million analytic queries from Alibaba.

To train our model, we randomly select 70% of them as

training data set, 20% as validation data set, and the remaining

10% as test data set. We compare our predictor model with

four baseline models:

TABLE II: 10 queries related descriptions used for experi-

ments

SQL
JSONPath

number

Property number

in JSON
Nesting level

Average JSON

size(Byte)

Q1 11 11 1 408

Q2 10 17 1 655

Q3 10 206 4 4830

Q4 1 215 4 4736

Q5 12 26 3 582

Q6 29 107 5 2031

Q7 3 12 2 252

Q8 5 17 1 368

Q9 1 319 3 21459

Q10 8 90 1 8692

• LR: It is a simple classification algorithm in machine

learning.

• SVM: It is a popular baseline for classification algorithm

in machine learning.

• MLPClassifer: It is a simple classification algorithm using

neural network.

• LSTM: It is one of the most popular baseline for sequence

labeling problems.

In the experiments of query performance, we do not attempt

to replay all the queries in the Alibaba’s production workload.

The main reason is that it would require unreasonable amount

of resources and time, not to mention running them multiple

times to minimize variations and testing different scenarios to

obtain an in-depth evaluation of various techniques. Therefore,

we choose to run a sample set of representative queries to

study the system’s performance. Focusing on a sample of

queries also allows us, as shown in our experiments, to perform

in-depth analysis of various aspects of the proposed techniques

within a reasonable amount of time. In Alibaba’s production

environment, queries are submitted by different users, and the

queries from different users are typically independent on each

other in the sense that they run on different subset of data due

to data access control policies. Therefore, we select the queries

issued by three representative users whose queries match the

characteristics of most other users’ queries. These queries take

about 400 machine hours to complete, which is reasonable to

perform our in-depth experimental analysis. Note that, while

we only look at the performance of queries submitted by

three sample users, we use the whole workload to train the

prediction models. Therefore, the experiment results would

indicate the actual improvement on query performance for a

user in an actual environment. For a series of queries with

spatial correlations, we only report the performance of one

of them, so that it reflects the user’s query performance over

different tables.

The JSON description involved in each query can be seen

in Table II. These queries involve a total of 10 tables. As the

actual data values do not affect these queries performance, we

synthetically generate 20 million rows of data for each table

by following the real data hierarchies and formats. For each

query, we repeat the execution 5 times and report the average

execution time.



TABLE III: Comparison sequential features’ importance of

LSTM+CRF with different superivised machine learning algo-

rithms and simple neural networks for prediction of JSONPath

Algorithm Parameter Precision Recall F1-Score

LR

multi class=’ovr’, n jobs=-1,

penalty=’l2’, solver=’newton-cg’,

max iterations = 1000

1.0 0.397 0.568

SVM

multi class=’ovr’, penalty=’l2’,

loss=’squared hinge’,

max iter=1000

1.0 0.559 0.717

MLPClassifier

solver=’lbfgs’, alpha=1e-5,

hidden layer sizes=(50, 10, 2),

random state=0

0.994 0.694 0.817

LSTM+CRF
numLayers=2, word size=50,

all possible transitions=True
0.985 0.912 0.947

TABLE IV: Comparison of LSTM+CRF and LSTM for pre-

diction of JSONPath

Date Window Size Model Name Precision Recall F1-Score

1 week
LSTM+CRF 0.985 0.912 0.947

LSTM 0.927 0.916 0.921

2 weeks
LSTM+CRF 0.997 0.975 0.916

LSTM 0.912 0.889 0.9

1 month
LSTM+CRF 0.942 0.900 0.921

LSTM 0.925 0.885 0.905

B. JSONPath Prediction

We use F1 score to evaluate the effectiveness of the

predictor. In this experiment, we use the whole workload

trace. First, we evaluate the importance of temporal features

using the LR, SVM, MLPClassifier, and LSTM+CRF models.

For each algorithm, the parameters are tuned to achieve the

highest F1 score. As Table III shows, models that cannot take

into account date sequences have particularly low recall and

hence has a low F1 score. On the other hand, LSTM+CRF

adds date sequence as a feature, which has a significant

improvement on recall without lowering much the precision.

Therefore, LSTM+CRF achieves a much higher F1 score. This

experiment shows that temporal features are very important in

our scenario.

Second, we examine the effectiveness of LSTM+CRF in

handling temporal features. As a comparison, we use the

LSTM module in Pytorch [27] to implement Uni-LSTM. We

test different window size: one week, two weeks, and one

month. For each window size, the parameters of LSTM+CRF

and Uni-LSTM model are tuned to achieve the highest F1

score. The results of LSTM+CRF and Uni-LSTM are shown

in Table IV. The F1 socre of LSTM+CRF is always higher than

that of Uni-LSTM. With the window of 1 week, F1 scores are

maximized for both models. It shows that LSTM is able to take

into account the temporal features and capture the temporal

patterns. The additional CRF layer, the probabilistic graph

model, can learn the transition rules between labels, which are

MPJP and non-MPJP in our case. As a result, LSTM+CRF

has a higher F1 score in general for all window sizes.

C. Query Acceleration by Caching

In this experiment, we use four different cache constraints

to examine our scoring function: 100GB, 200GB, 300GB,

400GB. We examine two strategies to choose MPJPs for

caching under cache size constraints: 1) use the proposed

scoring function to rank the MPJPs, 2) randomly select the

MPJPs for caching. In addition, we also show the query

performance without caching.
The total execution time is shown in Fig. 11, and the

cached JSONPath for the ten queries can be seen in Table V

(400GB is enough to accommodate all MPJP’s value). In

general, it shows that a larger cache size can achieve shorter

total execution time. This is because we can cache more

MPJPs with a larger cache size to reduce more duplicated

parsing overhead. Furthermore, the scoring strategy always

outperforms random caching with different cache limits. When

the cache size is enough to accommodate all MPJPs’ values,

random caching has the same performance as using our scoring

function. From Table V, we can find that the scoring function

tries to cache all MPJPs from the same query. For example,

for the case with 300GB cache, all the MPJPs in Q2, Q3,

Q4, Q6, Q9, Q10 are cached, while in contrast, with the

random caching strategy, only part of the MPJPs in each query

are cached. In addition, the scoring-based approach prefers to

cache the MPJPs that have the higher acceleration per byte.

For example, when the cache limit is 100GB, the MPJPs in

Q10 are cached, which can accelerate the query by 45 times

(see in Fig. 15).

To make a closer comparison, we break down the running

time of two queries Q2, Q9 into three steps: Read, Parse, and

Compute. The results are shown in Fig. 12. In Maxson, we

eliminate the overhead of parsing by reading the cached value

from the cached table. Besides, as shown in Fig. 12b and

Fig. 12d, Maxson’s input size is much smaller than Spark’s

input size, because Q2 and Q9’s filtering predicates include

properties within the JSON strings, so we can push such

predicates down into the cache table to reduce the number

of records that are read.

As for the overhead of caching, caching time with the

scoring-based strategy is slightly longer than that with the

random caching strategy. This is because the scoring-based

approach attempts to cache MPJPs from more complex JSON

strings, which can achieve higher query acceleration. On the

other hand, the average cache overhead for each query only

accounts for 1.7% of the execution time. This is because many

queries with spatial relationship can share the cache overhead.

In summary, the speedups achieved by Maxson are ranging

from 1.5× to 6.5×.

D. Impact on Plan Generation

We examine the overhead of Maxson’s process of modifying

the physical query plan. Fig. 13 shows the time overhead for

plan modification. We use the queries from Table II with the

cache limit of 300GB, and record the time to generate the

physical plans using Maxson and Spark, respectively. We find

that Maxson is on average 0.4 seconds slower than SparkSQL.



TABLE V: The cached JSONPath number in different cache limit: 400GB, 300GB, 200GB, 100GB

Query
400GB 300GB 200GB 100GB

Scoring Function Random Scoring Function Random Scoring Function Random Scoring Function Random

Q1 11 11 0 7 0 4 0 3

Q2 10 10 10 6 0 4 0 2

Q3 10 10 10 8 10 6 0 3

Q4 1 1 1 1 1 0 0 0

Q5 12 12 0 8 0 5 0 2

Q6 29 29 29 23 17 14 7 8

Q7 3 3 1 1 0 1 0 0

Q8 5 5 0 3 0 2 0 1

Q9 1 1 1 1 1 1 0 1

Q10 8 8 8 6 8 4 8 2
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Fig. 11: Total execution for all ten queries with different cache constraints
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Fig. 12: Breakdown of the query execution time, and input size
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In general, the more JSONPath that are involved in a query,

the longer it takes to generate the plan. However, the increase

of planning time is negligible in comparing to the execution

time of the entire job. The execution time of each query can

be seen in Fig. 15.
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E. Comparison with Online Cache

In this experiment, we compare Maxson’s prediction-based

caching approach with an online caching with LRU policy. We

run all queries mentioned in Section V-A in the original order

in the workload trace. We record the total execution time and

the cache hit ratio of the ten queries from Table II. As Fig. 14

shows, we can find that LRU policy has lower cache hit ratio

and higher query execution time than Maxson. We analyze

the cache access trace of the queries, and find that the LRU

policy often evicts some cached values that can be used by

other queries from different users. Furthermore, some queries

with spatial correlation are often with similar submission

time, hence there is little opportunity for the system to cache

the values accessed by these queries. On the other hand,

Maxson pre-parses and pre-caches these values before any

of the queries is executed. Therefore, there is higher cache

hit. Moreover, Maxson’s scoring-based approach attempts to

maximize the acceleration by selecting the JSONPaths with

higher scores for caching.

F. Comparison with Other Parsers

This experiment is to examine the effect of using efficient

JSON parsing methods, such as Mison [6]. This is to answer

the question of whether it is still make sense to cache JSON-

Paths given that there are efficient JSON parsers.

We report the execution time of ten queries from Ta-

ble II using Maxson, Spark+Jackson, Spark+Mison, and Max-

son+Mison respectively. Jackson [28] is the default JSON

parser in SparkSQL. We use Pirkkr [29], the most popular

open source implementation based on the paper of Mison. We

set Maxson’s cache limit as 300GB. As shown in Fig. 15,

due to its high efficiency of JSON parsing, Mison can reduce

query execution time significantly, especially in Q6 where the

JSON pattern has little change in the dataset.

However, as Mison still has the overhead of projecting data

fields, which is especially significant when the JSON schema

varies significantly within the dataset. Therefore, we can see

that for Q2, Q3, Q4, Q6, Q7, Q9, and Q10, the caching in

Maxson is more effective in eliminating the parsing overhead,

which is unaffected by the variation of JSON schema in the

dataset. For queries like Q1, Q5, and Q8, Maxson does not

cache their JSONPaths, therefore, Mison can be a good com-

plementing technology to speed up the parsing of uncached

JSONPaths.

VI. RELATED WORK

Analysis System of Raw Data. Driven by practical needs

of data analytics tasks, a lot of recent researches have been

focusing on building system to support querying directly on

raw data to eliminate the cost and evade the difficulties of

modeling, schematizing, transforming, and loading the data.

[30], [31] support directly querying JSON document within

RDBMS by modifying the RDBMS storage layer. In this way,

RDBMS users can store, query, and index JSON data without

the need to incorporate JSON data into tables with rigid

schemas, which is often hard to achieve. [32], [33] support

multiple storage layouts for different access pattern over raw

data, and attempt to adapt the storage according the changes of

workload. NoDB [34] builds indices of attributes incrementally

over data in CSV format to navigate as close as possible to the

position of the queried data. Karpathiotakis et al. [35] propose

JIT-compiled access path to adapt the query engine according

to the formats of raw data. Slalom [36] made on-the-fly

partitioning and indexing to access raw data efficiently. While

this category of work focuses on developing querying and data

access techniques to speed up raw data access, the pre-caching

approach adopted by Maxson focuses on eliminating duplicate

overhead parsing raw data by caching the parsed values in

advance. This pre-caching technique can be incorporated into

raw data processing engines in a complementary manner.

Optimized Parser of Semi-Structured Data. Mison [6] uses

SIMD instructions to build a field index for a JSON string

based on special characters, such as brackets and colons. It

can perform efficient projection without de-serializing JSON

strings completely. Sparser [7] adopted a new approach that

applies filters on the raw byte stream of data before parsing. It

is based on the observation that many real-world applications

are highly selectivity. Other examples of optimized JSON

parsers include Gson [8] and RapidJSON [9]. While these

approaches can effectively reduce the overhead of JSON

parsing, Maxson is designed to address an orthogonal problem:

duplicate JSON parsing by queries with correlations.

Parsing performance is also an issue for other semi-

structured data formats like XML [37]. Many techniques (eg.

[37]–[40]) have been proposed to accelerate XML parsing.

Maxson’s pre-caching technique can also be applied to other

data formats, such as XML.

Predictive Caching. Apollo [11] and Promise [14] exploit

query patterns in a session to predictively cache query results.

While Apollo [11] is based on query’s transitivity to predict

next query and Promise [14] focuses on navigational queries.

Maxson does not explore the pattern of a series of queries in a

session to predict the next query, but relies on the temporal and

spatial correlations of queries to cache repetitive JSONPaths.

Lempel et al. [12] cache search results based on a probabilistic

model of users of search engines. It prioritizes the cached

pages based on the number of users who are currently brows-

ing the pages. Ozcan et al. [13] propose caching strategies for

search engines, which are cost-aware and consider both static

and dynamic setups. Maxson also adopts a scoring function

to prioritize caching JSONPaths according to the amount of

query acceleration.

VII. CONCLUSION

This paper focuses on optimizing query performance in data

analytics systems that directly store and query JSON data. By

analyzing a real trace of production workload, we identify

temporal and spatial correlations among different queries in

terms of JSONPath access. Such correlations would incur

redundant parsing of JSON data to achieve the same data

values. We propose Maxson, a JSONPath caching system

that is implemented as a component in SparkSQL. Maxson



conducts daily predictions of JSONPath access by user queries,

and performs pre-parsing and pre-caching when the system

resource is under-utilized, typically during mid-night. As

shown by experiments on a real large-scale workload trace,

Maxson’s hybrid LSTM and CRF prediction model performs

very well in both precision and recall in comparing to other

alternative models, and the proposed scoring function is able to

prioritize caching JSONPaths to optimize the effectiveness of

caching. Furthermore, Maxson is able to modify SparkSQL

query plans to efficiently query both cached and uncached

data, as well as to support predicate pushdown to optimize

query performance.
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